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Abstract 

Source language parse trees offer very useful 
but imperfect reordering constraints for statis-
tical machine translation. A lot of effort has 
been made for soft applications of syntactic 
constraints. We alternatively propose the se-
lective use of syntactic constraints. A classifier 
is built automatically to decide whether a node 
in the parse trees should be used as a reorder-
ing constraint or not. Using this information 
yields a 0.8 BLEU point improvement over a 
full constraint-based system. 

1 Introduction 

In statistical machine translation (SMT), the 
search problem is NP-hard if arbitrary reordering 
is allowed (Knight, 1999). Therefore, we need to 
restrict the possible reordering in an appropriate 
way for both efficiency and translation quality. 
The most widely used reordering constraints are 
IBM constraints (Berger et al., 1996), ITG con-
straints (Wu, 1995) and syntactic constraints 
(Yamada et al., 2000; Galley et al., 2004; Liu et 
al., 2006; Marcu et al., 2006; Zollmann and 
Venugopal 2006; and numerous others). Syntac-
tic constraints can be imposed from the source 
side or target side. This work will focus on syn-
tactic constraints from source parse trees. 

Linguistic parse trees can provide very useful 
reordering constraints for SMT. However, they 
are far from perfect because of both parsing er-
rors and the crossing of the constituents and for-
mal phrases extracted from parallel training data. 
The key challenge is how to take advantage of 
the prior knowledge in the linguistic parse trees 
without affecting the strengths of formal phrases. 
Recent efforts attack this problem by using the 
constraints softly (Cherry, 2008; Marton and 
Resnik, 2008). In their methods, a candidate 

translation gets an extra credit if it respects the 
parse tree but may incur a cost if it violates a 
constituent boundary. 

In this paper, we address this challenge from a 
less explored direction. Rather than use all con-
straints offered by the parse trees, we propose 
using them selectively. Based on parallel training 
data, a classifier is built automatically to decide 
whether a node in the parse trees should be used 
as a reordering constraint or not. As a result, we 
obtain a 0.8 BLEU point improvement over a full 
constraint-based system.  

2 Reordering Constraints from Source 
Parse Trees 

In this section we briefly review a constraint-
based system named IST-ITG (Imposing Source 
Tree on Inversion Transduction Grammar, Ya-
mamoto et al., 2008) upon which this work 
builds. 

When using ITG constraints during decoding, 
the source-side parse tree structure is not consid-
ered. The reordering process can be more tightly 
constrained if constraints from the source parse 
tree are integrated with the ITG constraints. IST-
ITG constraints directly apply source sentence 
tree structure to generate the target with the 
following constraint: the target sentence is ob-
tained by rotating any node of the source sen-
tence tree structure. 

After parsing the source sentence, a bracketed 
sentence is obtained by removing the node 
syntactic labels; this bracketed sentence can then 
be directly expressed as a tree structure. For 
example1, the parse tree “(S1 (S (NP (DT This)) 
(VP (AUX is) (NP (DT a) (NN pen)))))” is 
obtained from the source sentence “This is a 
pen”, which consists of four words. By removing 

                                                 
1 We use English examples for the sake of readability. 
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the node syntactic labels, the bracketed sentence 
“((This) ((is) ((a) (pen))))” is obtained. Such a 
bracketed sentence can be used to produce 
constraints.  

For example, for the source-side bracketed 
tree “((f1 f2) (f3 f4)) ”, eight target sequences [e1, 
e2, e3, e4], [e2, e1, e3, e4], [e1, e2, e4, e3], [e2, 
e1, e4, e3], [e3, e4, e1, e2], [e3, e4, e2, e1], [e4, 
e3, e1, e2], and [e4, e3, e2, e1] are possible. For 
the source-side bracketed tree “(((f1f2) f3) f4),” 
eight sequences [e1, e2, e3, e4], [e2, e1, e3, e4], 
[e3, e1, e2, e4], [e3, e2, e1, e4], [e4, e1, e2, e3], 
[e4, e2, e1, e3], [e4, e3, e1, e2], and [e4, e3, e2, 
e1] are possible. When the source sentence tree 
structure is a binary tree, the number of word 
orderings is reduced to 2N-1 where N is the length 
of the source sentence.  

The parsing results sometimes do not produce 
binary trees. In this case, some subtrees have 
more than two child nodes. For a non-binary sub-
tree, any reordering of child nodes is allowed. 
For example, if a subtree has three child nodes, 
six reorderings of the nodes are possible. 

3 Learning to Classify Parse Tree 
Nodes 

In IST-ITG and many other methods which use 
syntactic constraints, all of the nodes in the parse 
trees are utilized. Though many nodes in the 
parse trees are useful, we would argue that some 
nodes are not trustworthy. For example, if we 
constrain the translation of “f1 f2 f3 f4” with 
node N2 illustrated in Figure 1, then word “e1” 
will never be put in the middle the other three 
words. If we want to obtain the translation “e2 e1 
e4 e3”, node N3 can offer a good constraint 
while node N2 should be filtered out. In real cor-
pora, cases such as node N2 are frequent enough 
to be noticeable (see Fox (2002) or section 4.1 in 
this paper). 

Therefore, we use the definitions in Galley et 
al. (2004) to classify the nodes in parse trees into 
two types: frontier nodes and interior nodes. 
Though the definitions were originally made for 
target language parse trees, they can be straight-
forwardly applied to the source side. A node 
which satisfies both of the following two condi-
tions is referred as a frontier node: 

 
• All the words covered by the node can be 

translated separately. That is to say, these 
words do not share a translation with any 
word outside the coverage of the node. 

• All the words covered by the node remain 
contiguous after translation. 

 
Otherwise the node is an interior node. 
For example, in Figure 1, both node N1 and 

node N3 are frontier nodes. Node N2 is an inte-
rior node because the source words f2, f3 and f4 
are translated into e2, e3 and e4, which are not 
contiguous in the target side. 

Clearly, only frontier nodes should be used as 
reordering constraints while interior nodes are 
not suitable for this. However, little work has 
been done on how to explicitly distinguish these 
two kinds of nodes in the source parse trees. In 
this section, we will explore building a classifier 
which can label the nodes in the parse trees as 
frontier nodes or interior nodes.  

 
Figure 1: An example parse tree and align-

ments 

3.1 Training 

Ideally, we would have a human-annotated cor-
pus in which each sentence is parsed and each 
node in the parse trees is labeled as a frontier 
node or an interior node. But such a target lan-
guage specific corpus is hard to come by, and 
never in the quantity we would like. 

Instead, we generate such a corpus automati-
cally. We begin with a parallel corpus which will 
be used to train our SMT model. In our case, it is 
the FBIS Chinese-English corpus.  

Firstly, the Chinese sentences are segmented, 
POS tagged and parsed by the tools described in 
Kruengkrai et al. (2009) and Cao et al. (2007), 
both of which are trained on the Penn Chinese 
Treebank 6.0. 

Secondly, we use GIZA++ to align the sen-
tences in both the Chinese-English and English-
Chinese directions. We combine the alignments 
using the “grow-diag-final-and” procedure pro-
vided with MOSES (Koehn, 2007). Because 
there are many errors in the alignment, we re-
move the links if the alignment count is less than 
three for the source or the target word. Addition-
ally, we also remove notoriously bad links in 

  f1        f2      f3   f4 
 
  e2       e1      e4   e3 

N3 

N2

N1
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{de, le} × {the, a, an} following Fossum and 
Knight (2008).  

Thirdly, given the parse trees and the align-
ment information, we label each node as a fron-
tier node or an interior node according to the 
definition introduced in this section. Using the 
labeled nodes as training data, we can build a 
classifier. In theory, a broad class of machine 
learning tools can be used; however, due to the 
scale of the task (see section 4), we utilize the 
Pegasos 2  which is a very fast SVM solver 
(Shalev-Shwartz et al, 2007).  

3.2 Features 

For each node in the parse trees, we use the fol-
lowing feature templates: 
• A context-free grammar rule which rewrites 

the current node (In this and all the following 
grammar based features, a mark is used to 
indicate which non terminal is the current 
node.) 

• A context-free grammar rule which rewrites 
the current node’s father 

• The combination of the above two rules  
• A lexicalized context-free grammar rule 

which rewrites the current node 
• A lexicalized context-free grammar rule 

which rewrites the current node’s father 
• Syntactic label, head word, and head POS 

tag of the current node 
• Syntactic label, head word, and head POS 

tag of the current node’s left child 
• Syntactic label, head word, and head POS 

tag of the current node’s right child 
• Syntactic label, head word, and head POS 

tag of the current node’s left brother  
• Syntactic label, head word, and head POS 

tag of the current node’s right brother  
• Syntactic label, head word, and head POS 

tag of the current node’s father 
• The leftmost word covered by the current 

node and the word before it 
• The rightmost word covered by the current 

node and the word after it 
 

4 Experiments 

Our SMT system is based on a fairly typical 
phrase-based model (Finch and Sumita, 2008). 
For the training of our SMT model, we use a 
modified training toolkit adapted from the 

                                                 
2 http://www.cs.huji.ac.il/~shais/code/index.html 

MOSES decoder. Our decoder can operate on the 
same principles as the MOSES decoder. Mini-
mum error rate training (MERT) with respect to 
BLEU score is used to tune the decoder’s pa-
rameters, and it is performed using the standard 
technique of Och (2003). A lexical reordering 
model was used in our experiments.  

The translation model was created from the 
FBIS corpus. We used a 5-gram language model 
trained with modified Knesser-Ney smoothing. 
The language model was trained on the target 
side of FBIS corpus and the Xinhua news in GI-
GAWORD corpus. The development and test 
sets are from NIST MT08 evaluation campaign. 
Table 1 shows the statistics of the corpora used 
in our experiments. 

 
Data Sentences Chinese 

words 
English 
words 

Training set 243,698 7,933,133 10,343,140 
Development set 1664 38,779 46,387 

Test set 1357 32377 42,444 
GIGAWORD 19,049,757 - 306,221,306 

 
Table 1: Corpora statistics 

 

4.1 Experiments on Nodes Classification 

We extracted about 3.9 million example nodes 
from the training data, i.e. the FBIS corpus. 
There were 2.37 million frontier nodes and 1.59 
million interior nodes in these examples, give 
rise to about 4.4 million features. To test the per-
formance of our classifier, we simply use the last 
ten thousand examples as a test set, and the rest 
being used as Pegasos training data. All the pa-
rameters in Pegasos were set as default values. In 
this way, the accuracy of the classifier was 
71.59%. 

Then we retrained our classifier by using all of 
the examples. The nodes in the automatically 
parsed NIST MT08 test set were labeled by the 
classifier. As a result, 17,240 nodes were labeled 
as frontier nodes and 5,736 nodes were labeled 
as interior nodes. 

4.2 Experiments on Chinese-English SMT 

In order to confirm that it is advantageous to dis-
tinguish between frontier nodes and interior 
nodes, we performed four translation experi-
ments.  

The first one was a typical beam search decod-
ing without any syntactic constraints.  

All the other three experiments were based on 
the IST-ITG method which makes use of syntac-
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tic constraints. The difference between these 
three experiments lies in what constraints are 
used. In detail, the second one used all nodes 
recognized by the parser; the third one only used 
frontier nodes labeled by the classifier; the fourth 
one only used interior nodes labeled by the clas-
sifier.  

With the exception of the above differences, 
all the other settings were the same in the four 
experiments. Table 2 summarizes the SMT per-
formance. 

 
Syntactic Constraints BLEU 

none 17.26 
all nodes 16.83 

frontier nodes 17.63 
interior nodes 16.59 

 
Table 2: Comparison of different constraints by 

SMT quality 
 

Clearly, we obtain the best performance if we 
constrain the search with only frontier nodes. 
Using just frontier yields a 0.8 BLEU point im-
provement over the baseline constraint-based 
system which uses all the constraints. 

On the other hand, constraints from interior 
nodes result in the worst performance. This com-
parison shows it is necessary to explicitly distin-
guish nodes in the source parse trees when they 
are used as reordering constraints.  

The improvement over the system without 
constraints is only modest. It may be too coarse 
to use pare trees as hard constraints. We believe 
a greater improvement can be expected if we ap-
ply our idea to finer-grained approaches that use 
constraints softly (Marton and Resnik (2008) and 
Cherry (2008)).  

5 Conclusion and Future Work 

We propose a selectively approach to syntactic 
constraints during decoding. A classifier is built 
automatically to decide whether a node in the 
parse trees should be used as a reordering con-
straint or not. Preliminary results show that it is 
not only advantageous but necessary to explicitly 
distinguish between frontier nodes and interior 
nodes. 

The idea of selecting syntactic constraints is 
compatible with the idea of using constraints 
softly; we plan to combine the two ideas and ob-
tain further improvements in future work.  
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