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Abstract

Tree-to-string translation rules are widely
used in linguistically syntax-based statis-
tical machine translation systems. In this
paper, we propose to use deep syntac-
tic information for obtaining fine-grained
translation rules. A head-driven phrase
structure grammar (HPSG) parser is used
to obtain the deep syntactic information,
which includes a fine-grained description
of the syntactic property and a semantic
representation of a sentence. We extract
fine-grained rules from aligned HPSG
tree/forest-string pairs and use them in
our tree-to-string and string-to-tree sys-
tems. Extensive experiments on large-
scale bidirectional Japanese-English trans-
lations testified the effectiveness of our ap-
proach.

1 Introduction

Tree-to-string translation rules are generic and ap-
plicable to numerous linguistically syntax-based
Statistical Machine Translation (SMT) systems,
such as string-to-tree translation (Galley et al.,
2004; Galley et al., 2006; Chiang et al., 2009),
tree-to-string translation (Liu et al., 2006; Huang
et al., 2006), and forest-to-string translation (Mi et
al., 2008; Mi and Huang, 2008). The algorithms
proposed by Galley et al. (2004; 2006) are fre-
quently used for extracting minimal and composed
rules from aligned 1-best tree-string pairs. Deal-
ing with the parse error problem and rule sparse-
ness problem, Mi and Huang (2008) replaced the
1-best parse tree with a packed forest which com-
pactly encodes exponentially many parses for tree-
to-string rule extraction.

However, current tree-to-string rules only make
use of Probabilistic Context-Free Grammar tree
fragments, in which part-of-speech (POS) or

koroshita korosareta
(active) (passive)

VBN(killed) 6 (6/10,6/6) 4 (4/10,4/4)
VBN(killed:active) 5 (5/6,5/6) 1 (1/6,1/4)
VBN(killed:passive) 1 (1/4,1/6) 3 (3/4,3/4)

Table 1: Bidirectional translation probabilities of
rules, denoted in the brackets, change when voice
is attached to “killed”.

phrasal tags are used as the tree node labels. As
will be testified by our experiments, we argue that
the simple POS/phrasal tags are too coarse to re-
flect the accurate translation probabilities of the
translation rules.

For example, as shown in Table 1, sup-
pose a simple tree fragment “VBN(killed)” ap-
pears 6 times with “koroshita”, which is a
Japanese translation of an active form of “killed”,
and 4 times with “korosareta”, which is a
Japanese translation of a passive form of “killed”.
Then, without larger tree fragments, we will
more frequently translate “VBN(killed)” into “ko-
roshita” (with a probability of 0.6). But,
“VBN(killed)” is indeed separable into two fine-
grained tree fragments of “VBN(killed:active)”
and “VBN(killed:passive)”1. Consequently,
“VBN(killed:active)” appears 5 times with “ko-
roshita” and 1 time with “korosareta”; and
“VBN(killed:passive)” appears 1 time with “ko-
roshita” and 3 times with “korosareta”. Now, by
attaching the voice information to “killed”, we are
gaining a rule set that is more appropriate to reflect
the real translation situations.

This motivates our proposal of using deep syn-
tactic information to obtain a fine-grained trans-
lation rule set. We name the information such as
the voice of a verb in a tree fragment as deep syn-
tactic information. We use a head-driven phrase
structure grammar (HPSG) parser to obtain the

1For example, “John has killed Mary.” versus “John was
killed by Mary.”
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deep syntactic information of an English sentence,
which includes a fine-grained description of the
syntactic property and a semantic representation
of the sentence. We extract fine-grained trans-
lation rules from aligned HPSG tree/forest-string
pairs. We localize an HPSG tree/forest to make
it segmentable at any nodes to fit the extraction
algorithms described in (Galley et al., 2006; Mi
and Huang, 2008). We also propose a linear-time
algorithm for extracting composed rules guided
by predicate-argument structures. The effective-
ness of the rules are testified in our tree-to-string
and string-to-tree systems, taking bidirectional
Japanese-English translations as our test cases.

This paper is organized as follows. In Section 2,
we briefly review the tree-to-string and string-to-
tree translation frameworks, tree-to-string rule ex-
traction algorithms, and rich syntactic information
previously used for SMT. The HPSG grammar and
our proposal of fine-grained rule extraction algo-
rithms are described in Section 3. Section 4 gives
the experiments for applying fine-grained transla-
tion rules to large-scale Japanese-English transla-
tion tasks. Finally, we conclude in Section 5.

2 Related Work

2.1 Tree-to-string and string-to-tree
translations

Tree-to-string translation (Liu et al., 2006; Huang
et al., 2006) first uses a parser to parse a source
sentence into a 1-best tree and then searches for
the best derivation that segments and converts the
tree into a target string. In contrast, string-to-tree
translation (Galley et al., 2004; Galley et al., 2006;
Chiang et al., 2009) is like bilingual parsing. That
is, giving a (bilingual) translation grammar and a
source sentence, we are trying to construct a parse
forest in the target language. Consequently, the
translation results can be collected from the leaves
of the parse forest.

Figure 1 illustrates the training and decoding
processes of bidirectional Japanese-English trans-
lations. The English sentence is “John killed
Mary” and the Japanese sentence is “jyon ha mari
wo koroshita”, in which the function words “ha”
and “wo” are not aligned with any English word.

2.2 Tree/forest-based rule extraction

Galley et al. (2004) proposed the GHKM algo-
rithm for extracting (minimal) tree-to-string trans-
lation rules from a tuple of ⟨F, Et, A⟩, where F =
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Figure 1: Illustration of the training and decod-
ing processes for tree-to-string and string-to-tree
translations.

fJ
1 is a sentence of a foreign language other than

English, Et is a 1-best parse tree of an English sen-
tence E = eI

1, and A = {(j, i)} is an alignment
between the words in F and E.

The basic idea of GHKM algorithm is to de-
compose Et into a series of tree fragments, each
of which will form a rule with its corresponding
translation in the foreign language. A is used as a
constraint to guide the segmentation procedure, so
that the root node of every tree fragment of Et ex-
actly corresponds to a contiguous span on the for-
eign language side. Based on this consideration, a
frontier set (fs) is defined to be a set of nodes n in
Et that satisfies the following constraint:

fs = {n|span(n) ∩ comp span(n) = ϕ}. (1)

Here, span(n) is defined by the indices of the first
and last word in F that are reachable from a node
n, and comp span(n) is defined to be the comple-
ment set of span(n), i.e., the union of the spans
of all nodes n′ in Et that are neither descendants
nor ancestors of n. span(n) and comp span(n)
of each n can be computed by first a bottom-up
exploration and then a top-down traversal of Et.

By restricting each fragment so that it only takes
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Figure 2: Illustration of an aligned HPSG forest-string pair. The forest includes two parse trees by taking
“Mary” as a modifier (t3, t4) or an argument (t1, t2) of “killed”. Arrows with broken lines denote the PAS
dependencies from the terminal node t1 to its argument nodes (c1 and c5). The scores of the hyperedges
are attached to the forest as well.

the nodes in fs as the root and leaf nodes, a well-
formed fragmentation of Et is generated. With
fs computed, rules are extracted through a depth-
first traversal of Et: we cut Et at all nodes in fs
to form tree fragments and extract a rule for each
fragment. These extracted rules are called minimal
rules (Galley et al., 2004). For example, the 1-
best tree (with gray nodes) in Figure 2 is cut into 7
pieces, each of which corresponds to the tree frag-
ment in a rule (bottom-left corner of the figure).

In order to include richer context information
and account for multiple interpretations of un-
aligned words of foreign language, minimal rules
which share adjacent tree fragments are connected
together to form composed rules (Galley et al.,

2006). For each aligned tree-string pair, Gal-
ley et al. (2006) constructed a derivation-forest,
in which composed rules were generated, un-
aligned words of foreign language were consis-
tently attached, and the translation probabilities
of rules were estimated by using Expectation-
Maximization (EM) (Dempster et al., 1977) train-
ing. For example, by combining the minimal rules
of 1, 4, and 5, we obtain a composed rule, as
shown in the bottom-right corner of Figure 2.

Considering the parse error problem in the
1-best or k-best parse trees, Mi and Huang
(2008) extracted tree-to-string translation rules
from aligned packed forest-string pairs. A for-
est compactly encodes exponentially many trees
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rather than the 1-best tree used by Galley et al.
(2004; 2006). Two problems were managed to
be tackled during extracting rules from an aligned
forest-string pair: where to cut and how to cut.
Equation 1 was used again to compute a frontier
node set to determine where to cut the packed
forest into a number of tree-fragments. The dif-
ference with tree-based rule extraction is that the
nodes in a packed forest (which is a hypergraph)
now are hypernodes, which can take a set of in-
coming hyperedges. Then, by limiting each frag-
ment to be a tree and whose root/leaf hypernodes
all appearing in the frontier set, the packed forest
can be segmented properly into a set of tree frag-
ments, each of which can be used to generate a
tree-to-string translation rule.

2.3 Rich syntactic information for SMT

Before describing our approaches of applying
deep syntactic information yielded by an HPSG
parser for fine-grained rule extraction, we would
like to briefly review what kinds of deep syntactic
information have been employed for SMT.

Two kinds of supertags, from Lexicalized Tree-
Adjoining Grammar and Combinatory Categorial
Grammar (CCG), have been used as lexical syn-
tactic descriptions (Hassan et al., 2007) for phrase-
based SMT (Koehn et al., 2007). By introduc-
ing supertags into the target language side, i.e.,
the target language model and the target side
of the phrase table, significant improvement was
achieved for Arabic-to-English translation. Birch
et al. (2007) also reported a significant improve-
ment for Dutch-English translation by applying
CCG supertags at a word level to a factorized SMT
system (Koehn et al., 2007).

In this paper, we also make use of supertags
on the English language side. In an HPSG
parse tree, these lexical syntactic descriptions
are included in the LEXENTRY feature (re-
fer to Table 2) of a lexical node (Matsuzaki
et al., 2007). For example, the LEXEN-
TRY feature of “t1:killed” takes the value of
[NP.nom<V.bse>NP.acc]_lxm-past
_verb_rule in Figure 2. In which,
[NP.nom<V.bse>NP.acc] is an HPSG
style supertag, which tells us that the base form
of “killed” needs a nominative NP in the left hand
side and an accessorial NP in the right hand side.
The major differences are that, we use a larger
feature set (Table 2) including the supertags for

fine-grained tree-to-string rule extraction, rather
than string-to-string translation (Hassan et al.,
2007; Birch et al., 2007).

The Logon project2 (Oepen et al., 2007) for
Norwegian-English translation integrates in-depth
grammatical analysis of Norwegian (using lexi-
cal functional grammar, similar to (Riezler and
Maxwell, 2006)) with semantic representations in
the minimal recursion semantics framework, and
fully grammar-based generation for English using
HPSG. A hybrid (of rule-based and data-driven)
architecture with a semantic transfer backbone is
taken as the vantage point of this project. In
contrast, the fine-grained tree-to-string translation
rule extraction approaches in this paper are to-
tally data-driven, and easily applicable to numer-
ous language pairs by taking English as the source
or target language.

3 Fine-grained rule extraction

We now introduce the deep syntactic informa-
tion generated by an HPSG parser and then de-
scribe our approaches for fine-grained tree-to-
string rule extraction. Especially, we localize an
HPSG tree/forest to fit the extraction algorithms
described in (Galley et al., 2006; Mi and Huang,
2008). Also, we propose a linear-time com-
posed rule extraction algorithm by making use of
predicate-argument structures.

3.1 Deep syntactic information by HPSG
parsing

Head-driven phrase structure grammar (HPSG) is
a lexicalist grammar framework. In HPSG, lin-
guistic entities such as words and phrases are rep-
resented by a data structure called a sign. A sign
gives a factored representation of the syntactic fea-
tures of a word/phrase, as well as a representation
of their semantic content. Phrases and words rep-
resented by signs are composed into larger phrases
by applications of schemata. The semantic rep-
resentation of the new phrase is calculated at the
same time. As such, an HPSG parse tree/forest
can be considered as a tree/forest of signs (c.f. the
HPSG forest in Figure 2).

An HPSG parse tree/forest has two attractive
properties as a representation of an English sen-
tence in syntax-based SMT. First, we can carefully
control the condition of the application of a trans-
lation rule by exploiting the fine-grained syntactic

2http://www.emmtee.net/
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Feature Description
CAT phrasal category
XCAT fine-grained phrasal category
SCHEMA name of the schema applied in the node
HEAD pointer to the head daughter
SEM HEAD pointer to the semantic head daughter
CAT syntactic category
POS Penn Treebank-style part-of-speech tag
BASE base form
TENSE tense of a verb (past, present, untensed)
ASPECT aspect of a verb (none, perfect,

progressive, perfect-progressive)
VOICE voice of a verb (passive, active)
AUX auxiliary verb or not (minus, modal,

have, be, do, to, copular)
LEXENTRY lexical entry, with supertags embedded
PRED type of a predicate
ARG⟨x⟩ pointer to semantic arguments, x = 1..4

Table 2: Syntactic/semantic features extracted
from HPSG signs that are included in the output
of Enju. Features in phrasal nodes (top) and lexi-
cal nodes (bottom) are listed separately.

description in the English parse tree/forest, as well
as those in the translation rules. Second, we can
identify sub-trees in a parse tree/forest that cor-
respond to basic units of the semantics, namely
sub-trees covering a predicate and its arguments,
by using the semantic representation given in the
signs. We expect that extraction of translation
rules based on such semantically-connected sub-
trees will give a compact and effective set of trans-
lation rules.

A sign in the HPSG tree/forest is represented by
a typed feature structure (TFS) (Carpenter, 1992).
A TFS is a directed-acyclic graph (DAG) wherein
the edges are labeled with feature names and the
nodes (feature values) are typed. In the original
HPSG formalism, the types are defined in a hierar-
chy and the DAG can have arbitrary shape (e.g., it
can be of any depth). We however use a simplified
form of TFS, for simplicity of the algorithms. In
the simplified form, a TFS is converted to a (flat)
set of pairs of feature names and their values. Ta-
ble 2 lists the features used in this paper, which
are a subset of those in the original output from an
HPSG parser, Enju3. The HPSG forest shown in
Figure 2 is in this simplified format. An impor-
tant detail is that we allow a feature value to be a
pointer to another (simplified) TFS. Such pointer-
valued features are necessary for denoting the se-
mantics, as explained shortly.

In the Enju English HPSG grammar (Miyao et

3http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html
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al., 2003) used in this paper, the semantic content
of a sentence/phrase is represented by a predicate-
argument structure (PAS). Figure 3 shows the PAS
of the example sentence in Figure 2, “John killed
Mary”, and a more complex PAS for another sen-
tence, “She ignored the fact that I wanted to dis-
pute”, which is adopted from (Miyao et al., 2003).
In an HPSG tree/forest, each leaf node generally
introduces a predicate, which is represented by
the pair of LEXENTRY (lexical entry) feature and
PRED (predicate type) feature. The arguments of
a predicate are designated by the pointers from the
ARG⟨x⟩ features in a leaf node to non-terminal
nodes.

3.2 Localize HPSG forest

Our fine-grained translation rule extraction algo-
rithm is sketched in Algorithm 1. Considering that
a parse tree is a trivial packed forest, we only use
the term forest to expand our discussion, hereafter.
Recall that there are pointer-valued features in the
TFSs (Table 2) which prevent arbitrary segmenta-
tion of a packed forest. Hence, we have to localize
an HPSG forest.

For example, there are ARG pointers from t1 to
c1 and c5 in the HPSG forest of Figure 2. How-
ever, the three nodes are not included in one (min-
imal) translation rule. This problem is caused
by not considering the predicate argument depen-
dency among t1, c1, and c5 while performing the
GHKM algorithm. We can combine several min-
imal rules (Galley et al., 2006) together to ad-
dress this dependency. Yet we have a faster way
to tackle PASs, as will be described in the next
subsection.

Even if we omit ARG, there are still two kinds
of pointer-valued features in TFSs, HEAD and
SEM HEAD. Localizing these pointer-valued fea-
tures is straightforward, since during parsing, the
HEAD and SEM HEAD of a node are automati-
cally transferred to its mother node. That is, the
syntactic and semantic head of a node only take
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Algorithm 1 Fine-grained rule extraction
Input: HPSG tree/forest Ef , foreign sentence F , and align-

ment A
Output: a PAS-based rule set R1 and/or a tree-rule set R2

1: if Ef is an HPSG tree then
2: E

′
f = localize Tree(Ef )

3: R1 = PASR extraction(E
′
f , F , A) ◃ Algorithm 2

4: E
′′
f = ignore PAS(E

′
f )

5: R2 = TR extraction(E
′′
f , F , A) ◃ composed rule ex-

traction algorithm in (Galley et al., 2006)
6: else if Ef is an HPSG forest then
7: E

′
f = localize Forest(Ef );

8: R2 = forest based rule extraction(E
′
f , F , A) ◃ Algo-

rithm 1 in (Mi and Huang, 2008)
9: end if

the identifier of the daughter node as the values.
For example, HEAD and SEM HEAD of node c0

take the identical value to be c3 in Figure 2.
To extract tree-to-string rules from the tree

structures of an HPSG forest, our solution is to
pre-process an HPSG forest in the following way:

• for a phrasal hypernode, replace its HEAD
and SEM HEAD value with L, R, or S,
which respectively represent left daughter,
right daughter, or single daughter (line 2 and
7); and,

• for a lexical node, ARG⟨x⟩ and PRED fea-
tures are ignored (line 4).

A pure syntactic-based HPSG forest without any
pointer-valued features can be yielded through this
pre-processing for the consequent execution of the
extraction algorithms (Galley et al., 2006; Mi and
Huang, 2008).

3.3 Predicate-argument structures

In order to extract translation rules from PASs,
we want to localize a predicate word and its ar-
guments into one tree fragment. For example, in
Figure 2, we can use a tree fragment which takes
c0 as its root node and c1, t1, and c5 on its yield (=
leaf nodes of a tree fragment) to cover “killed” and
its subject and direct object arguments. We define
this kind of tree fragment to be a minimum cov-
ering tree. For example, the minimum covering
tree of {t1, c1, c5} is shown in the bottom-right
corner of Figure 2. The definition supplies us a
linear-time algorithm to directly find the tree frag-
ment that covers a PAS during both rule extracting
and rule matching when decoding an HPSG tree.

Algorithm 2 PASR extraction
Input: HPSG tree Et, foreign sentence F , and alignment A
Output: a PAS-based rule set R

1: R = {}
2: for node n ∈ Leaves(Et) do
3: if Open(n.ARG) then
4: Tc = MinimumCoveringTree(Et, n, n.ARGs)
5: if root and leaf nodes of Tc are in fs then
6: generate a rule r using fragment Tc

7: R.append(r)
8: end if
9: end if

10: end for

See (Wu, 2010) for more examples of minimum
covering trees.

Taking a minimum covering tree as the tree
fragment, we can easily build a tree-to-string
translation rule that reflects the semantic depen-
dency of a PAS. The algorithm of PAS-based
rule (PASR) extraction is sketched in Algorithm
2. Suppose we are given a tuple of ⟨F, Et, A⟩.
Et is pre-processed by replacing HEAD and
SEM HEAD to be L, R, or S, and computing the
span and comp span of each node.

We extract PAS-based rules through one-time
traversal of the leaf nodes in Et (line 2). For each
leaf node n, we extract a minimum covering tree
Tc if n contains at least one argument. That is, at
least one ARG⟨x⟩ takes the value of some node
identifier, where x ranges 1 over 4 (line 3). Then,
we require the root and yield nodes of Tc being in
the frontier set of Et (line 5). Based on Tc, we can
easily build a tree-to-string translation rule by fur-
ther completing the right-hand-side string by sort-
ing the spans of Tc’s leaf nodes, lexicalizing the
terminal node’s span(s), and assigning a variable
to each non-terminal node’s span. Maximum like-
lihood estimation is used to calculate the transla-
tion probabilities of each rule.

An example of PAS-based rule is shown in the
bottom-right corner of Figure 2. In the rule, the
subject and direct-object of “killed” are general-
ized into two variables, x0 and x1.

4 Experiments

4.1 Translation models

We use a tree-to-string model and a string-to-tree
model for bidirectional Japanese-English transla-
tions. Both models use a phrase translation table
(PTT), an HPSG tree-based rule set (TRS), and
a PAS-based rule set (PRS). Since the three rule
sets are independently extracted and estimated, we
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use Minimum Error Rate Training (MERT) (Och,
2003) to tune the weights of the features from the
three rule sets on the development set.

Given a 1-best (localized) HPSG tree Et, the
tree-to-string decoder searches for the optimal
derivation d∗ that transforms Et into a Japanese
string among the set of all possible derivations D:

d∗ =arg max
d∈D

{λ1 log pLM (τ(d)) + λ2|τ(d)|

+ log s(d|Et)}. (2)

Here, the first item is the language model (LM)
probability where τ(d) is the target string of
derivation d; the second item is the translation
length penalty; and the third item is the transla-
tion score, which is decomposed into a product of
feature values of rules:

s(d|Et) =
∏
r∈d

f(r∈PTT )f(r∈TRS)f(r∈PRS).

This equation reflects that the translation rules in
one d come from three sets. Inspired by (Liu et
al., 2009b), it is appealing to combine these rule
sets together in one decoder because PTT provides
excellent rule coverages while TRS and PRS offer
linguistically motivated phrase selections and non-
local reorderings. Each f(r) is in turn a product of
five features:

f(r) = p(s|t)λ3 · p(t|s)λ4 · l(s|t)λ5 · l(t|s)λ6 · eλ7 .

Here, s/t represent the source/target part of a rule
in PTT, TRS, or PRS; p(·|·) and l(·|·) are transla-
tion probabilities and lexical weights of rules from
PTT, TRS, and PRS. The derivation length penalty
is controlled by λ7.

In our string-to-tree model, for efficient decod-
ing with integrated n-gram LM, we follow (Zhang
et al., 2006) and inversely binarize all translation
rules into Chomsky Normal Forms that contain
at most two variables and can be incrementally
scored by LM. In order to make use of the bina-
rized rules in the CKY decoding, we add two kinds
of glues rules:

S → Xm
(1), Xm

(1);

S → S(1)Xm
(2), S(1)Xm

(2).

Here Xm ranges over the nonterminals appearing
in a binarized rule set. These glue rules can be
seen as an extension from X to {Xm}of the two
glue rules described in (Chiang, 2007).

The string-to-tree decoder searches for the op-
timal derivation d∗ that parses a Japanese string
F into a packed forest of the set of all possible
derivations D:

d∗ = arg max
d∈D

{λ1 log pLM (τ(d)) + λ2|τ(d)|

+ λ3g(d) + log s(d|F )}. (3)

This formula differs from Equation 2 by replacing
Et with F in s(d|·) and adding g(d), which is the
number of glue rules used in d. Further definitions
of s(d|F ) and f(r) are identical with those used
in Equation 2.

4.2 Decoding algorithms
In our translation models, we have made use
of three kinds of translation rule sets which are
trained separately. We perform derivation-level
combination as described in (Liu et al., 2009b) for
mixing different types of translation rules within
one derivation.

For tree-to-string translation, we use a bottom-
up beam search algorithm (Liu et al., 2006) for
decoding an HPSG tree Et. We keep at most 10
best derivations with distinct τ(d)s at each node.

Recall the definition of minimum covering tree,
which supports a faster way to retrieve available
rules from PRS without generating all the sub-
trees. That is, when node n fortunately to be the
root of some minimum covering tree(s), we use the
tree(s) to seek available PAS-based rules in PRS.
We keep a hash-table with the key to be the node
identifier of n and the value to be a priority queue
of available PAS-based rules. The hash-table is
easy to be filled by one-time traversal of the termi-
nal nodes in Et. At each terminal node, we seek
its minimum covering tree, retrieve PRS, and up-
date the hash-table. For example, suppose we are
decoding an HPSG tree (with gray nodes) shown
in Figure 2. At t1, we can extract its minimum
covering tree with the root node to be c0, then take
this tree fragment as the key to retrieve PRS, and
consequently put c0 and the available rules in the
hash-table. When decoding at c0, we can directly
access the hash-table looking for available PAS-
based rules.

In contrast, we use a CKY-style algorithm with
beam-pruning and cube-pruning (Chiang, 2007)
to decode Japanese sentences. For each Japanese
sentence F , the output of the chart-parsing algo-
rithm is expressed as a hypergraph representing a
set of derivations. Given such a hypergraph, we
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Train Dev. Test
# of sentences 994K 2K 2K
# of Jp words 28.2M 57.4K 57.1K
# of En words 24.7M 50.3K 49.9K

Table 3: Statistics of the JST corpus.

use the Algorithm 3 described in (Huang and Chi-
ang, 2005) to extract its k-best (k = 500 in our
experiments) derivations. Since different deriva-
tions may lead to the same target language string,
we further adopt Algorithm 3’s modification, i.e.,
keep a hash-table to maintain the unique target
sentences (Huang et al., 2006), to efficiently gen-
erate the unique k-best translations.

4.3 Setups
The JST Japanese-English paper abstract corpus4,
which consists of one million parallel sentences,
was used for training and testing. This corpus
was constructed from a Japanese-English paper
abstract corpus by using the method of Utiyama
and Isahara (2007). Table 3 shows the statistics
of this corpus. Making use of Enju 2.3.1, we suc-
cessfully parsed 987,401 English sentences in the
training set, with a parse rate of 99.3%. We mod-
ified this parser to output a packed forest for each
English sentence.

We executed GIZA++ (Och and Ney, 2003) and
grow-diag-final-and balancing strategy (Koehn et
al., 2007) on the training set to obtain a phrase-
aligned parallel corpus, from which bidirectional
phrase translation tables were estimated. SRI Lan-
guage Modeling Toolkit (Stolcke, 2002) was em-
ployed to train 5-gram English and Japanese LMs
on the training set. We evaluated the translation
quality using the case-insensitive BLEU-4 metric
(Papineni et al., 2002). The MERT toolkit we used
is Z-mert5 (Zaidan, 2009).

The baseline system for comparison is Joshua
(Li et al., 2009), a freely available decoder for hi-
erarchical phrase-based SMT (Chiang, 2005). We
respectively extracted 4.5M and 5.3M translation
rules from the training set for the 4K English and
Japanese sentences in the development and test
sets. We used the default configuration of Joshua,
expect setting the maximum number of items/rules
and the k of k-best outputs to be the identical

4http://www.jst.go.jp. The corpus can be conditionally
obtained from NTCIR-7 patent translation workshop home-
page: http://research.nii.ac.jp/ntcir/permission/ntcir-7/perm-
en-PATMT.html.

5http://www.cs.jhu.edu/ ozaidan/zmert/

PRS CS
3 C3 F S F

tree nodes TFS POS TFS POS TFS
# rules 0.9 62.1 83.9 92.5 103.7
# tree types 0.4 23.5 34.7 40.6 45.2
extract time 3.5 - 98.6 - 121.2

Table 4: Statistics of several kinds of tree-to-string
rules. Here, the number is in million level and the
time is in hour.

200 for English-to-Japanese translation and 500
for Japanese-to-English translation.

We used four dual core Xeon machines
(4×3.0GHz×2CPU, 4×64GB memory) to run all
the experiments.

4.4 Results

Table 4 illustrates the statistics of several transla-
tion rule sets, which are classified by:

• using TFSs or simple POS/phrasal tags (an-
notated by a superscript S) to represent tree
nodes;

• composed rules (PRS) extracted from the
PAS of 1-best HPSG trees;

• composed rules (C3), extracted from the tree
structures of 1-best HPSG trees, and 3 is the
maximum number of internal nodes in the
tree fragments; and

• forest-based rules (F ), where the packed
forests are pre-pruned by the marginal
probability-based inside-outside algorithm
used in (Mi and Huang, 2008).

Table 5 reports the BLEU-4 scores achieved by
decoding the test set making use of Joshua and our
systems (t2s = tree-to-string and s2t = string-to-
tree) under numerous rule sets. We analyze this
table in terms of several aspects to prove the effec-
tiveness of deep syntactic information for SMT.

Let’s first look at the performance of TFSs. We
take CS

3 and FS as approximations of CFG-based
translation rules. Comparing the BLEU-4 scores
of PTT+CS

3 and PTT+C3, we gained 0.56 (t2s)
and 0.57 (s2t) BLEU-4 points which are signifi-
cant improvements (p < 0.05). Furthermore, we
gained 0.50 (t2s) and 0.62 (s2t) BLEU-4 points
from PTT+FS to PTT+F , which are also signif-
icant improvements (p < 0.05). The rich fea-
tures included in TFSs contribute to these im-
provements.
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Systems BLEU-t2s Decoding BLEU-s2t
Joshua 21.79 0.486 19.73
PTT 18.40 0.013 17.21
PTT+PRS 22.12 0.031 19.33
PTT+CS

3 23.56 2.686 20.59
PTT+C3 24.12 2.753 21.16
PTT+C3+PRS 24.13 2.930 21.20
PTT+F S 24.25 3.241 22.05
PTT+F 24.75 3.470 22.67

Table 5: BLEU-4 scores (%) achieved by Joshua
and our systems under numerous rule configura-
tions. The decoding time (seconds per sentence)
of tree-to-string translation is listed as well.

Also, BLEU-4 scores were inspiringly in-
creased 3.72 (t2s) and 2.12 (s2t) points by append-
ing PRS to PTT, comparing PTT with PTT+PRS.
Furthermore, in Table 5, the decoding time (sec-
onds per sentence) of tree-to-string translation by
using PTT+PRS is more than 86 times faster than
using the other tree-to-string rule sets. This sug-
gests that the direct generation of minimum cover-
ing trees for rule matching is extremely faster than
generating all subtrees of a tree node. Note that
PTT performed extremely bad compared with all
other systems or tree-based rule sets. The major
reason is that we did not perform any reordering
or distorting during decoding with PTT.

However, in both t2s and s2t systems, the
BLEU-4 score benefits of PRS were covered by
the composed rules: both PTT+CS

3 and PTT+C3

performed significant better (p < 0.01) than
PTT+PRS, and there are no significant differences
when appending PRS to PTT+C3. The reason is
obvious: PRS is only a small subset of the com-
posed rules, and the probabilities of rules in PRS
were estimated by maximum likelihood, which is
fast but biased compared with EM based estima-
tion (Galley et al., 2006).

Finally, by using PTT+F , our systems achieved
the best BLEU-4 scores of 24.75% (t2s) and
22.67% (s2t), both are significantly better (p <
0.01) than that achieved by Joshua.

5 Conclusion

We have proposed approaches of using deep syn-
tactic information for extracting fine-grained tree-
to-string translation rules from aligned HPSG
forest-string pairs. The main contributions are the
applications of GHKM-related algorithms (Galley
et al., 2006; Mi and Huang, 2008) to HPSG forests
and a linear-time algorithm for extracting com-

posed rules from predicate-argument structures.
We applied our fine-grained translation rules to a
tree-to-string system and an Hiero-style string-to-
tree system. Extensive experiments on large-scale
bidirectional Japanese-English translations testi-
fied the significant improvements on BLEU score.

We argue the fine-grained translation rules are
generic and applicable to many syntax-based SMT
frameworks such as the forest-to-string model (Mi
et al., 2008). Furthermore, it will be interesting
to extract fine-grained tree-to-tree translation rules
by integrating deep syntactic information in the
source and/or target language side(s). These tree-
to-tree rules are applicable for forest-to-tree trans-
lation models (Liu et al., 2009a).
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