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Abstract

In this work, we tackle the task of ma-
chine translation (MT) without parallel train-
ing data. We frame the MT problem as a de-
cipherment task, treating the foreign text as
a cipher for English and present novel meth-
ods for training translation models from non-
parallel text.

1 Introduction

Bilingual corpora are a staple of statistical machine
translation (SMT) research. From these corpora,
we estimate translation model parameters: word-
to-word translation tables, fertilities, distortion pa-
rameters, phrase tables, syntactic transformations,
etc. Starting with the classic IBM work (Brown et
al., 1993), training has been viewed as a maximiza-
tion problem involving hidden word alignments (a)
that are assumed to underlie observed sentence pairs
(e, f ):

arg max
θ

∏
e,f

Pθ(f |e) (1)

= arg max
θ

∏
e,f

∑
a

Pθ(f, a|e) (2)

Brown et al. (1993) give various formulas that boil
Pθ(f, a|e) down to the specific parameters to be es-
timated.

Of course, for many language pairs and domains,
parallel data is not available. In this paper, we
address the problem of learning a full transla-
tion model from non-parallel data, and we use the

learned model to translate new foreign strings. As
successful work develops along this line, we expect
more domains and language pairs to be conquered
by SMT.

How can we learn a translation model from non-
parallel data? Intuitively, we try to construct trans-
lation model tables which, when applied to ob-
served foreign text, consistently yield sensible En-
glish. This is essentially the same approach taken by
cryptanalysts and epigraphers when they deal with
source texts.

In our case, we observe a large number of foreign
strings f , and we apply maximum likelihood train-
ing:

arg max
θ

∏
f

Pθ(f) (3)

Following Weaver (1955), we imagine that this cor-
pus of foreign strings “is really written in English,
but has been coded in some strange symbols,” thus:

arg max
θ

∏
f

∑
e

P (e) · Pθ(f |e) (4)

The variable e ranges over all possible English
strings, and P (e) is a language model built from
large amounts of English text that is unrelated to the
foreign strings. Re-writing for hidden alignments,
we get:

arg max
θ

∏
f

∑
e

P (e) ·
∑
a

Pθ(f, a|e) (5)

Note that this formula has the same free
Pθ(f, a|e) parameters as expression (2). We seek
to manipulate these parameters in order to learn the
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same full translation model. We note that for each
f , not only is the alignment a still hidden, but now
the English translation e is hidden as well.

A language model P (e) is typically used in SMT
decoding (Koehn, 2009), but here P (e) actually
plays a central role in training translation model pa-
rameters. To distinguish the two, we refer to (5) as
decipherment, rather than decoding.

We can now draw on previous decipherment
work for solving simpler substitution/transposition
ciphers (Bauer, 2006; Knight et al., 2006). We must
keep in mind, however, that foreign language is a
much more demanding code, involving highly non-
deterministic mappings and very large substitution
tables.

The contributions of this paper are therefore:

• We give first results for training a full transla-
tion model from non-parallel text, and we apply
the model to translate previously-unseen text.
This work is thus distinguished from prior work
on extracting or augmenting partial lexicons
using non-parallel corpora (Rapp, 1995; Fung
and McKeown, 1997; Koehn and Knight, 2000;
Haghighi et al., 2008). It also contrasts with
self-training (McClosky et al., 2006), which re-
quires a parallel seed and often does not engage
in iterative maximization.

• We develop novel methods to deal with large-
scale vocabularies inherent in MT problems.

2 Word Substitution Decipherment

Before we tackle machine translation without par-
allel data, we first solve a simpler problem—word
substitution decipherment. Here, we do not have to
worry about hidden alignments since there is only
one alignment. In a word substitution cipher, every
word in the natural language (plaintext) sequence is
substituted by a cipher token, according to a substi-
tution key. The key is deterministic—there exists a
1-to-1 mapping between cipher units and the plain-
text words they encode.

For example, the following English plaintext se-
quences:

I SAW THE BOY .
THE BOY RAN .

may be enciphered as:
xyzz fxyy crqq tmnz lxwz
crqq tmnz gdxx lxwz

according to the key:
THE → crqq, SAW → fxyy, RAN → gdxx,
. → lxwz, BOY → tmnz, I → xyzz

The goal of word substitution decipherment is to
guess the original plaintext from given cipher data
without any knowledge of the substitution key.

Word substitution decipherment is a good test-bed
for unsupervised statistical NLP techniques for two
reasons—(1) we face large vocabularies and corpora
sizes typically seen in large-scale MT problems, so
our methods need to scale well, (2) similar deci-
pherment techniques can be applied for solving NLP
problems such as unsupervised part-of-speech tag-
ging.

Probabilistic decipherment: Our decipherment
method follows a noisy-channel approach. We first
model the process by which the ciphertext sequence
c = c1...cn is generated. The generative story for
decipherment is described here:

1. Generate an English plaintext sequence e =
e1...en, with probability P (e).

2. Substitute each plaintext word ei with a cipher-
text token ci, with probability Pθ(ci|ei) in order
to generate the ciphertext sequence c = c1...cn.

We model P (e) using a statistical word n-gram
English language model (LM). During decipher-
ment, our goal is to estimate the channel model pa-
rameters θ. Re-writing Equations 3 and 4 for word
substitution decipherment, we get:

arg max
θ

∏
c

Pθ(c) (6)

= arg max
θ

∏
c

∑
e

P (e) ·
n∏
i=1

Pθ(ci|ei) (7)

Challenges: Unlike letter substitution ciphers
(having only 26 plaintext letters), here we have to
deal with large-scale vocabularies (10k-1M word
types) and corpora sizes (100k cipher tokens). This
poses some serious scalability challenges for word
substitution decipherment.
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We propose novel methods that can deal with
these challenges effectively and solve word substi-
tution ciphers:

1. EM solution: We would like to use the Expecta-
tion Maximization (EM) algorithm (Dempster
et al., 1977) to estimate θ from Equation 7, but
EM training is not feasible in our case. First,
EM cannot scale to such large vocabulary sizes
(running the forward-backward algorithm for
each iteration requires O(V 2) time). Secondly,
we need to instantiate the entire channel and re-
sulting derivation lattice before we can run EM,
and this is too big to be stored in memory. So,
we introduce a new training method (Iterative
EM) that fixes these problems.

2. Bayesian decipherment: We also propose a
novel decipherment approach using Bayesian
inference. Typically, Bayesian inference is very
slow when applied to such large-scale prob-
lems. Our method overcomes these challenges
and does fast, efficient inference using (a) a
novel strategy for selecting sampling choices,
and (b) a parallelized sampling scheme.

In the next two sections, we describe these meth-
ods in detail.

2.1 Iterative EM

We devise a method which overcomes memory and
running time efficiency issues faced by EM. Instead
of instantiating the entire channel model (with all its
parameters), we iteratively train the model in small
steps. The training procedure is described here:

1. Identify the top K frequent word types in both
the plaintext and ciphertext data. Replace all
other word tokens with Unknown. Now, instan-
tiate a small channel with just (K + 1)2 pa-
rameters and use the EM algorithm to train this
model to maximize likelihood of cipher data.

2. Extend the plaintext and ciphertext vocabular-
ies from the previous step by adding the next
K most frequent word types (so the new vo-
cabulary size becomes 2K + 1). Regenerate
the plaintext and ciphertext data.

3. Instantiate a new (2K+1)× (2K+1) channel
model. From the previous EM-trained channel,
identify all the e → c mappings that were as-
signed a probability P (c|e) > 0.5. Fix these
mappings in the new channel, i.e. set P (c|e) =
1.0. From the new channel, eliminate all other
parameters e → cj associated with the plain-
text word type e (where cj 6= c). This yields a
much smaller channel with size < (2K + 1)2.
Retrain the new channel using EM algorithm.

4. Goto Step 2 and repeat the procedure, extend-
ing the channel size iteratively in each stage.

Finally, we decode the given ciphertext c by using
the Viterbi algorithm to choose the plaintext decod-
ing e that maximizes P (e) · Pθtrained(c|e)3, stretch-
ing the channel probabilities (Knight et al., 2006).

2.2 Bayesian Decipherment

Bayesian inference methods have become popular
in natural language processing (Goldwater and Grif-
fiths, 2007; Finkel et al., 2005; Blunsom et al., 2009;
Chiang et al., 2010; Snyder et al., 2010). These
methods are attractive for their ability to manage un-
certainty about model parameters and allow one to
incorporate prior knowledge during inference.

Here, we propose a novel decipherment approach
using Bayesian learning. Our method holds sev-
eral other advantages over the EM approach—(1)
inference using smart sampling strategies permits
efficient training, allowing us to scale to large
data/vocabulary sizes, (2) incremental scoring of
derivations during sampling allows efficient infer-
ence even when we use higher-order n-gram LMs,
(3) there are no memory bottlenecks since the full
channel model and derivation lattice are never in-
stantiated during training, and (4) prior specification
allows us to learn skewed distributions that are useful
here—word substitution ciphers exhibit 1-to-1 cor-
respondence between plaintext and cipher types.

We use the same generative story as before for
decipherment, except that we use Chinese Restau-
rant Process (CRP) formulations for the source and
channel probabilities. We use an English word bi-
gram LM as the base distribution (P0) for the source
model and specify a uniform P0 distribution for the
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channel.1 We perform inference using point-wise
Gibbs sampling (Geman and Geman, 1984). We de-
fine a sampling operator that samples plaintext word
choices for every cipher token, one at a time. Using
the exchangeability property, we efficiently score
the probability of each derivation in an incremental
fashion. In addition, we make further improvements
to the sampling procedure which makes it faster.

Smart sample-choice selection: In the original
sampling step, for each cipher token we have to sam-
ple from a list of all possible plaintext choices (10k-
1M English words). There are 100k cipher tokens
in our data which means we have to perform ∼ 109

sampling operations to make one entire pass through
the data. We have to then repeat this process for
2000 iterations. Instead, we now reduce our choices
in each sampling step.

Say that our current plaintext hypothesis contains
English words X, Y and Z at positions i − 1, i and
i+1 respectively. In order to sample at position i, we
choose the topK English words Y ranked by P (X Y
Z), which can be computed offline from a statistical
word bigram LM. If this probability is 0 (i.e., X and
Z never co-occurred), we randomly pick K words
from the plaintext vocabulary. We set K = 100 in
our experiments. This significantly reduces the sam-
pling possibilities (10k-1M reduces to 100) at each
step and allows us to scale to large plaintext vocab-
ulary sizes without enumerating all possible choices
at every cipher position.2

Parallelized Gibbs sampling: Secondly, we paral-
lelize our sampling step using a Map-Reduce frame-
work. In the past, others have proposed parallelized
sampling schemes for topic modeling applications
(Newman et al., 2009). In our method, we split the
entire corpus into separate chunks and we run the
sampling procedure on each chunk in parallel. At

1For word substitution decipherment, we want to keep the
language model probabilities fixed during training, and hence
we set the prior on that model to be high (α = 104). We use a
sparse Dirichlet prior for the channel (β = 0.01). We use the
output from Iterative EM decoding (using 101 x 101 channel)
as initial sample and run the sampler for 2000 iterations. Dur-
ing sampling, we use a linear annealing schedule decreasing the
temperature from 1→ 0.08.

2Since we now sample from an approximate distribution, we
have to correct this with the Metropolis-Hastings algorithm. But
in practice we observe that samples from our proposal distribu-
tion are accepted with probability > 0.99, so we skip this step.

the end of each sampling iteration, we combine the
samples corresponding to each chunk and collect the
counts of all events—this forms our cache for the
next sampling iteration. In practice, we observe that
the parallelized sampling run converges quickly and
runs much faster than the conventional point-wise
sampling—for example, 3.1 hours (using 10 nodes)
versus 11 hours for one of the word substitution ex-
periments. We also notice a higher speedup when
scaling to larger vocabularies.3

Decoding the ciphertext: After the sampling run
has finished, we choose the final sample and ex-
tract a trained version of the channel model Pθ(c|e)
from this sample following the technique of Chi-
ang et al. (2010). We then use the Viterbi algo-
rithm to choose the English plaintext e that maxi-
mizes P (e) · Pθtrained(c|e)3.

2.3 Experiments and Results

Data: For the word substitution experiments, we use
two corpora:

• Temporal expression corpus containing short
English temporal expressions such as “THE
NEXT MONTH”, “THE LAST THREE
YEARS”, etc. The cipher data contains 5000
expressions (9619 tokens, 153 word types).
We also have access to a separate English
corpus (which is not parallel to the ciphertext)
containing 125k temporal expressions (242k
word tokens, 201 word types) for LM training.

• Transtac corpus containing full English sen-
tences. The data consists of 10k cipher sen-
tences (102k tokens, 3397 word types); and
a plaintext corpus of 402k English sentences
(2.7M word tokens, 25761 word types) for LM
training. We use all the cipher data for deci-
pherment training but evaluate on the first 1000
cipher sentences.

The cipher data was originally generated from En-
glish text by substituting each English word with a
unique cipher word. We use the plaintext corpus to

3Type sampling could be applied on top of our methods to
further optimize performance. But more complex problems like
MT do not follow the same principles (1-to-1 key mappings)
as seen in word substitution ciphers, which makes it difficult to
identify type dependencies.
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Method Decipherment Accuracy (%)
Temporal expr. Transtac

9k 100k
0. EM with 2-gram LM 87.8 Intractable
1. Iterative EM

with 2-gram LM 87.8 70.5 71.8
2. Bayesian

with 2-gram LM 88.6 60.1 80.0
with 3-gram LM 82.5

Figure 1: Comparison of word substitution decipherment
results using (1) Iterative EM, and (2) Bayesian method.
For the Transtac corpus, decipherment performance is
also shown for different training data sizes (9k versus
100k cipher tokens).

build an English word n-gram LM, which is used in
the decipherment process.

Evaluation: We compute the accuracy of a particu-
lar decipherment as the percentage of cipher tokens
that were correctly deciphered from the whole cor-
pus. We run the two methods (Iterative EM4 and
Bayesian) and then compare them in terms of word
substitution decipherment accuracies.

Results: Figure 1 compares the word substitution
results from Iterative EM and Bayesian decipher-
ment. Both methods achieve high accuracies, de-
coding 70-90% of the two word substitution ciphers.
Overall, Bayesian decipherment (with sparse priors)
performs better than Iterative EM and achieves the
best results on this task. We also observe that both
methods benefit from better LMs and more (cipher)
training data. Figure 2 shows sample outputs from
Bayesian decipherment.

3 Machine Translation as a Decipherment
Task

We now turn to the problem of MT without par-
allel data. From a decipherment perspective, ma-
chine translation is a much more complex task than
word substitution decipherment and poses several
technical challenges: (1) scalability due to large
corpora sizes and huge translation tables, (2) non-
determinism in translation mappings (a word can
have multiple translations), (3) re-ordering of words

4For Iterative EM, we start with a channel of size 101x101
(K=100) and in every pass we iteratively increase the vocabu-
lary sizes by 50, repeating the training procedure until the chan-
nel size becomes 351x351.

C: 3894 9411 4357 8446 5433
O: a diploma that’s good .
D: a fence that’s good .
C: 8593 7932 3627 9166 3671
O: three families living here ?
D: three brothers living here ?
C: 6283 8827 7592 6959 5120 6137 9723 3671
O: okay and what did they tell you ?
D: okay and what did they tell you ?
C: 9723 3601 5834 5838 3805 4887 7961 9723 3174 4518

9067 4488 9551 7538 7239 9166 3671
O: you mean if we come to see you in the afternoon after

five you’ll be here ?
D: i mean if we come to see you in the afternoon after thirty

you’ll be here ?
...

Figure 2: Comparison of the original (O) English plain-
text with output from Bayesian word substitution deci-
pherment (D) for a few samples cipher (C) sentences
from the Transtac corpus.

or phrases, (4) a single word can translate into a
phrase, and (5) insertion/deletion of words.

Problem Formulation: We formulate the MT de-
cipherment problem as—given a foreign text f (i.e.,
foreign word sequences f1...fm) and a monolingual
English corpus, our goal is to decipher the foreign
text and produce an English translation.

Probabilistic decipherment: Unlike parallel train-
ing, here we have to estimate the translation model
Pθ(f |e) parameters using only monolingual data.
During decipherment training, our objective is to es-
timate the model parameters θ in order to maximize
the probability of the foreign corpus f . From Equa-
tion 4 we have:

arg max
θ

∏
f

∑
e

P (e) · Pθ(f |e)

For P (e), we use a word n-gram LM trained on
monolingual English data. We then estimate param-
eters of the translation model Pθ(f |e) during train-
ing. Next, we present two novel decipherment ap-
proaches for MT training without parallel data.

1. EM Decipherment: We propose a new transla-
tion model for MT decipherment which can be
efficiently trained using the EM algorithm.

2. Bayesian Decipherment: We introduce a novel
method for estimating IBM Model 3 parame-
ters without parallel data, using Bayesian learn-
ing. Unlike EM, this method does not face any
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memory issues and we use sampling to perform
efficient inference during training.

3.1 EM Decipherment

For the translation model Pθ(f |e), we would like
to use a well-known statistical model such as IBM
Model 3 and subsequently train it using the EM
algorithm. But without parallel training data, EM
training for IBM Model 3 becomes intractable due
to (1) scalability and efficiency issues because of
large-sized fertility and distortion parameter tables,
and (2) the resulting derivation lattices become too
big to be stored in memory.

Instead, we propose a simpler generative story for
MT without parallel data. Our model accounts for
(word) substitutions, insertions, deletions and local
re-ordering during the translation process but does
not incorporate fertilities or global re-ordering. We
describe the generative process here:

1. Generate an English string e = e1...el, with
probability P (e).

2. Insert a NULL word at any position in the En-
glish string, with uniform probability.

3. For each English word token ei (including
NULLs), choose a foreign word translation fi,
with probability Pθ(fi|ei). The foreign word
may be NULL.

4. Swap any pair of adjacent foreign words
fi−1, fi, with probability Pθ(swap). We set
this value to 0.1.

5. Output the foreign string f = f1...fm, skipping
over NULLs.

We use the EM algorithm to estimate all the pa-
rameters θ in order to maximize likelihood of the
foreign corpus. Finally, we use the Viterbi algo-
rithm to decode the foreign sentence f and pro-
duce an English translation e that maximizes P (e) ·
Pθtrained(f |e).

Linguistic knowledge for decipherment: To help
limit translation model size and deal with data spar-
sity problem, we use prior linguistic knowledge. We
use identity mappings for numeric values (for ex-
ample, “8” maps to “8”), and we split nouns into

morpheme units prior to decipherment training (for
example, “YEARS”→ “YEAR” “+S”).

Whole-segment Language Models: When using
word n-gram models of English for decipherment,
we find that some of the foreign sentences are
decoded into sequences (such as “THANK YOU
TALKING ABOUT ?”) that are not good English.
This stems from the fact that n-gram LMs have no
global information about what constitutes a valid
English segment. To learn this information auto-
matically, we build a P (e) model that only recog-
nizes English whole-segments (entire sentences or
expressions) observed in the monolingual training
data. We then use this model (in place of word n-
gram LMs) for decipherment training and decoding.

3.2 Bayesian Method

Brown et al. (1993) provide an efficient algorithm
for training IBM Model 3 translation model when
parallel sentence pairs are available. But we wish
to perform IBM Model 3 training under non-parallel
conditions, which is intractable using EM training.
Instead, we take a Bayesian approach.

Following Equation 5, we represent the transla-
tion model as Pθ(f, a|e) in terms of hidden align-
ments a. Recall the generative story for IBM Model
3 translation which has the following formula:

Pθ(f, a|e) =
l∏

i=0

tθ(faj |ei) ·
l∏

i=1

nθ(φi|ei)

·
m∏

aj 6=0,j=1

dθ(aj |i, l,m) ·
l∏

i=0

φi!

· 1
φ0!
·
(
m− φ0

φ0

)
·pφ0

1θ
· pm−2φ0

0θ
(8)

The alignment a is represented as a vector; aj = i
implies that the foreign word fj is produced by the
English word ei during translation.

Bayesian Formulation: Our goal is to learn the
probability tables t (translation parameters) n (fer-
tility parameters), d (distortion parameters), and p
(English NULL word probabilities) without parallel
data. In order to apply Bayesian inference for de-
cipherment, we model each of these tables using a
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Chinese Restaurant Process (CRP) formulation. For
example, to model the translation probabilities, we
use the formula:

tθ(fj |ei) =
α · P0(fj |ei) + Chistory(ei, fj)

α+ Chistory(ei)
(9)

where, P0 represents the base distribution (which
is set to uniform) and Chistory represents the count
of events occurring in the history (cache). Similarly,
we use CRP formulations for the other probabilities
(n, d and p). We use sparse Dirichlet priors for all
these models (i.e., low values for α) and plug these
probabilities into Equation 8 to get Pθ(f, a|e).

Sampling IBM Model 3: We use point-wise Gibbs
sampling to estimate the IBM Model 3 parameters.
The sampler is seeded with an initial English sample
translation and a corresponding alignment for every
foreign sentence. We define several sampling oper-
ators, which are applied in sequence one after the
other to generate English samples for the entire for-
eign corpus. Some of the sampling operators are de-
scribed below:

• TranslateWord(j): Sample a new English word
translation for foreign word fj , from all possi-
bilities (including NULL).

• SwapSegment(i1, i2): Swap the alignment
links for English words ei1 and ei2 .

• JoinWords(i1, i2): Eliminate the English word
ei1 and transfer its links to the word ei2 .

During sampling, we apply each of these opera-
tors to generate a new derivation e, a for the foreign
text f and compute its score as P (e) · Pθ(f, a|e).
These small-change operators are similar to the
heuristic techniques used for greedy decoding by
German et al. (2001). But unlike the greedy method,
which can easily get stuck, our Bayesian approach
guarantees that once the sampler converges we will
be sampling from the true posterior distribution.

As with Bayesian decipherment for word sub-
stitution, we compute the probability of each new
derivation incrementally, which makes sampling ef-
ficient. We also apply blocked sampling on top
of point-wise sampling—we treat all occurrences
of a particular foreign sentence as a single block
and sample a single derivation for the entire block.

We also parallelize the sampling procedure (as de-
scribed in Section 2.2).5

Choosing the best translation: Once the sampling
run finishes, we select the final sample and extract
the corresponding English translations for every for-
eign sentence. This yields the final decipherment
output.

3.3 MT Experiments and Results
Data: We work with the Spanish/English language
pair and use the following corpora in our MT exper-
iments:

• Time corpus: We mined English newswire
text on the Web and collected 295k tempo-
ral expressions such as “LAST YEAR”, “THE
FOURTH QUARTER”, “IN JAN 1968”, etc.
We first process the data and normalize num-
bers and names of months/weekdays—for ex-
ample, “1968” is replaced with “NNNN”,
“JANUARY” with “[MONTH]”, and so on. We
then translate the English temporal phrases into
Spanish using an automatic translation soft-
ware (Google Translate) followed by manual
annotation to correct mistakes made by the
software. We create the following splits out of
the resulting parallel corpus:

TRAIN (English): 195k temporal expressions
(7588 unique), 382k word tokens, 163 types.

TEST (Spanish): 100k temporal expressions
(2343 unique), 204k word tokens, 269 types.

• OPUS movie subtitle corpus: This is a large
open source collection of parallel corpora avail-
able for multiple language pairs (Tiedemann,
2009). We downloaded the parallel Span-
ish/English subtitle corpus which consists of
aligned Spanish/English sentences from a col-
lection of movie subtitles. For our MT ex-
periments, we select only Spanish/English sen-
tences with frequency > 10 and create the fol-
lowing train/test splits:

5For Bayesian MT decipherment, we set a high prior value
on the language model (104) and use sparse priors for the IBM 3
model parameters t, n, d, p (0.01, 0.01, 0.01, 0.01). We use the
output from EM decipherment as the initial sample and run the
sampler for 2000 iterations, during which we apply annealing
with a linear schedule (2→ 0.08).
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Method Decipherment Accuracy
Time expressions OPUS subtitles

1a. Parallel training (MOSES)
with 2-gram LM 5.6 (85.6) 26.8 (63.6)
with 5-gram LM 4.7 (88.0)

1b. Parallel training (IBM 3 without distortion)
with 2-gram LM 10.1 (78.9) 29.9 (59.6)

with whole-segment LM 9.0 (79.2)
2a. Decipherment (EM)

with 2-gram LM 37.6 (44.6) 67.2 (15.3)
with whole-segment LM 28.7 (48.7) 65.1 (19.3)

2b. Decipherment (Bayesian IBM 3)
with 2-gram LM 34.0 (30.2) 66.6 (15.1)

Figure 3: Comparison of Spanish/English MT performance on the Time and OPUS test corpora achieved by various
MT systems trained under (1) parallel—(a) MOSES, (b) IBM 3 without distortion, and (2) decipherment settings—
(a) EM, (b) Bayesian. The scores reported here are normalized edit distance values with BLEU scores shown in
parentheses.

TRAIN (English): 19770 sentences (1128
unique), 62k word tokens, 411 word types.

TEST (Spanish): 13181 sentences (1127
unique), 39k word tokens, 562 word types.

Both Spanish/English sides of TRAIN are used for
parallel MT training, whereas decipherment uses
only monolingual English data for training LMs.

MT Systems: We build and compare different MT
systems under two training scenarios:

1. Parallel training using: (a) MOSES, a phrase
translation system (Koehn et al., 2007) widely
used in MT literature, and (b) a simpler version
of IBM Model 3 (without distortion param-
eters) which can be trained tractably using the
strategy of Knight and Al-Onaizan (1998).

2. Decipherment without parallel data using:
(a) EM method (from Section 3.1), and (b)
Bayesian method (from Section 3.2).

Evaluation: All the MT systems are run on the
Spanish test data and the quality of the result-
ing English translations are evaluated using two
different measures—(1) Normalized edit distance
score (Navarro, 2001),6 and (2) BLEU (Papineni et

6When computing edit distance, we account for substitu-
tions, insertions, deletions as well as local-swap edit operations
required to convert a given English string into the (gold) refer-
ence translation.

al., 2002), a standard MT evaluation measure.

Results: Figure 3 compares the results of vari-
ous MT systems (using parallel versus decipherment
training) on the two test corpora in terms of edit dis-
tance scores (a lower score indicates closer match to
the gold translation). The figure also shows the cor-
responding BLEU scores in parentheses for compar-
ison (higher scores indicate better MT output).

We observe that even without parallel training
data, our decipherment strategies achieve MT accu-
racies comparable to parallel-trained systems. On
the Time corpus, the best decipherment (Method
2a in the figure) achieves an edit distance score of
28.7 (versus 4.7 for MOSES). Better LMs yield bet-
ter MT results for both parallel and decipherment
training—for example, using a segment-based En-
glish LM instead of a 2-gram LM yields a 24% re-
duction in edit distance and a 9% improvement in
BLEU score for EM decipherment.

We also investigate how the performance of dif-
ferent MT systems vary with the size of the training
data. Figure 4 plots the BLEU scores versus training
sizes for different MT systems on the Time corpus.
Clearly, using more training data yields better per-
formance for all systems. However, higher improve-
ments are observed when using parallel data in com-
parison to decipherment training which only uses
monolingual data. We also notice that the scores do
not improve much when going beyond 10,000 train-
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Figure 4: Comparison of training data size versus MT ac-
curacy in terms of BLEU score under different training
conditions: (1) Parallel training—(a) MOSES, (b) IBM
Model 3 without distortion, and (2) Decipherment with-
out parallel data using EM method (from Section 3.1).

ing instances for this domain.
It is interesting to quantify the value of parallel

versus non-parallel data for any given MT task. In
other words, “how much non-parallel data is worth
how much parallel data in order to achieve the same
MT accuracy?” Figure 4 provides a reasonable an-
swer to this question for the Spanish/English MT
task described here. We see that deciphering with
10k monolingual Spanish sentences yields the same
performance as training with around 200-500 paral-
lel English/Spanish sentence pairs. This is the first
attempt at such a quantitative comparison for MT
and our results are encouraging. We envision that
further developments in unsupervised methods will
help reduce this gap further.

4 Conclusion

Our work is the first attempt at doing MT with-
out parallel data. We discussed several novel deci-
pherment approaches for achieving this goal. Along
the way, we developed efficient training methods
that can deal with large-scale vocabularies and data
sizes. For future work, it will be interesting to see if
we can exploit both parallel and non-parallel data to
improve on both.
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