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Abstract

Tree-to-string systems (and their forest-
based extensions) have gained steady pop-
ularity thanks to their simplicity and effi-
ciency, but there is a major limitation: they
are unable to guarantee the grammatical-
ity of the output, which is explicitly mod-
eled in string-to-tree systems via target-
side syntax. We thus propose to com-
bine the advantages of both, and present
a novel constituency-to-dependency trans-
lation model, which uses constituency
forests on the source side to direct the
translation, and dependency trees on the
target side (as a language model) to en-
sure grammaticality. Medium-scale exper-
iments show an absolute and statistically
significant improvement of +0.7 BLEU
points over a state-of-the-art forest-based
tree-to-string system even with fewer
rules. This is also the first time that a tree-
to-tree model can surpass tree-to-string
counterparts.

1 Introduction

Linguistically syntax-based statistical machine
translation models have made promising progress
in recent years. By incorporating the syntactic an-
notations of parse trees frombothor either side(s)
of the bitext, they are believed better than phrase-
based counterparts in reorderings. Depending on
the type of input, these models can be broadly di-
vided into two categories (see Table 1): thestring-
basedsystems whose input is a string to be simul-
taneously parsed and translated by a synchronous
grammar, and thetree-basedsystems whose input
is already a parse tree to be directly converted into
a target tree or string. When we also take into ac-
count the type of output (tree or string), thetree-
basedsystems can be divided intotree-to-string
andtree-to-treeefforts.

tree on examples (partial) fast gram. BLEU
source Liu06, Huang06 + - +
target Galley06, Shen08 - + +
both Ding05, Liu09 + + -

both our work + + +

Table 1: A classification and comparison of lin-
guistically syntax-based SMT systems, where
gram. denotes grammaticality of the output.

On one hand, tree-to-string systems (Liu et al.,
2006; Huang et al., 2006) have gained significant
popularity, especially after incorporating packed
forests (Mi et al., 2008; Mi and Huang, 2008; Liu
et al., 2009; Zhang et al., 2009). Compared with
their string-based counterparts, tree-based systems
are much faster in decoding (linear time vs. cu-
bic time, see (Huang et al., 2006)), do not re-
quire a binary-branching grammar as in string-
based models (Zhang et al., 2006; Huang et al.,
2009), and can have separate grammars for pars-
ing and translation (Huang et al., 2006). However,
they have a major limitation that they do not have a
principled mechanism to guarantee grammatical-
ity on the target side, since there is no linguistic
tree structure of the output.

On the other hand, string-to-tree systems ex-
plicitly model the grammaticality of the output
by using target syntactic trees. Both string-to-
constituency system (e.g., (Galley et al., 2006;
Marcu et al., 2006)) and string-to-dependency
model (Shen et al., 2008) have achieved signif-
icant improvements over the state-of-the-art for-
mally syntax-based system Hiero (Chiang, 2007).
However, those systems also have some limita-
tions that they run slowly (in cubic time) (Huang
et al., 2006), and do not utilize the useful syntactic
information on the source side.

We thus combine the advantages of both tree-to-
string and string-to-tree approaches, and propose
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a novel constituency-to-dependency model, which
uses constituency forests on the source side to di-
rect translation, and dependency trees on the tar-
get side to guarantee grammaticality of the out-
put. In contrast to conventional tree-to-tree ap-
proaches (Ding and Palmer, 2005; Quirk et al.,
2005; Xiong et al., 2007; Zhang et al., 2007;
Liu et al., 2009), which only make use of a sin-
gle type of trees, our model is able to combine
two types of trees, outperforming both phrase-
based and tree-to-string systems. Current tree-to-
tree models (Xiong et al., 2007; Zhang et al., 2007;
Liu et al., 2009) still have not outperformed the
phrase-based system Moses (Koehn et al., 2007)
significantly even with the help of forests.1

Our new constituency-to-dependency model
(Section 2) extracts rules from word-aligned pairs
of source constituency forests and target depen-
dency trees (Section 3), and translates source con-
stituency forests into target dependency trees with
a set of features (Section 4). Medium data exper-
iments (Section 5) show a statistically significant
improvement of +0.7 BLEU points over a state-
of-the-art forest-based tree-to-string system even
with less translation rules, this is also the first time
that a tree-to-tree model can surpass tree-to-string
counterparts.

2 Model

Figure 1 shows a word-aligned source con-
stituency forestFc and target dependency treeDe,
our constituency to dependency translation model
can be formalized as:

P(Fc, De) =
∑

Cc∈Fc

P(Cc, De)

=
∑

Cc∈Fc

∑

o∈O

P(O)

=
∑

Cc∈Fc

∑

o∈O

∏

r∈o

P(r),

(1)

whereCc is a constituency tree inFc, o is a deriva-
tion that translatesCc to De, O is the set of deriva-
tion, r is a constituency to dependency translation
rule.

1According to the reports of Liu et al. (2009), their forest-
based constituency-to-constituency system achieves a com-
parable performance against Moses (Koehn et al., 2007), but
a significant improvement of +3.6 BLEU points over the 1-
best tree-based constituency-to-constituency system.

2.1 Constituency Forests on the Source Side

A constituency forest (in Figure 1 left) is a com-
pact representation of all the derivations (i.e.,
parse trees) for a given sentence under a context-
free grammar (Billot and Lang, 1989).

More formally, following Huang (2008), such
a constituency forest is a pairFc = Gf =
〈V f , Hf 〉, whereV f is the set ofnodes, andHf

the set ofhyperedges. For a given source sen-
tencec1:m = c1 . . . cm, each nodevf ∈ V f is
in the form ofX i,j , which denotes the recognition
of nonterminalX spanning the substring from po-
sitions i throughj (that is,ci+1 . . . cj). Each hy-
peredgehf ∈ Hf is a pair〈tails(hf ), head(hf )〉,
wherehead(hf ) ∈ V f is theconsequent nodein
the deductive step, andtails(hf ) ∈ (V f )∗ is the
list of antecedent nodes. For example, the hyper-
edgehf

0 in Figure 1 for deduction (*)

NPB0,1 CC1,2 NPB2,3

NP0,3 , (*)

is notated:

〈(NPB0,1, CC1,2, NPB2,3), NP0,3〉.

where

head(hf
0) = {NP0,3},

and
tails(hf

0) = {NPB0,1, CC1,2, NPB2,3}.

The solid line in Figure 1 shows the best parse
tree, while the dashed one shows the second best
tree. Note that common sub-derivations like those
for the verb VPB3,5 are shared, which allows the
forest to represent exponentially many parses in a
compact structure.

We also denoteIN (vf ) to be the set ofin-
coming hyperedgesof nodevf , which represents
the different ways of derivingvf . Take node IP0,5

in Figure 1 for example,IN (IP0,5) = {hf
1 , hf

2}.
There is also a distinguishedroot node TOP in
each forest, denoting the goal item in parsing,
which is simply S0,m where S is the start symbol
andm is the sentence length.

2.2 Dependency Trees on the Target Side

A dependency tree for a sentence represents each
word and its syntactic dependents through directed
arcs, as shown in the following examples. The
main advantage of a dependency tree is that it can
explore the long distance dependency.
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1: talk

blank a blan blan

2: held

Bush bla blk talk

a bl

with

b Sharon

We use the lexicon dependency grammar (Hell-
wig, 2006) to express a projective dependency
tree. Take the dependency trees above for exam-
ple, they will be expressed:

1: ( a ) talk

2: ( Bush ) held ( ( a ) talk ) ( with ( Sharon ) )

where the lexicons in brackets represent the de-
pendencies, while the lexicon out the brackets is
the head.

More formally, a dependency tree is also a pair
De = Gd = 〈V d, Hd〉. For a given target sen-
tencee1:n = e1 . . . en, each nodevd ∈ V d is
a word ei (1 6 i 6 n), each hyperedgehd ∈
Hd is a directed arc〈vd

i , vd
j 〉 from nodevd

i to
its head nodevd

j . Following the formalization of
the constituency forest scenario, we denote a pair
〈tails(hd), head(hd)〉 to be a hyperedgehd, where
head(hd) is the head node,tails(hd) is the node
wherehd leaves from.

We also denoteLl(v
d) andLr(v

d) to be the left
and right children sequence of nodevd from the
nearest to the farthest respectively. Take the node
vd
2 = “held” for example:

Ll(v
d
2) ={Bush},

Lr(v
d
2) ={talk, with}.

2.3 Hypergraph

Actually, both the constituency forest and the de-
pendency tree can be formalized as ahypergraph
G, a pair〈V, H〉. We useGf andGd to distinguish
them. For simplicity, we also useFc andDe to de-
note a constituency forest and a dependency tree
respectively. Specifically, the size oftails(hd) of
a hyperedgehd in a dependency tree is a constant
one.

IP

NP

x1:NPBCC

yǔ

x2:NPB

x3:VPB
→ (x1) x3 (with (x2))

Figure 2: Example of the ruler1. The Chinese con-
junctionyǔ “and” is translated into English prepo-
sition “with”.

3 Rule Extraction

We extract constituency to dependency rules from
word-aligned source constituency forest and target
dependency tree pairs (Figure 1). We mainly ex-
tend the tree-to-string rule extraction algorithm of
Mi and Huang (2008) to our scenario. In this sec-
tion, we first formalize the constituency to string
translation rule (Section 3.1). Then we present
the restrictions for dependency structures as well
formed fragments (Section 3.2). Finally, we de-
scribe our rule extraction algorithm (Section 3.3),
fractional counts computation and probabilities es-
timation (Section 3.4).

3.1 Constituency to Dependency Rule

More formally, a constituency to de-
pendency translation rule r is a tuple
〈lhs(r), rhs(r), φ(r)〉, where lhs(r) is the
source side tree fragment, whose internal nodes
are labeled by nonterminal symbols (like NP and
VP), and whose frontier nodes are labeled by
source language wordsci (like “yǔ”) or variables
from a setX = {x1, x2, . . .}; rhs(r) is expressed
in the target language dependency structure with
wordsej (like “with”) and variables from the set
X ; and φ(r) is a mapping fromX to nontermi-
nals. Each variablexi ∈ X occursexactly oncein
lhs(r) and exactly oncein rhs(r). For example,
the ruler1 in Figure 2,

lhs(r1) = IP(NP(x1 CC(yǔ) x2) x3),
rhs(r1) = (x1) x3 (with (x2)),
φ(r1) = {x1 7→ NPB,x2 7→ NPB,x3 7→ VPB}.

3.2 Well Formed Dependency Fragment

Following Shen et al. (2008), we also restrict
rhs(r) to bewell formed dependency fragment.
The main difference between us is that we use
more flexible restrictions. Given a dependency
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IP0,5

“(Bush) .. Sharon))”

hf
1

NP0,3

“(Bush)⊔ (with (Sharon))”

NPB0,1

“Bush”

Bùsh́ı

hf
0

CC1,2

“with”

yǔ

VP1,5

“held .. Sharon))”

PP1,3

“with (Sharon)”

P1,2

“with”

NPB2,3

“Sharon”

Sh̄alóng

VPB3,5

“held ((a) talk)”

VV3,4

“held ((a)*)”

jǔx́ıngle

NPB4,5

“talk”

hùıtán

hf
2

Minimal rules extracted
IP (NP(x1:NPBx2:CCx3:NPB)x4:VPB)

→ (x1) x4 (x2 (x3) )
IP (x1:NPB x2:VP)→ (x1) x2

VP (x1:PP x2:VPB)→ x2 (x1)
PP (x1:P x2:NPB)→ x1 (x2)

VPB (VV( jǔx́ıngle)) x1:NPB)
→ held ((a)x1)

NPB (Bùsh́ı)→ Bush
NPB (hùıtán)→ talk

CC (yǔ)→ with
P (yǔ)→ with

NPB (Sh̄alóng)→ Sharon

( Bush ) held ( ( a ) talk ) ( with ( Sharon ) )

Figure 1: Forest-based constituency to dependency rule extraction.

fragmentdi:j composed by the words fromi to j,
two kinds of well formed structures are defined as
follows:

Fixed on one nodevd
one, fixed for short, if it

meets the following conditions:

• the head ofvd
one is out of [i, j], i.e.: ∀hd, if

tails(hd) = vd
one ⇒ head(hd) /∈ ei:j .

• the heads of other nodes exceptvd
one are in

[i, j], i.e.: ∀k ∈ [i, j] andvd
k 6= vd

one,∀h
d if

tails(hd) = vd
k ⇒ head(hd) ∈ ei:j .

Floating with multi nodes M , floating for
short, if it meets the following conditions:

• all nodes in M have a same head node,
i.e.: ∃x /∈ [i, j],∀hd if tails(hd) ∈ M ⇒
head(hd) = vh

x .

• the heads of other nodes not inM are in
[i, j], i.e.: ∀k ∈ [i, j] and vd

k /∈ M, ∀hd if
tails(hd) = vd

k ⇒ head(hd) ∈ ei:j .

Take the “ (Bush) held ((a) talk))(with (Sharon))
” for example: partial fixed examples are “ (Bush)
held ” and “ held ((a) talk)”; while the partial float-
ing examples are “ (talk) (with (Sharon)) ” and “
((a) talk) (with (Sharon)) ”. Please note that the
floating structure “ (talk) (with (Sharon)) ” can not
be allowed in Shen et al. (2008)’s model.

The dependency structure “ held ((a))” is not a
well formed structure, since the head of word “a”
is out of scope of this structure.

3.3 Rule Extraction Algorithm

The algorithm shown in this Section is mainly ex-
tended from the forest-based tree-to-string extrac-
tion algorithm (Mi and Huang, 2008). We extract
rules from word-aligned source constituency for-
est and target dependency tree pairs (see Figure 1)
in three steps:

(1) frontier set computation,

(2) fragmentation,

(3) composition.

The frontier set (Galley et al., 2004) is the po-
tential points to “cut” the forest and dependency
tree pair into fragments, each of which will form a
minimal rule (Galley et al., 2006).

However, not every fragment can be used for
rule extraction, since it may or may not respect
to the restrictions, such as word alignments and
well formed dependency structures. So we say a
fragment isextractable if it respects to all re-
strictions. The root node of every extractable tree
fragment corresponds to afaithful structure on
the target side, in which case there is a “transla-
tional equivalence” between the subtree rooted at
the node and the corresponding target structure.
For example, in Figure 1, every node in the forest
is annotated with its corresponding English struc-
ture. The NP0,3 node maps to a non-contiguous
structure “(Bush)⊔ (with (Sharon))”, the VV3,4

node maps to a contiguous but non-faithful struc-
ture “held ((a) *)”.
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Algorithm 1 Forest-based constituency to dependency rule extraction.
Input : Source constituency forestFc, target dependency treeDe, and alignmenta
Output : Minimal rule setR

1: fs ← FRONTIER(Fc, De, a) ⊲ compute frontier set
2: for eachvf ∈ fs do
3: open ← {〈∅, {vf}〉} ⊲ initial queue of growing fragments
4: while open 6= ∅ do
5: 〈hs, exps〉 ← open.pop() ⊲ extract a fragment
6: if exps = ∅ then ⊲ nothing to expand?
7: generate a ruler using fragmenths ⊲ generate a rule
8: R.append(r)
9: else ⊲ incomplete: further expand

10: v′ ← exps.pop() ⊲ a non-frontier node
11: for eachhf ∈ IN (v′) do
12: newexps ← exps ∪ (tails(hf ) \ fs) ⊲ expand
13: open.append(〈hs ∪ {hf},newexps〉)

Following Mi and Huang (2008), given a source
target sentence pair〈c1:m, e1:n〉 with an alignment
a, thespanof nodevf on source forest is the set
of target words aligned to leaf nodes undervf :

span(vf ) , {ei ∈ e1:n | ∃cj ∈ yield(vf ), (cj , ei) ∈ a}.

where theyield(vf ) is all the leaf nodes un-
der vf . For each span(vf ), we also denote
dep(vf ) to be its corresponding dependency struc-
ture, which represents the dependency struc-
ture of all the words inspan(vf ). Take the
span(PP1,3) ={with, Sharon} for example, the
correspondingdep(PP1,3) is “with (Sharon)”. A
dep(vf ) is faithful structure to nodevf if it meets
the following restrictions:

• all words inspan(vf ) form a continuous sub-
stringei:j ,

• every word inspan(vf ) is onlyaligned to leaf
nodes ofvf , i.e.:∀ei ∈ span(vf ), (cj , ei) ∈
a⇒ cj ∈ yield(vf ),

• dep(vf ) is a well formed dependency struc-
ture.

For example, node VV3,4 has a non-faithful
structure (crossed out in Figure 1), since its
dep(VV3,4 = “ held ((a) *)” is not a well formed
structure, where the head of word “a” lies in the
outside of its words covered. Nodes with faithful
structure form thefrontier set (shaded nodes in
Figure 1) which serve as potential cut points for
rule extraction.

Given the frontier set, fragmentation step is to
“cut” the forest at all frontier nodes and form

tree fragments, each of which forms a rule with
variables matching the frontier descendant nodes.
For example, the forest in Figure 1 is cut into 10
pieces, each of which corresponds to a minimal
rule listed on the right.

Our rule extraction algorithm is formalized in
Algorithm 1. After we compute the frontier set
fs (line 1). We visit each frontier nodevf ∈ fs
on the source constituency forestFc, and keep a
queueopen of growing fragments rooted atvf . We
keep expanding incomplete fragments fromopen,
and extract a rule if a complete fragment is found
(line 7). Each fragmenths in open is associated
with a list ofexpansion sites(exps in line 5) being
the subset of leaf nodes of the current fragment
that arenot in the frontier set. So each fragment
along hyperedgeh is associated with

exps = tails(hf ) \ fs.

A fragment is complete if its expansion sites is
empty (line 6), otherwise we pop one expansion
nodev′ to grow and spin-off new fragments by
following hyperedges ofv′, adding new expansion
sites (lines 11-13), until all active fragments are
complete andopen queue is empty (line 4).

After we get all the minimal rules, we glue them
together to formcomposed rules following Galley
et al. (2006). For example, the composed ruler1

in Figure 2 is glued by the following two minimal
rules:
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IP (NP(x1:NPBx2:CCx3:NPB)x4:VPB)
r2→ (x1) x4 (x2 (x3) )

CC (yǔ)→ with r3

wherex2:CC inr2 is replaced withr3 accordingly.

3.4 Fractional Counts and Rule Probabilities

Following Mi and Huang (2008), we penalize a
rule r by the posterior probability of the corre-
sponding constituent tree fragmentlhs(r), which
can be computed in an Inside-Outside fashion, be-
ing the product of the outside probability of its
root node, the inside probabilities of its leaf nodes,
and the probabilities of hyperedges involved in the
fragment.

αβ(lhs(r)) =α(root(r))

·
∏

hf ∈ lhs(r)

P(hf )

·
∏

vf ∈ leaves(lhs(r))

β(vf )

(2)

whereroot(r) is the root of the ruler, α(v) and
β(v) are the outside and inside probabilities of
nodev, andleaves(lhs(r)) returns the leaf nodes
of a tree fragmentlhs(r).

We use fractional counts to compute three con-
ditional probabilities for each rule, which will be
used in the next section:

P(r | lhs(r)) =
c(r)∑

r′:lhs(r′)=lhs(r) c(r′)
, (3)

P(r | rhs(r)) =
c(r)∑

r′:rhs(r′)=rhs(r) c(r′)
, (4)

P(r | root(r)) =
c(r)∑

r′:root(r′)=root(r) c(r′)
. (5)

4 Decoding

Given a source forestFc, the decoder searches for
the best derivationo∗ among the set of all possible
derivationsO, each of which forms a source side
constituent treeTc(o), a target side stringe(o), and

a target side dependency treeDe(o):

o∗ = arg max
Tc∈Fc,o∈O

λ1 log P(o | Tc)

+λ2 log Plm(e(o))

+λ3 log PDLMw
(De(o))

+λ4 log PDLMp
(De(o))

+λ5 log P(Tc(o))

+λ6ill(o) + λ7|o|+ λ8|e(o)|,

(6)

where the first two terms are translation and lan-
guage model probabilities,e(o) is the target string
(English sentence) for derivationo, the third and
forth items are the dependency language model
probabilities on the target side computed with
words and POS tags separately,De(o) is the target
dependency tree ofo, the fifth one is the parsing
probability of the source side treeTc(o) ∈ Fc, the
ill(o) is the penalty for the number of ill-formed
dependency structures ino, and the last two terms
are derivation and translation length penalties, re-
spectively. The conditional probabilityP(o | Tc)
is decomposes into the product of rule probabili-
ties:

P(o | Tc) =
∏

r∈o

P(r), (7)

where eachP(r) is the product of five probabili-
ties:

P(r) =P(r | lhs(r))λ9 · P(r | rhs(r))λ10

· P(r | root(lhs(r)))λ11

· Plex(lhs(r) | rhs(r))
λ12

· Plex(rhs(r) | lhs(r))
λ13 ,

(8)

where the first three are conditional probabilities
based on fractional counts of rules defined in Sec-
tion 3.4, and the last two are lexical probabilities.
When computing the lexical translation probabili-
ties described in (Koehn et al., 2003), we only take
into accout the terminals in a rule. If there is no
terminal, we set the lexical probability to1.

The decoding algorithm works in a bottom-up
search fashion by traversing each node in forest
Fc. We first use pattern-matching algorithm of Mi
et al. (2008) to convertFc into a translation for-
est, each hyperedge of which is associated with a
constituency to dependency translation rule. How-
ever, pattern-matching failure2 at a nodevf will

2Pattern-matching failure at a nodev
f means there is no

translation rule can be matched atv
f or no translation hyper-

edge can be constructed atv
f .
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cut the derivation path and lead to translation fail-
ure. To tackle this problem, we construct apseudo
translation rule for each parse hyperedgehf ∈
IN (vf ) by mapping the CFG rule into a target de-
pendency tree using the head rules of Magerman
(1995). Take the hyperedgehf

0 in Figure1 for ex-
ample, the corresponding pseudo translation rule
is:

NP(x1:NPBx2:CCx3:NPB)→ (x1) (x2) x3,

since thex3:NPB is the head word of the CFG
rule: NP→ NPB CC NPB.

After the translation forest is constructed, we
traverse each node in translation forest also in
bottom-up fashion. For each node, we use the
cube pruning technique (Chiang, 2007; Huang
and Chiang, 2007) to produce partial hypotheses
and compute all the feature scores including the
dependency language model score (Section 4.1).
If all the nodes are visited, we trace back along
the 1-best derivation at goal item S0,m and build
a target side dependency tree. Fork-best search
after getting 1-best derivation, we use the lazy Al-
gorithm 3 of Huang and Chiang (2005) that works
backwards from the root node, incrementally com-
puting the second, third, through thekth best alter-
natives.

4.1 Dependency Language Model Computing

We compute the score of a dependency language
model for a dependency treeDe in the same way
proposed by Shen et al. (2008). For each nonter-
minal nodevd

h = eh in De and its children se-
quencesLl = el1 , el2 ...eli andLr = er1

, er2
...erj

,
the probability of a trigram is computed as fol-
lows:

P(Ll, Lr | eh§) = P(Ll | eh§) ·P(Lr | eh§), (9)

where theP(Ll | eh§) is decomposed to be:

P(Ll | eh§) =P(ell | eh§)

· P(el2 | el1 , eh§)

...

· P(eln | eln−1
, eln−2

).

(10)

We use the suffix “§” to distinguish the head
word and child words in the dependency language
model.

In order to alleviate the problem of data sparse,
we also compute a dependency language model
for POS tages over a dependency tree. We store

the POS tag information on the target side for each
constituency-to-dependency rule. So we will also
generate a POS taged dependency tree simulta-
neously at the decoding time. We calculate this
dependency language model by simply replacing
eachei in equation 9 with its tagt(ei).

5 Experiments

5.1 Data Preparation

Our training corpus consists of 239K sentence
pairs with about 6.9M/8.9M words in Chi-
nese/English, respectively. We first word-align
them by GIZA++ (Och and Ney, 2000) with re-
finement option “grow-diag-and” (Koehn et al.,
2003), and then parse the Chinese sentences using
the parser of Xiong et al. (2005) into parse forests,
which are pruned into relatively small forests with
a pruning threshold 3. We also parse the English
sentences using the parser of Charniak (2000) into
1-best constituency trees, which will be converted
into dependency trees using Magerman (1995)’s
head rules. We also store the POS tag informa-
tion for each word in dependency trees, and com-
pute two different dependency language models
for words and POS tags in dependency tree sepa-
rately. Finally, we apply translation rule extraction
algorithm described in Section 3. We use SRI Lan-
guage Modeling Toolkit (Stolcke, 2002) to train a
4-gram language model with Kneser-Ney smooth-
ing on the first 1/3 of the Xinhua portion of Giga-
word corpus. At the decoding step, we again parse
the input sentences into forests and prune them
with a threshold 10, which will direct the trans-
lation (Section 4).

We use the 2002 NIST MT Evaluation test set
as our development set and the 2005 NIST MT
Evaluation test set as our test set. We evaluate the
translation quality using the BLEU-4 metric (Pap-
ineni et al., 2002), which is calculated by the script
mteval-v11b.pl with its default setting which is
case-insensitive matching ofn-grams. We use the
standard minimum error-rate training (Och, 2003)
to tune the feature weights to maximize the sys-
tem’s BLEU score on development set.

5.2 Results

Table 2 shows the results on the test set. Our
baseline system is a state-of-the-art forest-based
constituency-to-string model (Mi et al., 2008), or
forest c2sfor short, which translates a source for-
est into a target string by pattern-matching the
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constituency-to-string (c2s) rules and the bilin-
gual phrases (s2s). The baseline system extracts
31.9Mc2srules, 77.9Ms2srules respectively and
achieves a BLEU score of 34.17 on the test set3.

At first, we investigate the influence of differ-
ent rule sets on the performance of baseline sys-
tem. We first restrict the target side of transla-
tion rules to be well-formed structures, and we
extract 13.8M constituency-to-dependency (c2d)
rules, which is 43% ofc2srules. We also extract
9.0M string-to-dependency (s2d) rules, which is
only 11.6% ofs2srules. Then we convertc2dand
s2d rules toc2s and s2s rules separately by re-
moving the target-dependency structures and feed
them into the baseline system. As shown in the
third line in the column of BLEU score, the per-
formance drops 1.7 BLEU points over baseline
system due to the poorer rule coverage. However,
when we further use alls2srules instead ofs2d
rules in our next experiment, it achieves a BLEU
score of 34.03, which is very similar to the base-
line system. Those results suggest that restrictions
on c2s rules won’t hurt the performance, but re-
strictions ons2swill hurt the translation quality
badly. So we should utilize all thes2srules in or-
der to preserve a good coverage of translation rule
set.

The last two lines in Table 2 show the results of
our new forest-based constituency-to-dependency
model (forest c2dfor short). When we only use
c2d and s2d rules, our system achieves a BLEU
score of 33.25, which is lower than the baseline
system in the first line. But, with the same rule set,
our model still outperform the result in the sec-
ond line. This suggests that using dependency lan-
guage model really improves the translation qual-
ity by less than 1 BLEU point.

In order to utilize all thes2srules and increase
the rule coverage, we parse the target strings of
thes2srules into dependency fragments, and con-
struct thepseudo s2drules (s2s-dep). Then we
usec2dands2s-deprules to direct the translation.
With the help of the dependency language model,
our new model achieves a significant improvement
of +0.7 BLEU points over theforest c2sbaseline
system (p < 0.05, using thesign-testsuggested by

3According to the reports of Liu et al. (2009), with a more
larger training corpus (FBIS plus 30K) butno name entity
translations (+1 BLEU points if it is used), their forest-based
constituency-to-constituency model achieves a BLEU score
of 30.6, which is similar to Moses (Koehn et al., 2007). So our
baseline system is much better than the BLEU score (30.6+1)
of the constituency-to-constituency system and Moses.

System
Rule Set

BLEU
Type #

forest c2s

c2s 31.9M
34.17

s2s 77.9M
c2d 13.8M

32.48(↓1.7)
s2d 9.0M
c2d 13.8M

34.03(↓0.1)
s2s 77.9M

forest c2d

c2d 13.8M
33.25(↓0.9)

s2d 9.0M
c2d 13.8M

34.88(↑0.7)
s2s-dep 77.9M

Table 2: Statistics of different types of rules ex-
tracted on training corpus and the BLEU scores
on the test set.

Collins et al. (2005)). For the first time, a tree-to-
tree model can surpass tree-to-string counterparts
significantly even with fewer rules.

6 Related Work

The concept of packed forest has been used in
machine translation for several years. For exam-
ple, Huang and Chiang (2007) use forest to char-
acterize the search space of decoding with in-
tegrated language models. Mi et al. (2008) and
Mi and Huang (2008) use forest to direct trans-
lation and extract rules rather than 1-best tree in
order to weaken the influence of parsing errors,
this is also the first time to use forest directly
in machine translation. Following this direction,
Liu et al. (2009) and Zhang et al. (2009) apply
forest into tree-to-tree (Zhang et al., 2007) and
tree-sequence-to-string models(Liu et al., 2007)
respectively. Different from Liu et al. (2009), we
apply forest into a new constituency tree to de-
pendency tree translation model rather than con-
stituency tree-to-tree model.

Shen et al. (2008) present a string-to-
dependency model. They define the well-formed
dependency structures to reduce the size of
translation rule set, and integrate a dependency
language model in decoding step to exploit long
distance word relations. This model shows a
significant improvement over the state-of-the-art
hierarchical phrase-based system (Chiang, 2005).
Compared with this work, we put fewer restric-
tions on the definition of well-formed dependency
structures in order to extract more rules; the
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other difference is that we can also extract more
expressive constituency to dependency rules,
since the source side of our rule can encode
multi-level reordering and contain more variables
being larger than two; furthermore, our rules can
be pattern-matched at high level, which is more
reasonable than using glue rules in Shen et al.
(2008)’s scenario; finally, the most important one
is that our model runs very faster.

Liu et al. (2009) propose a forest-based
constituency-to-constituency model, they put
more emphasize on how to utilize parse forest
to increase the tree-to-tree rule coverage. By
contrast, we only use 1-best dependency trees
on the target side to explore long distance rela-
tions and extract translation rules. Theoretically,
we can extract more rules since dependency
tree has the best inter-lingual phrasal cohesion
properties (Fox, 2002).

7 Conclusion and Future Work

In this paper, we presented a novel forest-based
constituency-to-dependency translation model,
which combines the advantages of both tree-to-
string and string-to-tree systems, runs fast and
guarantees grammaticality of the output. To learn
the constituency-to-dependency translation rules,
we first identify the frontier set for all the
nodes in the constituency forest on the source
side. Then we fragment them and extract mini-
mal rules. Finally, we glue them together to be
composed rules. At the decoding step, we first
parse the input sentence into a constituency for-
est. Then we convert it into a translation for-
est by patter-matching the constituency to string
rules. Finally, we traverse the translation forest
in a bottom-up fashion and translate it into a tar-
get dependency tree by incorporating string-based
and dependency-based language models. Using all
constituency-to-dependency translation rules and
bilingual phrases, our model achieves +0.7 points
improvement in BLEU score significantly over a
state-of-the-art forest-based tree-to-string system.
This is also the first time that a tree-to-tree model
can surpass tree-to-string counterparts.

In the future, we will do more experiments
on rule coverage to compare the constituency-to-
constituency model with our model. Furthermore,
we will replace 1-best dependency trees on the
target side with dependency forests to further in-
crease the rule coverage.
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