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Abstract

While it is generally accepted that many trans-
lation phenomena are correlated with linguis-
tic structures, employing linguistic syntax for
translation has proven a highly non-trivial
task. The key assumption behind many ap-
proaches is that translation is guided by the
source and/or target language parse, employ-
ing rules extracted from the parse tree or
performing tree transformations. These ap-
proaches enforce strict constraints and might
overlook important translation phenomena
that cross linguistic constituents. We propose
a novel flexible modelling approach to intro-
duce linguistic information of varying gran-
ularity from the source side. Our method
induces joint probability synchronous gram-
mars and estimates their parameters, by select-
ing and weighing together linguistically moti-
vated rules according to an objective function
directly targeting generalisation over future
data. We obtain statistically significant im-
provements across 4 different language pairs
with English as source, mounting up to +1.92
BLEU for Chinese as target.

1 Introduction

Recent advances in Statistical Machine Translation
(SMT) are widely centred around two concepts:
(a) hierarchical translation processes, frequently
employing Synchronous Context Free Grammars
(SCFGs) and (b) transduction or synchronous
rewrite processes over a linguistic syntactic tree.
SCFGs in the form of the Inversion-Transduction
Grammar (ITG) were first introduced by (Wu, 1997)
as a formalism to recursively describe the trans-
lation process. The Hiero system (Chiang, 2005)

utilised an ITG-flavour which focused on hierarchi-
cal phrase-pairs to capture context-driven translation
and reordering patterns with ‘gaps’, offering com-
petitive performance particularly for language pairs
with extensive reordering. As Hiero uses a single
non-terminal and concentrates on overcoming trans-
lation lexicon sparsity, it barely explores the recur-
sive nature of translation past the lexical level. Nev-
ertheless, the successful employment of SCFGs for
phrase-based SMT brought translation models as-
suming latent syntactic structure to the spotlight.

Simultaneously, mounting efforts have been di-
rected towards SMT models employing linguistic
syntax on the source side (Yamada and Knight,
2001; Quirk et al., 2005; Liu et al., 2006), target
side (Galley et al., 2004; Galley et al., 2006) or both
(Zhang et al., 2008; Liu et al., 2009; Chiang, 2010).
Hierarchical translation was combined with target
side linguistic annotation in (Zollmann and Venu-
gopal, 2006). Interestingly, early on (Koehn et al.,
2003) exemplified the difficulties of integrating lin-
guistic information in translation systems. Syntax-
based MT often suffers from inadequate constraints
in the translation rules extracted, or from striving to
combine these rules together towards a full deriva-
tion. Recent research tries to address these issues,
by re-structuring training data parse trees to bet-
ter suit syntax-based SMT training (Wang et al.,
2010), or by moving from linguistically motivated
synchronous grammars to systems where linguistic
plausibility of the translation is assessed through ad-
ditional features in a phrase-based system (Venu-
gopal et al., 2009; Chiang et al., 2009), obscuring
the impact of higher level syntactic processes.

While it is assumed that linguistic structure does
correlate with some translation phenomena, in this
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work we do not employ it as the backbone of trans-
lation. In place of linguistically constrained trans-
lation imposing syntactic parse structure, we opt for
linguistically motivated translation. We learn latent
hierarchical structure, taking advantage of linguistic
annotations but shaped and trained for translation.

We start by labelling each phrase-pair span in the
word-aligned training data with multiple linguisti-
cally motivated categories, offering multi-grained
abstractions from its lexical content. These phrase-
pair label charts are the input of our learning al-
gorithm, which extracts the linguistically motivated
rules and estimates the probabilities for a stochastic
SCFG, without arbitrary constraints such as phrase
or span sizes. Estimating such grammars under
a Maximum Likelihood criterion is known to be
plagued by strong overfitting leading to degener-
ate estimates (DeNero et al., 2006). In contrast,
our learning objective not only avoids overfitting
the training data but, most importantly, learns joint
stochastic synchronous grammars which directly
aim at generalisation towards yet unseen instances.

By advancing from structures which mimic lin-
guistic syntax, to learning linguistically aware latent
recursive structures targeting translation, we achieve
significant improvements in translation quality for 4
different language pairs in comparison with a strong
hierarchical translation baseline.

Our key contributions are presented in the fol-
lowing sections. Section 2 discusses the weak in-
dependence assumptions of SCFGs and introduces
a joint translation model which addresses these is-
sues and separates hierarchical translation structure
from phrase-pair emission. In section 3 we consider
a chart over phrase-pair spans filled with source-
language linguistically motivated labels. We show
how we can employ this crucial input to extract and
train a hierarchical translation structure model with
millions of rules. Section 4 demonstrates decoding
with the model by constraining derivations to lin-
guistic hints of the source sentence and presents our
empirical results. We close with a discussion of re-
lated work and our conclusions.

2 Joint Translation Model

Our model is based on a probabilistic Synchronous
CFG (Wu, 1997; Chiang, 2005). SCFGs define a

SBAR → [WHNP SBAR\WHNP] (a)

SBAR\WHNP → 〈VP/NPL NPR〉 (b)

NPR → [NP PP] (c)

WHNP → WHNPP (d)

WHNPP → which / der (e)

VP/NPL → VP/NPL
P (f)

VP/NPL
P → is / ist (g)

NPR → NPR
P (h)

NPR
P → the solution / die Lösung (i)

NP → NPP (j)

NPP → the solution / die Lösung (k)

PP → PPP (l)

PPP → to the problem / für das Problem (m)

Figure 1: English-German SCFG rules for the relative
clause(s) ‘which is the solution (to the problem) / der die
Lösung (für das Problem) ist’, [ ] signify monotone trans-
lation, 〈 〉 a swap reordering.

language over string pairs, which are generated be-
ginning from a start symbol S and recursively ex-
panding pairs of linked non-terminals across the two
strings using the grammar’s rule set. By crossing the
links between the non-terminals of the two sides re-
ordering phenomena are captured. We employ bi-
nary SCFGs, i.e. grammars with a maximum of two
non-terminals on the right-hand side. Also, for this
work we only used grammars with either purely lexi-
cal or purely abstract rules involving one or two non-
terminal pairs. An example can be seen in Figure 1,
using an ITG-style notation and assuming the same
non-terminal labels for both sides.

We utilise probabilistic SCFGs, where each rule
is assigned a conditional probability of expanding
the left-hand side symbol with the rule’s right-hand
side. Phrase-pairs are emitted jointly and the over-
all probabilistic SCFG is a joint model over parallel
strings.

2.1 SCFG Reordering Weaknesses

An interesting feature of all probabilistic SCFGs
(i.e. not only binary ones), which has received sur-
prisingly little attention, is that the reordering pat-
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tern between the non-terminal pairs (or in the case
of ITGs the choice between monotone and swap ex-
pansion) are not conditioned on any other part of a
derivation. The result is that, the reordering pattern
with the highest probability will always be preferred
(e.g. in the Viterbi derivation) over the rest, irre-
spective of lexical or abstract context. As an ex-
ample, a probabilistic SCFG will always assign a
higher probability to derivations swapping or mono-
tonically translating nouns and adjectives between
English and French, only depending on which of the
two rules NP → [NN JJ ], NP → 〈NN JJ〉
has a higher probability. The rest of the (sometimes
thousands of) rule-specific features usually added to
SCFG translation models do not directly help either,
leaving reordering decisions disconnected from the
rest of the derivation.

While in a decoder this is somehow mitigated by
the use of a language model, we believe that the
weakness of straightforward applications of SCFGs
to model reordering structure at the sentence level
misses a chance to learn this crucial part of the
translation process during grammar induction. As
(Mylonakis and Sima’an, 2010) note, ‘plain’ SCFGs
seem to perform worse than the grammars described
next, mainly due to wrong long-range reordering de-
cisions for which the language model can hardly
help.

2.2 Hierarchical Reordering SCFG

We address the weaknesses mentioned above by re-
lying on an SCFG grammar design that is similar to
the ‘Lexicalised Reordering’ grammar of (Mylon-
akis and Sima’an, 2010). As in the rules of Fig-
ure 1, we separate non-terminals according to the
reordering patterns in which they participate. Non-
terminals such as BL, CR take part only in swap-
ping right-hand sides 〈BL CR〉 (with BL swap-
ping from the source side’s left to the target side’s
right, CR swapping in the opposite direction), while
non-terminals such as B, C take part solely in mono-
tone right-hand side expansions [B C]. These non-
terminal categories can appear also on the left-hand
side of a rule, as in rule (c) of Figure 1.

In contrast with (Mylonakis and Sima’an, 2010),
monotone and swapping non-terminals do not emit
phrase-pairs themselves. Rather, each non-terminal
NT is expanded to a dedicated phrase-pair emit-

A → [B C] A → 〈BL CR〉
AL → [B C] AL → 〈BL CR〉
AR → [B C] AR → 〈BL CR〉

A → AP AP → α / β

AL → AL
P AL

P → α / β

AR → AR
P AR

P → α / β

Figure 2: Recursive Reordering Grammar rule cate-
gories; A, B, C non-terminals; α, β source and target
strings respectively.

ting non-terminal NTP, which generates all phrase-
pairs for it and nothing more. In this way, the pref-
erence of non-terminals to either expand towards
a (long) phrase-pair or be further analysed recur-
sively is explicitly modelled. Furthermore, this set
of pre-terminals allows us to separate the higher or-
der translation structure from the process that emits
phrase-pairs, a feature we employ next.

In (Mylonakis and Sima’an, 2010) this grammar
design mainly contributed to model lexical reorder-
ing preferences. While we retain this function, for
the rich linguistically-motivated grammars used in
this work this design effectively propagates reorder-
ing preferences above and below the current rule ap-
plication (e.g. Figure 1, rules (a)-(c)), allowing to
learn and apply complex reordering patterns.

The different types of grammar rules are sum-
marised in abstract form in Figure 2. We will subse-
quently refer to this grammar structure as Hierarchi-
cal Reordering SCFG (HR-SCFG).

2.3 Generative Model

We arrive at a probabilistic SCFG model which
jointly generates source e and target f strings, by
augmenting each grammar rule with a probability,
summing up to one for every left-hand side. The
probability of a derivation D of tuple 〈e, f〉 begin-
ning from start symbol S is equal to the product of
the probabilities of the rules used to recursively gen-
erate it.

We separate the structural part of the derivation
D, down to the pre-terminals NTP, from the phrase-
emission part. The grammar rules pertaining to the
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X, SBAR, WHNP+VP, WHNP+VBZ+NP
X, VBZ+NP, VP, SBAR\WHNP

X, SBAR/NN, WHNP+VBZ+DT
X, VBZ+DT, VP/NN

X, WHNP+VBZ, X, NP,
SBAR/NP VP\VBZ

X, WHNP, X, VBZ, X, DT, X, NN,
SBAR/VP VP/NP NP/NN NP\DT

which is the problem

Figure 3: The label chart for the source fragment ‘which
is the problem’. Only a sample of the entries is listed.

structural part and their associated probabilities de-
fine a model p(σ) over the latent variable σ de-
termining the recursive, reordering and phrase-pair
segmenting structure of translation, as in Figure 4.
Given σ, the phrase-pair emission part merely gener-
ates the phrase-pairs utilising distributions from ev-
ery NTP to the phrase-pairs that it covers, thereby
defining a model over all sentence-pairs generated
given each translation structure. The probabilities of
a derivation and of a sentence-pair are then as fol-
lows:

p(D) =p(σ)p(e, f |σ) (1)

p(e, f) =
∑

D:D
∗⇒〈e,f〉

p(D) (2)

By splitting the joint model in a hierarchical struc-
ture model and a lexical emission one we facilitate
estimating the two models separately. The following
section discusses this.

3 Learning Translation Structure

3.1 Phrase-Pair Label Chart
The input to our learning algorithm is a word-
aligned parallel corpus. We consider as phrase-
pair spans those that obey the word-alignment con-
straints of (Koehn et al., 2003). For every train-
ing sentence-pair, we also input a chart containing
one or more labels for every synchronous span, such
as that of Figure 3. Each label describes differ-
ent properties of the phrase pair (syntactic, semantic
etc.), possibly in relation to its context, or supply-
ing varying levels of abstraction (phrase-pair, deter-
miner with noun, noun-phrase, sentence etc.). We
aim to induce a recursive translation structure ex-
plaining the joint generation of the source and target

sentence taking advantage of these phrase-pair span
labels.

For this work we employ the linguistically mo-
tivated labels of (Zollmann and Venugopal, 2006),
albeit for the source language. Given a parse of the
source sentence, each span is assigned the following
kind of labels:

Phrase-Pair All phrase-pairs are assigned the X
label

Constituent Source phrase is a constituent A

Concatenation of Constituents Source phrase la-
belled A+B as a concatenation of constituents A and
B, similarly for 3 constituents.

Partial Constituents Categorial grammar (Bar-
Hillel, 1953) inspired labels A/B, A\B, indicating
a partial constituent A missing constituent B right or
left respectively.

An important point is that we assign all applica-
ble labels to every span. In this way, each label set
captures the features of the source side’s parse-tree
without being bounded by the actual parse structure,
as well as provides a coarse to fine-grained view of
the source phrase.

3.2 Grammar Extraction

From every word-aligned sentence-pair and its la-
bel chart, we extract SCFG rules as those of Figure
2. Binary rules are extracted from adjoining syn-
chronous spans up to the whole sentence-pair level,
with the non-terminals of both left and right-hand
side derived from the label names plus their reorder-
ing function (monotone, left/right swapping) in the
span examined. A single unary rule per non-terminal
NT generates the phrase-pair emitting NTP. Unary
rules NTP → α / β generating the phrase-pair are
created for all the labels covering it.

While we label the phrase-pairs similarly to (Zoll-
mann and Venugopal, 2006), the extracted grammar
is rather different. We do not employ rules that are
grounded to lexical context (‘gap’ rules), relying in-
stead on the reordering-aware non-terminal set and
related unary and binary rules. The result is a gram-
mar which can both capture a rich array of trans-
lation phenomena based on linguistic and lexical
grounds and explicitly model the balance between
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SBAR

WHNP

WHNPP

which
der

< SBAR\WHNP >

VP/NPL

VP/NPL
P

is
ist

NPR

NP

NPP

the solution
die Lösung

PP

PPP

to the problem
für das Problem

Figure 4: A derivation of a sentence fragment with the
grammar of Figure 1.

memorising long phrase-pairs and generalising over
yet unseen ones, as shown in the next example.

The derivation in Figure 4 illustrates some of the
formalism’s features. A preference to reorder based
on lexical content is applied for is / ist. Noun phrase
NPR is recursively constructed with a preference to
constitute the right branch of an order swapping non-
terminal expansion. This is matched with VP/NPL

which reorders in the opposite direction. The labels
VP/NP and SBAR\WHNP allow linguistic syntax
context to influence the lexical and reordering trans-
lation choices. Crucially, all these lexical, attach-
ment and reordering preferences (as encoded in the
model’s rules and probabilities) must be matched to-
gether to arrive at the analysis in Figure 4.

3.3 Parameter Estimation

We estimate the parameters for the phrase-emission
model p(e, f |σ) using Relative Frequency Estima-
tion (RFE) on the label charts induced for the train-
ing sentence-pairs, after the labels have been aug-
mented by the reordering indications. In the RFE
estimate, every rule NTP → α / β receives a prob-
ability in proportion with the times that α / β was
covered by the NT label.

On the other hand, estimating the parameters un-
der Maximum-Likelihood Estimation (MLE) for the
latent translation structure model p(σ) is bound to
overfit towards memorising whole sentence-pairs as
discussed in (Mylonakis and Sima’an, 2010), with
the resulting grammar estimate not being able to

generalise past the training data. However, apart
from overfitting towards long phrase-pairs, a gram-
mar with millions of structural rules is also liable to
overfit towards degenerate latent structures which,
while fitting the training data well, have limited ap-
plicability to unseen sentences.

We avoid both pitfalls by estimating the grammar
probabilities with the Cross-Validating Expectation-
Maximization algorithm (CV-EM) (Mylonakis and
Sima’an, 2008; Mylonakis and Sima’an, 2010). CV-
EM is a cross-validating instance of the well known
EM algorithm (Dempster et al., 1977). It works it-
eratively on a partition of the training data, climb-
ing the likelihood of the training data while cross-
validating the latent variable values, considering for
every training data point only those which can be
produced by models built from the rest of the data
excluding the current part. As a result, the estima-
tion process simulates maximising future data likeli-
hood, using the training data to directly aim towards
strong generalisation of the estimate.

For our probabilistic SCFG-based translation
structure variable σ, implementing CV-EM boils
down to a synchronous version of the Inside-Outside
algorithm, modified to enforce the CV criterion. In
this way we arrive at cross-validated ML estimate of
the σ parameters while keeping the phrase-emission
parameters of p(e, f |σ) fixed. The CV-criterion,
apart from avoiding overfitting, results in discarding
the structural rules which are only found in a single
part of the training corpus, leading to a more com-
pact grammar while still retaining millions of struc-
tural rules that are more hopeful to generalise.

Unravelling the joint generative process, by mod-
elling latent hierarchical structure separately from
phrase-pair emission, allows us to concentrate our
inference efforts towards the hidden, higher-level
translation mechanism.

4 Experiments

4.1 Decoding Model

The induced joint translation model can be used
to recover arg maxe p(e|f), as it is equal to
arg maxe p(e, f). We employ the induced proba-
bilistic HR-SCFG G as the backbone of a log-linear,
feature based translation model, with the derivation
probability p(D) under the grammar estimate being
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one of the features. This is augmented with a small
number n of additional smoothing features φi for
derivation rules r: (a) conditional phrase translation
probabilities, (b) lexical phrase translation probabil-
ities, (c) word generation penalty, and (d) a count
of swapping reordering operations. Features (a), (b)
and (c) are applicable to phrase-pair emission rules
and features for both translation directions are used,
while (d) is only triggered by structural rules.

These extra features assess translation quality past
the synchronous grammar derivation and learning
general reordering or word emission preferences
for the language pair. As an example, while our
probabilistic HR-SCFG maintains a separate joint
phrase-pair emission distribution per non-terminal,
the smoothing features (a) above assess the condi-
tional translation of surface phrases irrespective of
any notion of recursive translation structure.

The final feature is the language model score
for the target sentence, mounting up to the follow-
ing model used at decoding time, with the feature
weights λ trained by Minimum Error Rate Training
(MERT) (Och, 2003) on a development corpus.

p(D ∗⇒ 〈e, f〉) ∝ p(e)λlmpG(D)λG

n∏
i=1

∏
r∈D

φi(r)λi

4.2 Decoding Modifications

We use a customised version of the Joshua SCFG
decoder (Li et al., 2009) to translate, with the fol-
lowing modifications:

Source Labels Constraints As for this work the
phrase-pair labels used to extract the grammar are
based on the linguistic analysis of the source side,
we can construct the label chart for every input sen-
tence from its parse. We subsequently use it to con-
sider only derivations with synchronous spans which
are covered by non-terminals matching one of the
labels for those spans. This applies both for the non-
terminals covering phrase-pairs as well as the higher
level parts of the derivation.

In this manner we not only constrain the trans-
lation hypotheses resulting in faster decoding time,
but, more importantly, we may ground the hypothe-
ses more closely to the available linguistic informa-
tion of the source sentence. This is of particular
interest as we move up the derivation tree, where

an initial wrong choice below could propagate to-
wards hypotheses wildly diverging from the input
sentence’s linguistic annotation.

Per Non-Terminal Pruning The decoder uses a
combination of beam and cube-pruning (Huang and
Chiang, 2007). As our grammar uses non-terminals
in the hundreds of thousands, it is important not
to prune away prematurely non-terminals covering
smaller spans and to leave more options to be con-
sidered as we move up the derivation tree.

For this, for every cell in the decoder’s chart, we
keep a separate bin per non-terminal and prune to-
gether hypotheses leading to the same non-terminal
covering a cell. This allows full derivations to be
found for all input sentences, as well as avoids ag-
gressive pruning at an early stage. Given the source
label constraint discussed above, this does not in-
crease running times or memory demands consid-
erably as we allow only up to a few tens of non-
terminals per span.

Expected Counts Rule Pruning To compact the
hierarchical structure part of the grammar prior to
decoding, we prune rules that fail to accumulate
10−8 expected counts during the last CV-EM iter-
ation. For English to German, this brings the struc-
tural rules from 15M down to 1.2M. Note that we
do not prune the phrase-pair emitting rules. Over-
all, we consider this a much more informed pruning
criterion than those based on probability values (that
are not comparable across left-hand sides) or right-
hand side counts (frequent symbols need many more
expansions than a highly specialised one).

4.3 Experimental Setting & Baseline
We evaluate our method on four different lan-
guage pairs with English as the source language
and French, German, Dutch and Chinese as tar-
get. The data for the first three language pairs are
derived from parliament proceedings sourced from
the Europarl corpus (Koehn, 2005), with WMT-
07 development and test data for French and Ger-
man. The data for the English to Chinese task is
composed of parliament proceedings and news arti-
cles. For all language pairs we employ 200K and
400K sentence pairs for training, 2K for develop-
ment and 2K for testing (single reference per source
sentence). Both the baseline and our method decode
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Training English to French German Dutch Chinese
set size BLEU NIST BLEU NIST BLEU NIST BLEU NIST

200K josh-base 29.20 7.2123 18.65 5.8047 21.97 6.2469 22.34 6.5540
lts 29.43 7.2611** 19.10** 5.8714** 22.31* 6.2903* 23.67** 6.6595**

400K josh-base 29.58 7.3033 18.86 5.8818 22.25 6.2949 23.24 6.7402
lts 29.83 7.4000** 19.49** 5.9374** 22.92** 6.3727** 25.16** 6.9005**

Table 1: Experimental results for training sets of 200K and 400K sentence pairs. Statistically significant score im-
provements from the baseline at the 95% confidence level are labelled with a single star, at the 99% level with two.

with a 3-gram language model smoothed with modi-
fied Knesser-Ney discounting (Chen and Goodman,
1998), trained on around 1M sentences per target
language. The parses of the source sentences em-
ployed by our system during training and decod-
ing are created with the Charniak parser (Charniak,
2000).

We compare against a state-of-the-art hierarchi-
cal translation (Chiang, 2005) baseline, based on the
Joshua translation system under the default training
and decoding settings (josh-base). Apart of eval-
uating against a state-of-the-art system, especially
on the English-Chinese language pair, the compar-
ison has an added interesting aspect. The heuristi-
cally trained baseline takes advantage of ‘gap rules’
to reorder based on lexical context cues, but makes
very limited use of the hierarchical structure above
the lexical surface. In contrast, our method induces
a grammar with no such rules, relying on lexical
content and the strength of a higher level translation
structure instead.

4.4 Training & Decoding Details

To train our Latent Translation Structure (LTS) sys-
tem, we used the following settings. CV-EM cross-
validated on a 10-part partition of the training data
and performed 10 iterations. The structural rule
probabilities were initialised to uniform per left-
hand side.

The decoder does not employ any ‘glue grammar’
as is usual with hierarchical translation systems to
limit reordering up to a certain cut-off length. In-
stead, we rely on our LTS grammar to reorder and
construct the translation output up to the full sen-
tence length.

In summary, our system’s experimental pipeline is
as follows. All input sentences are parsed and label
charts are created from these parses. The Hierarchi-

cal Reordering SCFG is extracted and its parame-
ters are estimated employing CV-EM. The structural
rules of the estimate are pruned according to their
expected counts and smoothing features are added to
all rules. We train the feature weights under MERT
and decode with the resulting log-linear model.

The overall training and decoding setup is appeal-
ing also regarding computational demands. On an
8-core 2.3GHz system, training on 200K sentence-
pairs demands 4.5 hours while decoding runs on 25
sentences per minute.

4.5 Results

Table 1 presents the results for the baseline and our
method for the 4 language pairs, for training sets of
both 200K and 400K sentence pairs. Our system
(lts) outperforms the baseline for all 4 language
pairs for both BLEU and NIST scores, by a margin
which scales up to +1.92 BLEU points for English to
Chinese translation when training on the 400K set.
In addition, increasing the size of the training data
from 200K to 400K sentence pairs widens the per-
formance margin between the baseline and our sys-
tem, in some cases considerably. All but one of the
performance improvements are found to be statis-
tically significant (Koehn, 2004) at the 95% confi-
dence level, most of them also at the 99% level.

We selected an array of target languages of
increasing reordering complexity with English as
source. Examining the results across the target lan-
guages, LTS performance gains increase the more
challenging the sentence structure of the target lan-
guage is in relation to the source’s, highlighted when
translating to Chinese. Even for Dutch and German,
which pose additional challenges such as compound
words and morphology which we do not explicitly
treat in the current system, LTS still delivers signif-
icant improvements in performance. Additionally,
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System 200K 400K

(a) lts-nolabels 22.50 24.24
lts 23.67** 25.16**

(b) josh-base-lm4 23.81 24.77
lts-lm4 24.48** 26.35**

Table 2: Additional experiments for English to Chi-
nese translation examining (a) the impact of the linguis-
tic annotations in the LTS system (lts), when com-
pared with an instance not employing such annotations
(lts-nolabels) and (b) decoding with a 4th-order
language model (-lm4). BLEU scores for 200K and
400K training sentence pairs.

the robustness of our system is exemplified by deliv-
ering significant performance increases for all lan-
guage pairs.

For the English to Chinese translation task, we
performed further experiments along two axes. We
first investigate the contribution of the linguistic
annotations, by comparing our complete system
(lts) with an otherwise identical implementation
(lts-nolabels) which does not employ any lin-
guistically motivated labels. The latter system then
uses a labels chart as that of Figure 3, which however
labels all phrase-pair spans solely with the generic
X label. The results in Table 2(a) indicate that a
large part of the performance improvement can be
attributed to the use of the linguistic annotations ex-
tracted from the source parse trees, indicating the
potential of the LTS system to take advantage of
such additional annotations to deliver better trans-
lations.

The second additional experiment relates to the
impact of employing a stronger language model dur-
ing decoding, which may increase performance but
slows down decoding speed. Notably, as can be seen
in Table 2(b), switching to a 4-gram LM results in
performance gains for both the baseline and our sys-
tem and while the margin between the two systems
decreases, our system continues to deliver a con-
siderable and significant improvement in translation
BLEU scores.

5 Related Work

In this work, we focus on the combination of
learning latent structure with syntax and linguistic
annotations, exploring the crossroads of machine

learning, linguistic syntax and machine translation.
Training a joint probability model was first dis-
cussed in (Marcu and Wong, 2002). We show that
a translation system based on such a joint model
can perform competitively in comparison with con-
ditional probability models, when it is augmented
with a rich latent hierarchical structure trained ade-
quately to avoid overfitting.

Earlier approaches for linguistic syntax-based
translation such as (Yamada and Knight, 2001; Gal-
ley et al., 2006; Huang et al., 2006; Liu et al., 2006)
focus on memorising and reusing parts of the struc-
ture of the source and/or target parse trees and con-
straining decoding by the input parse tree. In con-
trast to this approach, we choose to employ lin-
guistic annotations in the form of unambiguous syn-
chronous span labels, while discovering ambiguous
translation structure taking advantage of them.

Later work (Marton and Resnik, 2008; Venugopal
et al., 2009; Chiang et al., 2009) takes a more flex-
ible approach, influencing translation output using
linguistically motivated features, or features based
on source-side linguistically-guided latent syntactic
categories (Huang et al., 2010). A feature-based ap-
proach and ours are not mutually exclusive, as we
also employ a limited set of features next to our
trained model during decoding. We find augment-
ing our system with a more extensive feature set an
interesting research direction for the future.

An array of recent work (Chiang, 2010; Zhang et
al., 2008; Liu et al., 2009) sets off to utilise source
and target syntax for translation. While for this work
we constrain ourselves to source language syntax
annotations, our method can be directly applied to
employ labels taking advantage of linguistic annota-
tions from both sides of translation. The decoding
constraints of section 4.2 can then still be applied on
the source part of hybrid source-target labels.

For the experiments in this paper we employ a la-
bel set similar to the non-terminals set of (Zollmann
and Venugopal, 2006). However, the synchronous
grammars we learn share few similarities with those
that they heuristically extract. The HR-SCFG we
adopt allows capturing more complex reordering
phenomena and, in contrast to both (Chiang, 2005;
Zollmann and Venugopal, 2006), is not exposed to
the issues highlighted in section 2.1. Nevertheless,
our results underline the capacity of linguistic anno-
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tations similar to those of (Zollmann and Venugopal,
2006) as part of latent translation variables.

Most of the aforementioned work does concen-
trate on learning hierarchical, linguistically moti-
vated translation models. Cohn and Blunsom (2009)
sample rules of the form proposed in (Galley et al.,
2004) from a Bayesian model, employing Dirich-
let Process priors favouring smaller rules to avoid
overfitting. Their grammar is however also based
on the target parse-tree structure, with their system
surpassing a weak baseline by a small margin. In
contrast to the Bayesian approach which imposes
external priors to lead estimation away from degen-
erate solutions, we take a data-driven approach to
arrive to estimates which generalise well. The rich
linguistically motivated latent variable learnt by our
method delivers translation performance that com-
pares favourably to a state-of-the-art system.

Mylonakis and Sima’an (2010) also employ the
CV-EM algorithm to estimate the parameters of an
SCFG, albeit a much simpler one based on a hand-
ful of non-terminals. In this work we employ some
of their grammar design principles for an immensely
more complex grammar with millions of hierarchi-
cal latent structure rules and show how such gram-
mar can be learnt and applied taking advantage of
source language linguistic annotations.

6 Conclusions

In this work we contribute a method to learn and
apply latent hierarchical translation structure. To
this end, we take advantage of source-language lin-
guistic annotations to motivate instead of constrain
the translation process. An input chart over phrase-
pair spans, with each cell filled with multiple lin-
guistically motivated labels, is coupled with the HR-
SCFG design to arrive at a rich synchronous gram-
mar with millions of structural rules and the capacity
to capture complex linguistically conditioned trans-
lation phenomena. We address overfitting issues by
cross-validating climbing the likelihood of the train-
ing data and propose solutions to increase the effi-
ciency and accuracy of decoding.

An interesting aspect of our work is delivering
competitive performance for difficult language pairs
such as English-Chinese with a joint probability
generative model and an SCFG without ‘gap rules’.

Instead of employing hierarchical phrase-pairs, we
invest in learning the higher-order hierarchical syn-
chronous structure behind translation, up to the full
sentence length. While these choices and the related
results challenge current MT research trends, they
are not mutually exclusive with them. Future work
directions include investigating the impact of hierar-
chical phrases for our models as well as any gains
from additional features in the log-linear decoding
model.

Smoothing the HR-SCFG grammar estimates
could prove a possible source of further perfor-
mance improvements. Learning translation and re-
ordering behaviour with respect to linguistic cues
is facilitated in our approach by keeping separate
phrase-pair emission distributions per emitting non-
terminal and reordering pattern, while the employ-
ment of the generic X non-terminals already allows
backing off to more coarse-grained rules. Neverthe-
less, we still believe that further smoothing of these
sparse distributions, e.g. by interpolating them with
less sparse ones, could in the future lead to an addi-
tional increase in translation quality.

Finally, we discuss in this work how our method
can already utilise hundreds of thousands of phrase-
pair labels and millions of structural rules. A fur-
ther promising direction is broadening this set with
labels taking advantage of both source and target-
language linguistic annotation or categories explor-
ing additional phrase-pair properties past the parse
trees such as semantic annotations.
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