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Abstract 

This paper presents hypothesis mixture decoding 

(HM decoding), a new decoding scheme that 

performs translation reconstruction using hypo-

theses generated by multiple translation systems. 

HM decoding involves two decoding stages: 

first, each component system decodes indepen-

dently, with the explored search space kept for 

use in the next step; second, a new search space 

is constructed by composing existing hypotheses 

produced by all component systems using a set 

of rules provided by the HM decoder itself, and 

a new set of model independent features are 

used to seek the final best translation from this 

new search space. Few assumptions are made by 

our approach about the underlying component 

systems, enabling us to leverage SMT models 

based on arbitrary paradigms. We compare our 

approach with several related techniques, and 

demonstrate significant BLEU improvements in 

large-scale Chinese-to-English translation tasks. 

1 Introduction 

Besides tremendous efforts on constructing more 

complicated and accurate models for statistical 

machine translation (SMT) (Och and Ney, 2004; 

Chiang, 2005; Galley et al., 2006; Shen et al., 2008; 

Chiang 2010), many researchers have concentrated 

on the approaches that improve translation quality 

using information between hypotheses from one or 

more SMT systems as well. 

System combination is built on top of the N-best 

outputs generated by multiple component systems 

(Rosti et al., 2007; He et al., 2008; Li et al., 2009b) 

which aligns multiple hypotheses to build confu-

sion networks as new search spaces, and outputs 

the highest scoring paths as the final translations. 

Consensus decoding, on the other hand, can be 

based on either single or multiple systems: single 

system based methods (Kumar and Byrne, 2004; 

Tromble et al., 2008; DeNero et al., 2009; Kumar 

et al., 2009) re-rank translations produced by a 

single SMT model using either n-gram posteriors 

or expected n-gram counts. Because hypotheses 

generated by a single model are highly correlated, 

improvements obtained are usually small; recently, 

dedicated efforts have been made to extend it from 

single system to multiple systems (Li et al., 2009a; 

DeNero et al., 2010; Duan et al., 2010). Such me-

thods select translations by optimizing consensus 

models over the combined hypotheses using all 

component systems’ posterior distributions. 

Although these two types of approaches have 

shown consistent improvements over the standard 

Maximum a Posteriori (MAP) decoding scheme, 

most of them are implemented as post-processing 

procedures over translations generated by MAP 

decoders. In this sense, the work of Li et al. (2009a) 

is different in that both partial and full hypotheses 

are re-ranked during the decoding phase directly 

using consensus between translations from differ-

ent SMT systems. However, their method does not 

change component systems’ search spaces. 

This paper presents hypothesis mixture decoding 

(HM decoding), a new decoding scheme that per-

forms translation reconstruction using hypotheses 

generated by multiple component systems. HM 

decoding involves two decoding stages: first, each 

component system decodes the source sentence 

independently, with the explored search space kept 

for use in the next step; second, a new search 

space is constructed by composing existing hypo-
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theses produced by all component systems using a 

set of rules provided by the HM decoder itself, and 

a new set of component model independent fea-

tures are used to seek the final best translation 

from this new constructed search space. 

We evaluate by combining two SMT models 

with state-of-the-art performances on the NIST 

Chinese-to-English translation tasks. Experimental 

results show that our approach outperforms the 

best component SMT system by up to 2.11 BLEU 

points. Consistent improvements can be observed 

over several related decoding techniques as well, 

including word-level system combination, colla-

borative decoding and model combination. 

2 Hypothesis Mixture Decoding 

2.1 Motivation and Overview 

SMT models based on different paradigms have 

emerged in the last decade using fairly different 

levels of linguistic knowledge. Motivated by the 

success of system combination research, the key 

contribution of this work is to make more effective 

use of the extended search spaces from different 

SMT models in decoding phase directly, rather 

than just post-processing their final outputs. We 

first begin with a brief review of single system 

based SMT decoding, and then illustrate major 

challenges to this end. 

Given a source sentence  , an SMT decoder 

seeks for a target translation   that best matches   

as its translation by maximizing the following 

conditional probability: 

       
                   

                            
 

where      is the feature vector that includes a set 

of system specific features,   is the weight vector, 

     is a derivation that can yield   and is defined 

as a sequence of translation rule applications    . 
Figure 1 illustrates a decoding example, in which 

the final translation is generated by recursively 

composing partial hypotheses that cover different 

ranges of the source sentence until the whole input 

sentence is fully covered, and the feature vector of 

the final translation is the aggregation of feature 

vectors of all partial hypotheses used.
1
 

However, hypotheses generated by different 

SMT systems cannot be combined directly to form 

new translations because of two major issues: 

The first one is the heterogeneous structures of 

different SMT models. For example, a string-to-

tree system cannot use hypotheses generated by a 

phrase-based system in decoding procedure, as 

such hypotheses are based on flat structures, which 

cannot provide any additional information needed 

in the syntactic model. 

The second one is the incompatible feature 

spaces of different SMT models. For example, 

even if a phrase-based system can use the lexical 

forms of hypotheses generated by a syntax-based 

system without considering syntactic structures, 

the feature vectors of these hypotheses still cannot 

be aggregated together in any trivial way, because 

the feature sets of SMT models based on different 

paradigms are usually inconsistent. 

To address these two issues discussed above, we 

propose HM decoding that performs translation 

reconstruction using hypotheses generated by mul-

tiple component systems.
2
 Our method involves 

two decoding stages depicted as follows: 

1. Independent decoding stage, in which each 

component system decodes input sentences 

independently based on its own model and 

search algorithm, and the explored search 

spaces (translation forests) are kept for use in 

the next stage. 

                                                 
1 There are also features independent of translation deriva-

tions, such as the language model feature. 
2 In this paper, we will constrain our discussions within CKY-

style decoders, in which we find translations for all spans of 

the source sentence. Although standard implementations of 

phrase-based decoders fall out of this scope, they can be still 

re-written to work in the CKY-style bottom-up manner at the 

cost of 1) only BTG-style reordering allowed, and 2) higher 

time complexity. As a result, any phrase-based SMT system 

can be used as a component in our HM decoding method. 

China ’s economic growth 

[-2.48, 4] 
 

China 

[-0.36, 1] 

的 

 

中国 经济 发展 

’s  
[-0.69, 1] 

economic 

[-0.51, 1] 
growth 

[-0.92, 1] 

China ‘s 

[-1.05, 2] 
economic growth 

[-1.43, 2] 

Figure 1: A decoding example of a phrase-based 

SMT system. Each hypothesis is annotated with a 

feature vector, which includes a logarithmic probabil-

ity feature and a word count feature. 
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2. HM decoding stage, where a mixture search 

space is constructed for translation derivations 

by composing partial hypotheses generated by 

all component systems, and a new decoding 

model with a set of enriched feature functions 

are used to seek final translations from this 

newly generated search space. 

HM decoding can use lexicalized hypotheses of 

arbitrary SMT models to derive translation, and a 

set of component model independent features are 

used to compute translation confidence. We dis-

cuss mixture search space construction, details of 

model and feature designs as well as HM decoding 

algorithms in Section 2.2, 2.3 and 2.4 respectively. 

2.2 Mixture Search Space Construction 

Let         denote   component MT systems, 

  
 
 denote the span of a source sentence   starting 

at position   and ending at position  . We use 

     
 
  denoting the search space of   

 
 predicted 

by   , and     
 
  denoting the mixture search 

space of   
 
 constructed by the HM decoder, which 

is defined recursively as follows: 

      
 
      

 
 . This rule adds all compo-

nent systems’ search spaces into the mixture 

search space for use in HM decoding. Thus 

hypotheses produced by all component sys-

tems are still available to the HM decoder. 

      

        

        
 
 , in which      

     and    

        

   .   is a translation 

rule provided by HM decoder that composes a 

new hypothesis using smaller hypotheses in 

the search spaces      

           

   . These 

rules further extend     
 
  with hypotheses 

generated by the HM decoder itself. 

Figure 2 shows an example of HM decoding, in 

which hypotheses generated by two SMT systems 

are used together to compose new translations. 

Since search space pruning is the indispensable 

procedure for all SMT systems, we will omit its 

explicit expression in the following descriptions 

and algorithms for convenience. 

2.3 Models and Features 

Following the common practice in SMT research, 

we use a linear model to formulate the preference 

of translation hypotheses in the mixture search 

space     . Formally, we are to find a translation 

   that maximizes the weighted linear combination 

of a set of real-valued features as follows: 

         
      

            

 

  

where         is an HM decoding feature with its 

corresponding feature weight   . 

In this paper, the HM decoder does not assume 

the availability of any internal knowledge of the 

underlying component systems. The HM decoding 

features are independent of component models as 

well, which fall into two categories: 

The first category contains a set of consensus-

based features, which are inspired by the success 

of consensus decoding approaches. These features 

are described in details as follows: 

1)            : the n-gram posterior feature of 

  computed based on the component search 

space       generated by   : 

                            

   

 

                                   is 

the posterior probability of an n-gram   in 

     ,       is the number of times that   

occurs in  ,       equals to 1 when   occurs 

in  , and 0 otherwise. 

Figure 2: An example of HM decoding, in which the 

translations surrounded by the dotted lines are newly 

generated hypotheses. Hypotheses light-shaded come 

from a phrase-based system, and hypotheses dark-

shaded come from a syntax-based system. 

economic growth of China 

economic growth China ’s 

的 中国 经济 发展 

development of economy 

China ’s development of economy 

China ‘s economic growth 

of China 

development of economy of China 

 

… Rules provided by 

the HM decoder 
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2)    
      

    : the stemmed n-gram posterior 

feature of   computed based on the stemmed 

component search space   
    . A word stem 

dictionary that includes 22,660 entries is used 

to convert   and       into their stem forms 

   and   
     by replacing each word into its 

stem form. This feature is computed similarly 

to that of            . 

3)           : the n-gram posterior feature of   

computed based on the mixture search space 

     generated by the HM decoder: 

                          

   

 

                                is the 

posterior probability of an n-gram   in     , 

        is the posterior probability of one 

translation    given   based on     . 

4)        : the length posterior feature of the 

specific target hypothesis with length   based 

on the mixture search space      generated 

by the HM decoder: 

                

                  

 

Note here that features in            and         

will be computed when the computations of all the 

remainder features in two categories have already 

finished for each   in     , and they will be used 

to update current HM decoding model scores. 

Consensus features based on component search 

spaces have already shown effectiveness (Kumar 

et al., 2009; DeNero et al., 2010; Duan et al., 

2010). We leverage consensus features based on 

the mixture search space newly generated in HM 

decoding as well. The length posterior feature (Zen 

and Ney, 2006) is used to adjust the preference of 

HM decoder for longer or shorter translations, and 

the stemmed n-gram posterior features are used to 

provide more discriminative power for HM decod-

ing and to decrease the effects of morphological 

changes in words for more accurate computation 

of consensus statistics. 

The second feature category contains a set of 

general features. Although there are more features 

that can be incorporated into HM decoding besides 

the ones we list below, we only utilize the most 

representative ones for convenience: 

1)             : the word count feature. 

2)         : the language model feature. 

3)           : the dictionary-based feature that 

counts how many lexicon pairs can be found 

in a given translation pair      . 

4)           and          : reordering features 

that penalize the uses of straight and inverted 

BTG rules during the derivation of   in HM 

decoding. These two features are specific to 

BTG-based HM decoding (Section 2.4.1): 

                   

      

 

                   

      

 

5)            and           : reordering fea-

tures that penalize the uses of hierarchical and 

glue rules during the derivation of   in HM 

decoding. These two features are specific to 

SCFG-based HM decoding (Section 2.4.2): 

                  

      

 

                    

      

 

  is the hierarchical rule set provided by the 

HM decoder itself,       equals to 1 when   

is provided by  , and 0 otherwise. 

6)          : the feature that counts how many 

n-grams in   are newly generated by the HM 

decoder, which cannot be found in all existing 

component search spaces: 

                   
        

 

   
 

   

 

  
         

     equals to 1 when   does 

not exist in        
   , and 0 otherwise. 

The MERT algorithm (Och, 2003) is used to 

tune weights of HM decoding features. 

2.4 Decoding Algorithms 

Two CKY-style algorithms for HM decoding are 

presented in this subsection. The first one is based 

on BTG (Wu, 1997), and the second one is based 

on SCFG, similar to Chiang (2005). 
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2.4.1 BTG-based HM Decoding 

The first algorithm, BTG-HMD, is presented in 

Algorithm 1, where hypotheses of two consecutive 

source spans are composed using two BTG rules: 

 Straight rule    . It combines translations of 

two consecutive blocks into a single larger 

block in a straight order. 

 Inverted rule    . It combines translations of 

two consecutive blocks into a single larger 

block in an inverted order. 

These two rules are used bottom-up until the 

whole source sentence is fully covered. We use 

two reordering rule penalty features,           and 

         , to penalize the uses of these two rules. 

 
Algorithm 1: BTG-based HM Decoding 

1: for each component model    do 

2:  output the search space       for the input   

3: end for 
4: for     to       do 

5:  for all     s.t.       do 

6:       
 
      

7:   for all   s.t.       do 

8:    for        
   and          

 
  do 

9:     add                  to     
 
  

10:     add                  to     
 
  

11:    end for 
12:   end for 

13:   for each hypothesis         
 
  

    do 
14:    compute HM decoding features for   

15:    add   to     
 
  

16:   end for 

17:   for each hypothesis       
 
  do 

18: 
   

compute the n-gram and length posterior 

features for   based on     
 
  

19:    update current HM decoding score of   

20:   end for 

21:  end for 

22: end for 

23: return         with the maximum model score 

 

In BTG-HMD, in order to derive translations for 

a source span   
 
, we compose hypotheses of any 

two smaller spans   
  and     

 
 using two BTG 

rules in line 9 and 10,              denotes the 

operations that firstly combine    and    using one 

BTG rule   and secondly compute HM decoding 

features for the newly generated hypothesis  . We 

compute HM decoding features for hypotheses 

contained in all existing component search spaces 

      
 
  

    as well, and add them to     
 
 . 

From line 17 to 20, we update current HM decod-

ing scores for all hypotheses in     
 
  using the 

n-gram and length posterior features computed 

based on     
 
 . When the whole source sentence 

is fully covered, we return the hypothesis with the 

maximum model score as the final best translation. 

2.4.2 SCFG-based HM Decoding 

The second algorithm, SCFG-HMD, is presented 

in Algorithm 2. An additional rule set  , which is 

provided by the HM decoder, is used to compose 

hypotheses. It includes hierarchical rules extracted 

using Chiang (2005)’s method and glue rules. Two 

reordering rule penalty features,            and 

          , are used to adjust the preferences of 

using hierarchical rules and glue rules. 

 

Algorithm 2: SCFG-based HM Decoding 

1: for each component model    do 

2:  output the search space       for the input   

3: end for 
4: for     to       do 

5:  for all     s.t.       do 

6:       
 
      

7:   for each rule     that matches   
 
do 

8:    for         
  and         

  do 

9:     add                to     
 
  

10:    end for 
11:   end for 

12:   for each hypothesis         
 
  

    do 
13:    compute HM decoding features for   

14:    add   to     
 
  

15:   end for 

16:   for each hypothesis       
 
  do 

17: 
   

compute the n-gram and length posterior 

features for   based on     
 
  

18:    update current HM decoding score of   

19:   end for 

20:  end for 

21: end for 

22: return         with the maximum model score 

 

Compared to BTG-HMD, the key differences in 

SCFG-HMD are located from line 7 to 11, where 

the translation for a given span   
 
 is generated by 

replacing the non-terminals in a hierarchical rule 

    with their corresponding target translations, 

   
 is the source span that is covered by the  th

 non-

terminal of  ,      
  is the search space for    

 

predicted by the HM decoder. 
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3 Comparisons to Related Techniques 

3.1 Model Combination and Mixture Model 

based MBR Decoding 

Model combination (DeNero et al., 2010) is an 

approach that selects translations from a conjoint 

search space using information from multiple SMT 

component models; Duan et al. (2010) presents a 

similar method, which utilizes a mixture model to 

combine distributions of hypotheses from different 

systems for Bayes-risk computation, and selects 

final translations from the combined search spaces 

using MBR decoding. Both of these two methods 

share a common limitation: they only re-rank the 

combined search space, without the capability to 

generate new translations. In contrast, by reusing 

hypotheses generated by all component systems in 

HM decoding, translations beyond any existing 

search space can be generated. 

3.2 Co-Decoding and Joint Decoding 

Li et al. (2009a) proposes collaborative decoding, 

an approach that combines translation systems by 

re-ranking partial and full translations iteratively 

using n-gram features from the predictions of other 

member systems. However, in co-decoding, all 

member systems must work in a synchronous way, 

and hypotheses between different systems cannot 

be shared during decoding procedure; Liu et al. 

(2009) proposes joint-decoding, in which multiple 

SMT models are combined in either translation or 

derivation levels. However, their method relies on 

the correspondence between nodes in hypergraph 

outputs of different models. HM decoding, on the 

other hand, can use hypotheses from component 

search spaces directly without any restriction. 

3.3 Hybrid Decoding 

Hybrid decoding (Cui et al., 2010) resembles our 

approach in the motivation. This method uses the 

system combination technique in decoding directly 

to combine partial hypotheses from different SMT 

models. However, confusion network construction 

brings high computational complexity. What’s 

more, partial hypotheses generated by confusion 

network decoding cannot be assigned exact feature 

values for future use in higher level decoding, and 

they only use feature values of 1-best hypothesis 

as an approximation. HM decoding, on the other 

hand, leverages a set of enriched features, which 

are computable for all the hypotheses generated by 

either component systems or the HM decoder. 

4 Experiments 

4.1 Data and Metric 

Experiments are conducted on the NIST Chinese-

to-English MT tasks. The NIST 2004 (MT04) data 

set is used as the development set, and evaluation 

results are reported on the NIST 2005 (MT05), the 

newswire portions of the NIST 2006 (MT06) and 

2008 (MT08) data sets. All bilingual corpora 

available for the NIST 2008 constrained data track 

of Chinese-to-English MT task are used as training 

data, which contain 5.1M sentence pairs, 128M 

Chinese words and 147M English words after pre-

processing. Word alignments are performed using 

GIZA++ with the intersect-diag-grow refinement. 

The English side of bilingual corpus plus Xinhua 

portion of the LDC English Gigaword Version 3.0 

are used to train a 5-gram language model. 

Translation performance is measured in terms of 

case-insensitive BLEU scores (Papineni et al., 

2002), which compute the brevity penalty using 

the shortest reference translation for each segment. 

Statistical significance is computed using the boot-

strap re-sampling approach proposed by Koehn 

(2004). Table 1 gives some data statistics. 

 
Data Set #Sentence #Word 

MT04(dev) 1,788 48,215 

MT05 1,082 29,263 

MT06 616 17,316 

MT08 691 17,424 

Table 1: Statistics on dev and test data sets 

4.2 Component Systems 

For convenience of comparing HM decoding with 

several related decoding techniques, we include 

two state-of-the-art SMT systems as component 

systems only: 

 PB. A phrase-based system (Xiong et al., 

2006) with one lexicalized reordering model 

based on the maximum entropy principle. 

 DHPB. A string-to-dependency tree-based 

system (Shen et al., 2008), which translates 

source strings to target dependency trees. A 

target dependency language model is used as 

an additional feature. 

1263



 

Phrasal rules are extracted on all bilingual data, 

hierarchical rules used in DHPB and reordering 

rules used in SCFG-HMD are extracted from a 

selected data set
3
. Reordering model used in PB is 

trained on the same selected data set as well. A 

trigram dependency language model used in 

DHPB is trained with the outputs from Berkeley 

parser on all language model training data. 

4.3 Contrastive Techniques 

We compare HM decoding with three multiple-

system based decoding techniques: 

 Word-Level System Combination (SC). We 

re-implement an IHMM alignment based sys-

tem combination method proposed by Li et al. 

(2009b). The setting of the N-best candidates 

used is the same as the original paper. 

 Co-decoding (CD). We re-implement it based 

on Li et al. (2009a), with the only difference 

that only two models are included in our re-

implementation, instead of three in theirs. For 

each test set, co-decoding outputs three results, 

two for two member systems, and one for the 

further system combination. 

 Model Combination (MC). Different from co-

decoding, MC produces single one output for 

each input sentence. We re-implement this 

method based on DeNero et al. (2010) with 

two component models included. 

4.4 Comparison to Component Systems 

We compared HM decoding with two component 

SMT systems first (in Table 2). 30 features are 

used to annotate each hypothesis in HM decoding, 

including: 8 n-gram posterior features computed 

from PB/DHPB forests for      ; 8 stemmed 

n-gram posterior features computed from stemmed 

PB/DHPB forests for      ; 4 n-gram post-

erior features and 1 length posterior feature com-

puted from the mixture search space of HM de-

coder for      ; 1 LM feature; 1 word count 

feature; 1 dictionary-based feature; 2 grammar-

specified rule penalty features for either BTG-

HMD or SCFG-HMD; 4 count features for newly 

generated n-grams in HM decoding for      . 

All n-gram posteriors are computed using the effi-

cient algorithm proposed by Kumar et al. (2009). 

                                                 
3 LDC2003E07, LDC2003E14, LDC2005T06, LDC2005T10, 

LDC2005E83, LDC2006E26, LDC2006E34, LDC2006E85 

and LDC2006E92 

 

Model 
BLEU% 

MT04 MT05 MT06 MT08 

PB 38.93 38.21 33.59 29.62 

DHPB 39.90 39.76 35.00 30.43 

BTG-HMD 41.24
*
 41.26* 36.76

*
 31.69

*
 

SCFG-HMD 41.31
*
 41.19* 36.63

*
 31.52

*
 

Table 2: HM decoding vs. single component system 

decoding (*: significantly better than each component 

system with   < 0.01) 

From table 2 we can see, both BTG-HMD and 

SCFG-HMD outperform decoding results of the 

best component system (DHPB) with significant 

improvements: +1.50, +1.76, and +1.26 BLEU 

points on MT05, MT06, and MT08 for BTG-HMD; 

+1.43, +1.63 and +1.09 BLEU points on MT05, 

MT06, and MT08 for SCFG-HMD. We also notice 

that BTG-HMD performs slight better than SCFG-

HMD on test sets. We think the potential reason is 

that more reordering rules are used in SCFG-HMD 

to handle phrase movements than BTG-HMD do; 

however, current HM decoding model lacks the 

ability to distinguish the qualities of different rules. 

We also investigate on the effects of different 

HM-decoding features. For the convenience of 

comparison, we divide them into five categories: 

 Set-1. 8 n-gram posterior features based on 2 

component search spaces plus 3 commonly 

used features (1 LM feature, 1 word count 

feature and 1 dictionary-based feature). 

 Set-2. 8 stemmed n-gram posterior features 

based on 2 stemmed component search spaces. 

 Set-3. 4 n-gram posterior features and 1 

length posterior feature based on the mixture 

search space of the HM decoder. 

 Set-4. 2 grammar-specified reordering rule 

penalty features. 

 Set-5. 4 count features for unseen n-grams 

generated by HM decoder itself. 

Except for the dictionary-based feature, all the 

features contained in Set-1 are used by the latest 

multiple-system based consensus decoding tech-

niques (DeNero et al., 2010; Duan et al., 2010). 

We use them as the starting point. Each time, we 

add one more feature set and describe the changes 

of performances by drawing two curves for each 

HM decoding algorithm on MT08 in Figure 3. 
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Figure 3: Effects of using different sets of HM decoding 

features on MT08 

With Set-1 used only, HM-decoding has already 

outperformed the best component system, which 

shows the strong contributions of these features as 

proved in related work; small gains (+0.2 BLEU 

points) are achieved by using 8 stemmed n-gram 

posterior features in Set-2, which shows consensus 

statistics based on n-grams in their stem forms are 

also helpful; n-gram and length posterior features 

based on mixture search space bring improvements 

as well; reordering rule penalty features and count 

features for unseen n-grams boost newly generated 

hypotheses specific for HM decoding, and they 

contribute to the overall improvements. 

4.5 Comparison to System Combination 

Word-level system combination is state-of-the-art 

method to improve translation performance using 

outputs generated by multiple SMT systems. In 

this paper, we compare our HM decoding with the 

combination method proposed by Li et al. (2009b). 

Evaluation results are shown in Table 3. 

 

Model 
BLEU% 

MT04 MT05 MT06 MT08 

SC 41.14 40.70 36.04 31.16 

BTG-HMD 41.24 41.26
+
 36.76

+
 31.69

+
 

SCFG-HMD 41.31
+
 41.19

+
 36.63

+
 31.52

+
 

Table 3: HM decoding vs. system combination (+: sig-

nificantly better than SC with   < 0.05) 

Compared to word-level system combination, 

both BTG-HMD and SCFG-HMD can provide 

significant improvements. We think the potential 

reason for these improvements is that, system 

combination can only use a small portion of the 

component systems’ search spaces; HM decoding, 

on the other hand, can make full use of the entire 

translation spaces of all component systems. 

4.6 Comparison to Consensus Decoding 

Consensus decoding is another decoding technique 

that motivates our approach. We compare our HM 

decoding with two latest multiple-system based 

consensus decoding approaches, co-decoding and 

model combination. We list the comparison results 

in Table 4, in which CD-PB and CD-DHPB denote 

the translation results of two member systems in 

co-decoding respectively, CD-Comb denotes the 

results of further combination using outputs of 

CD-PB and CD-DHPB, MC denotes the results of 

model combination. 

 

Model 
BLEU% 

MT04 MT05 MT06 MT08 

CD-PB 40.39 40.34 35.20 30.39 

CD-DHPB 40.81 40.56 35.73 30.87 

CD-Comb 41.27 41.02 36.37 31.54 

MC 41.19 40.96 36.30 31.43 

BTG-HMD 41.24 41.26
+
 36.76

+
 31.69 

SCFG-HMD 41.31 41.19 36.63
+
 31.52 

Table 4: HM decoding vs. consensus decoding (+: sig-

nificantly better than the best result of consensus decod-

ing methods with   < 0.05) 

Table 4 shows that after an additional system 

combination procedure, CD-Comb performs slight 

better than MC. Both BTG-HMD and SCFG-

HMD perform consistent better than CD and MC 

on all blind test sets, due to its richer generative 

capability and usage of larger search spaces. 

4.7 System Combination over BTG-HMD 

and SCFG-HMD Outputs 

As BTG-HMD and SCFG-HMD are based on two 

different decoding grammars, we could perform 

system combination over the outputs of these two 

settings (SC
BTG+SCFG

) for further improvements as 

well, just as Li et al. (2009a) did in co-decoding. 

We present evaluation results in Table 5. 

 

Model 
BLEU% 

MT04 MT05 MT06 MT08 

BTG-HMD 41.24 41.26 36.76 31.69 

SCFG-HMD 41.31 41.19 36.63 31.52 

SC
BTG+SCFG

 41.74
+
 41.53

+
 37.11

+
 32.06

+
 

Table 5: System combination based on the outputs of 

BTG-HMD and SCFG-HMD (+: significantly better 

than the best HM decoding algorithm (SCFG-HMD) 

with   < 0.05) 

30.5

30.7

30.9

31.1

31.3

31.5

31.7

31.9

Set-1 Set-2 Set-3 Set-4 Set-5

BTG-HMD

SCFG-HMD
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After system combination, translation results are 

significantly better than all decoding approaches 

investigated in this paper: up to 2.11 BLEU points 

over the best component system (DHPB), up to 

1.07 BLEU points over system combination, up to 

0.74 BLEU points over co-decoding, and up to 

0.81 BLEU points over model combination. 

4.8 Evaluation of Oracle Translations 

In the last part, we evaluate the quality of oracle 

translations on the n-best lists generated by HM 

decoding and all decoding approaches discussed in 

this paper. Oracle performances are obtained using 

the metric of sentence-level BLEU score proposed 

by Ye et al. (2007), and each decoding approach 

outputs its 1000-best hypotheses, which are used 

to extract oracle translations. 

 

Model 
BLEU% 

MT04 MT05 MT06 MT08 

PB 49.53 48.36 43.69 39.39 

DHPB 50.66 49.59 44.68 40.47 

SC 51.77 50.84 46.87 42.11 

CD-PB 50.26 50.10 45.65 40.52 

CD-DHPB 51.91 50.61 46.23 41.01 

CD-Comb 52.10 51.00 46.95 42.20 

MC 52.03 51.22 46.60 42.23 

BTG-HMD 52.69
+
 51.75

+
 47.08 42.71

+
 

SCFG-HMD 52.94
+
 51.40 47.27

+
 42.45

+
 

SC
BTG+SCFG

 53.58
+
 52.03

+
 47.90

+
 43.07

+
 

Table 6: Oracle performances of different methods (+: 

significantly better than the best multiple-system based 

decoding method (CD-Comb) with   < 0.05) 

Results are shown in Table 6: compared to each 

single component system, decoding methods based 

on multiple SMT systems can provide significant 

improvements on oracle translations; word-level 

system combination, collaborative decoding and 

model combination show similar performances, in 

which CD-Comb performs best; BTG-HMD, 

SCFG-HMD and SC
BTG+SCFG

 can obtain significant 

improvements than all the other approaches, and 

SC
BTG+SCFG

 performs best on all evaluation sets. 

5 Conclusion 

In this paper, we have presented the hypothesis 

mixture decoding approach to combine multiple 

SMT models, in which hypotheses generated by 

multiple component systems are used to compose 

new translations. HM decoding method integrates 

the advantages of both system combination and 

consensus decoding techniques into a unified 

framework. Experimental results across different 

NIST Chinese-to-English MT evaluation data sets 

have validated the effectiveness of our approach. 

In the future, we will include more SMT models 

and explore more features, such as syntax-based 

features, helping to improve the performance of 

HM decoding. We also plan to investigate more 

complicated reordering models in HM decoding. 
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