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Abstract

Word alignment has an exponentially large
search space, which often makes exact infer-
ence infeasible. Recent studies have shown
that inversion transduction grammars are rea-
sonable constraints for word alignment, and
that the constrained space could be efficiently
searched using synchronous parsing algo-
rithms. However, spurious ambiguity may oc-
cur in synchronous parsing and cause prob-
lems in both search efficiency and accuracy. In
this paper, we conduct a detailed study of the
causes of spurious ambiguity and how it ef-
fects parsing and discriminative learning. We
also propose a variant of the grammar which
eliminates those ambiguities. Our grammar
shows advantages over previous grammars in
both synthetic and real-world experiments.

1 Introduction

In statistical machine translation, word alignment at-
tempts to find word correspondences in parallel sen-
tence pairs. The search space of word alignment
will grow exponentially with the length of source
and target sentences, which makes the inference for
complex models infeasible (Brown et al., 1993). Re-
cently, inversion transduction grammars (Wu, 1997),
namely ITG, have been used to constrain the search
space for word alignment (Zhang and Gildea, 2005;
Cherry and Lin, 2007; Haghighi et al., 2009; Liu et
al., 2010). ITG is a family of grammars in which the
right hand side of the rule is either two nonterminals
or a terminal sequence. The most general case of the
ITG family is the bracketing transduction grammar

A→ [AA] | 〈AA〉 | e/f | ε/f | e/ε

Figure 1: BTG rules. [AA] denotes a monotone concate-
nation and 〈AA〉 denotes an inverted concatenation.

(BTG, Figure 1), which has only one nonterminal
symbol.

Synchronous parsing of ITG may generate a large
number of different derivations for the same under-
lying word alignment. This is often referred to as
the spurious ambiguity problem. Calculating and
saving those derivations will slow down the parsing
speed significantly. Furthermore, spurious deriva-
tions may fill up the n-best list and supersede po-
tentially good results, making it harder to find the
best alignment. Besides, over-counting those spu-
rious derivations will also affect the likelihood es-
timation. In order to reduce spurious derivations,
Wu (1997), Haghighi et al. (2009), Liu et al. (2010)
propose different variations of the grammar. These
grammars have different behaviors in parsing effi-
ciency and accuracy, but so far no detailed compari-
son between them has been done.

In this paper, we formally analyze alignments un-
der ITG constraints and the different causes of spu-
rious ambiguity for those alignments. We do an em-
pirical study of the influence of spurious ambiguity
on parsing and discriminative learning by compar-
ing different grammars in both synthetic and real-
data experiments. To our knowledge, this is the first
in-depth analysis on this specific issue. A new vari-
ant of the grammar is proposed, which efficiently re-
moves all spurious ambiguities. Our grammar shows
advantages over previous ones in both experiments.
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Figure 2: Possible monotone/inverted t-splits (dashed
lines) under BTG, causing branching ambiguities.

2 ITG Alignment Family

By lexical rules like A → e/f , each ITG derivation
actually represents a unique alignment between the
two sequences. Thus the family of ITG derivations
represents a family of word alignment.

Definition 1. The ITG alignment family is a set of
word alignments that has at least one BTG deriva-
tion.

ITG alignment family is only a subset of word
alignments because there are cases, known as inside-
outside alignments (Wu, 1997), that could not be
represented by any ITG derivation. On the other
hand, an ITG alignment may have multiple deriva-
tions.

Definition 2. For a given grammar G, spurious am-
biguity in word alignment is the case where two or
more derivations d1, d2, ... dk of G have the same
underlying word alignmentA. A grammarG is non-
spurious if for any given word alignment, there exist
at most one derivation under G.

In any given derivation, an ITG rule applies by ei-
ther generating a bilingual word pair (lexical rules)
or splitting the current alignment into two parts,
which will recursively generate two sub-derivations
(transition rules).

Definition 3. Applying a monotone (or inverted)
concatenation transition rule forms a monotone t-
split (or inverted t-split) of the original alignment
(Figure 2).

3 Causes of Spurious Ambiguity

3.1 Branching Ambiguity

As shown in Figure 2, left-branching and right-
branching will produce different derivations under

A→ [AB] | [BB] | [CB] | [AC] | [BC] | [CC]
B → 〈AA〉 | 〈BA〉 | 〈CA〉 | 〈AC〉 | 〈BC〉 | 〈CC〉

C → e/f | ε/f | e/ε

Figure 3: A Left heavy Grammar (LG).

BTG, but yield the same word alignment. Branching
ambiguity was identified and solved in Wu (1997),
using the grammar in Figure 3, denoted as LG. LG
uses two separate non-terminals for monotone and
inverted concatenation, respectively. It only allows
left branching of such non-terminals, by excluding
rules like A→ [BA].

Theorem 1. For each ITG alignment A, in which
all the words are aligned, LG will produce a unique
derivation.

Proof: Induction on n, the length of A. Case n=1
is trivial. Induction hypothesis: the theorem holds
for any A with length less than n.

For A of length n, let s be the right most t-split
which splits A into S1 and S2. s exists because A is
an ITG alignment. Assume that there exists another
t-split s′, splitting A into S11 and (S12S2). Because
A is fixed and fully aligned, it is easy to see that if
s is a monotone t-split, s′ could only be monotone,
and S12 and S2 in the right sub-derivation of t-split s′

could only be combined by monotone concatenation
as well. So s′ will have a right branching of mono-
tone concatenation, which contradicts with the def-
inition of LG because right branching of monotone
concatenations is prohibited. A similar contradic-
tion occurs if s is an inverted t-split. Thus s should
be the unique t-split forA. By I.H., S1 and S2 have a
unique derivation, because their lengths are less than
n. Thus the derivation for A will be unique.

3.2 Null-word Attachment Ambiguity
Definition 4. For any given sentence pair (e, f) and
its alignment A, let (e′, f ′) be the sentence pairs
with all null-aligned words removed from (e, f).
The alignment skeletonAS is the alignment between
(e′, f ′) that preserves all links in A.

From Theorem 1 we know that every ITG align-
ment has a unique LG derivation for its alignment
skeleton (Figure 4 (c)).

However, because of the lexical or syntactic dif-
ferences between languages, some words may have
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Figure 4: Null-word attachment for the same alignment.
((a) and (b) are spurious derivations under LG caused
by null-aligned words attachment. (c) shows the unique
derivation under LGFN. The dotted lines have omitted
some unary rules for simplicity. The dashed box marks
the alignment skeleton.)

A→ [AB] | [BB] | [CB] | [AC] | [BC] | [CC]
B → 〈AA〉 | 〈BA〉 | 〈CA〉 | 〈AC〉 | 〈BC〉 | 〈CC〉

C → C01 | [Cs C]
C01 → C00 | [Ct C01]

C00 → e/f, Ct → e/ε, Cs → ε/f

Figure 5: A Left heavy Grammar with Fixed Null-word
attachment (LGFN).

no explicit correspondence in the other language and
tend to stay unaligned. These null-aligned words,
also called singletons, should be attached to some
other nodes in the derivation. It will produce dif-
ferent derivations if those null-aligned words are at-
tached by different rules, or to different nodes.

Haghighi et al. (2009) give some restrictions on
null-aligned word attachment. However, they fail to
restrict the node to which the null-aligned word is
attached, e.g. the cases (a) and (b) in Figure 4.

3.3 LGFN Grammar
We propose here a new variant of ITG, denoted as
LGFN (Figure 5). Our grammar takes similar tran-
sition rules as LG and efficiently constrains the at-
tachment of null-aligned words. We will empirically
compare those different grammars in the next sec-
tion.

Lemma 1. LGFN has a unique mapping from the
derivation of any given ITG alignment A to the
derivation of its alignment skeleton AS .

Proof: LGFN maps the null-aligned source word
sequence, Cs1 , Cs2 , ..., Csk

, the null-aligned target
word sequence, Ct1 , Ct2 , ..., Ctk′ , together with the
aligned word-pair C00 that directly follows, to the
nodeC exactly in the way of Equation 1. The brack-
ets indicate monotone concatenations.

C → [Cs1 ...[Csk
[Ct1 ...[Ctk′C00]...]]...] (1)

The mapping exists when every null-aligned se-
quence has an aligned word-pair after it. Thus it
requires an artificial word at the end of the sentence.

Note that our grammar attaches null-aligned
words in a right-branching manner, which means it
builds the span only when there is an aligned word-
pair. After initialization, any newly-built span will
contain at least one aligned word-pair. Compara-
tively, the grammar in Liu et al. (2010) uses a left-
branching manner. It may generate more spans that
only contain null-aligned words, which makes it less
efficient than ours.

Theorem 2. LGFN has a unique derivation for each
ITG alignment, i.e. LGFN is non-spurious.

Proof: Derived directly from Definition 4, Theo-
rem 1 and Lemma 1.

4 Experiments

4.1 Synthetic Experiments

We automatically generated 1000 fully aligned ITG
alignments of length 20 by generating random per-
mutations first and checking ITG constraints using a
linear time algorithm (Zhang et al., 2006). Sparser
alignments were generated by random removal of
alignment links according to a given null-aligned
word ratio. Four grammars were used to parse these
alignments, namely LG (Wu, 1997), HaG (Haghighi
et al., 2009), LiuG (Liu et al., 2010) and LGFN (Sec-
tion 3.3).

Table 1 shows the average number of derivations
per alignment generated under LG and HaG. The
number of derivations produced by LG increased
dramatically because LG has no restrictions on null-
aligned word attachment. HaG also produced a large
number of spurious derivations as the number of
null-aligned words increased. Both LiuG and LGFN
produced a unique derivation for each alignment, as
expected. One interpretation is that in order to get
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% 0 5 10 15 20 25
LG 1 42.2 1920.8 9914.1+ 10000+ 10000+

HaG 1 3.5 10.9 34.1 89.2 219.9

Table 1: Average #derivations per alignment for LG and
HaG v.s. Percentage of unaligned words. (+ marked
parses have reached the beam size limit of 10000.)
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Figure 6: Total parsing time (in seconds) v.s. Percentage
of un-aligned words.

the 10-best alignments for sentence pairs that have
10% of words unaligned, the top 109 HaG deriva-
tions should be generated, while the top 10 LiuG or
LGFN derivations are already enough.

Figure 6 shows the total parsing time using each
grammar. LG and HaG showed better performances
when most of the words were aligned because their
grammars are simpler and less constrained. How-
ever, when the number of null-aligned words in-
creased, the parsing times for LG and HaG became
much longer, caused by the calculation of the large
number of spurious derivations. Parsings using LG
for 10 and 15 percent of null-aligned words took
around 15 and 80 minutes, respectively, which can-
not be plotted in the same scale with other gram-
mars. The parsing times of LGFN and LiuG also
slowly increased, but parsing LGFN consistently
took less time than LiuG.

It should be noticed that the above results came
from parsing according to some given alignment.
When searching without knowing the correct align-
ment, it is possible for every word to stay unaligned,
which makes spurious ambiguity a much more seri-
ous issue.

4.2 Discriminative Learning Experiments

To further study how spurious ambiguity affects the
discriminative learning, we implemented a frame-
work following Haghighi et al. (2009). We used
a log-linear model, with features like IBM model1
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Figure 7: Test set AER after each iteration.

probabilities (collected from FBIS data), relative
distances, matchings of high frequency words,
matchings of pos-tags, etc. Online training was
performed using the margin infused relaxed algo-
rithm (Crammer et al., 2006), MIRA. For each
sentence pair (e, f), we optimized with alignment
results generated from the nbest parsing results.
Alignment error rate (Och and Ney, 2003), AER,
was used as the loss function. We ran MIRA train-
ing for 20 iterations and evaluated the alignments of
the best-scored derivations on the test set using the
average weights.

We used the manually aligned Chinese-English
corpus in NIST MT02 evaluation. The first 200 sen-
tence pairs were used for training, and the last 150
for testing. There are, on average, 10.3% words stay
null-aligned in each sentence, but if restricted to sure
links the average ratio increases to 22.6%.

We compared training using LGFN with 1-best,
20-best and HaG with 20-best (Figure 7). Train-
ing with HaG only obtained similar results with 1-
best trained LGFN, which demonstrated that spu-
rious ambiguity highly affected the nbest list here,
resulting in a less accurate training. Actually, the
20-best parsing using HaG only generated 4.53 dif-
ferent alignments on average. 20-best training us-
ing LGFN converged quickly after the first few it-
erations and obtained an AER score (17.23) better
than other systems, which is also lower than the re-
fined IBM Model 4 result (19.07).

We also trained a similar discriminative model but
extended the lexical rule of LGFN to accept at max-
imum 3 consecutive words. The model was used
to align FBIS data for machine translation exper-
iments. Without initializing by phrases extracted
from existing alignments (Cherry and Lin, 2007) or
using complicated block features (Haghighi et al.,
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2009), we further reduced AER on the test set to
12.25. An average improvement of 0.52 BLEU (Pa-
pineni et al., 2002) score and 2.05 TER (Snover
et al., 2006) score over 5 test sets for a typical
phrase-based translation system, Moses (Koehn et
al., 2003), validated the effectiveness of our experi-
ments.

5 Conclusion

Great efforts have been made in reducing spurious
ambiguities in parsing combinatory categorial gram-
mar (Karttunen, 1986; Eisner, 1996). However, to
our knowledge, we give the first detailed analysis on
spurious ambiguity of word alignment. Empirical
comparisons between different grammars also vali-
dates our analysis.

This paper makes its own contribution in demon-
strating that spurious ambiguity has a negative im-
pact on discriminative learning. We will continue
working on this line of research and improve our
discriminative learning model in the future, for ex-
ample, by adding more phrase level features.

It is worth noting that the definition of spuri-
ous ambiguity actually varies for different tasks. In
some cases, e.g. bilingual chunking, keeping differ-
ent null-aligned word attachments could be useful.
It will also be interesting to explore spurious ambi-
guity and its effects in those different tasks.
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