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Abstract

In this paper, with a belief that a language
model that embraces a larger context provides
better prediction ability, we present two ex-
tensions to standard n-gram language mod-
els in statistical machine translation: a back-
ward language model that augments the con-
ventional forward language model, and a mu-
tual information trigger model which captures
long-distance dependencies that go beyond
the scope of standard n-gram language mod-
els. We integrate the two proposed models
into phrase-based statistical machine transla-
tion and conduct experiments on large-scale
training data to investigate their effectiveness.
Our experimental results show that both mod-
els are able to significantly improve transla-
tion quality and collectively achieve up to 1
BLEU point over a competitive baseline.

1 Introduction

Language model is one of the most important
knowledge sources for statistical machine transla-
tion (SMT) (Brown et al., 1993). The standard
n-gram language model (Goodman, 2001) assigns
probabilities to hypotheses in the target language
conditioning on a context history of the preceding
n − 1 words. Along with the efforts that advance
translation models from word-based paradigm to
syntax-based philosophy, in recent years we have
also witnessed increasing efforts dedicated to ex-
tend standard n-gram language models for SMT. We
roughly categorize these efforts into two directions:
data-volume-oriented and data-depth-oriented.

In the first direction, more data is better. In or-
der to benefit from monolingual corpora (LDC news
data or news data collected from web pages) that
consist of billions or even trillions of English words,
huge language models are built in a distributed man-
ner (Zhang et al., 2006; Brants et al., 2007). Such
language models yield better translation results but
at the cost of huge storage and high computation.

The second direction digs deeply into monolin-
gual data to build linguistically-informed language
models. For example, Charniak et al. (2003) present
a syntax-based language model for machine transla-
tion which is trained on syntactic parse trees. Again,
Shen et al. (2008) explore a dependency language
model to improve translation quality. To some ex-
tent, these syntactically-informed language models
are consistent with syntax-based translation models
in capturing long-distance dependencies.

In this paper, we pursue the second direction with-
out resorting to any linguistic resources such as a
syntactic parser. With a belief that a language model
that embraces a larger context provides better pre-
diction ability, we learn additional information from
training data to enhance conventional n-gram lan-
guage models and extend their ability to capture
richer contexts and long-distance dependencies. In
particular, we integrate backward n-grams and mu-
tual information (MI) triggers into language models
in SMT.

In conventional n-gram language models, we look
at the preceding n − 1 words when calculating the
probability of the current word. We henceforth call
the previous n − 1 words plus the current word
as forward n-grams and a language model built
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on forward n-grams as forward n-gram language
model. Similarly, backward n-grams refer to the
succeeding n − 1 words plus the current word. We
train a backward n-gram language model on back-
ward n-grams and integrate the forward and back-
ward language models together into the decoder. In
doing so, we attempt to capture both the preceding
and succeeding contexts of the current word.

Different from the backward n-gram language
model, the MI trigger model still looks at previous
contexts, which however go beyond the scope of for-
ward n-grams. If the current word is indexed as wi,
the farthest word that the forward n-gram includes
is wi−n+1. However, the MI triggers are capable of
detecting dependencies between wi and words from
w1 to wi−n. By these triggers ({wk → wi}, 1 ≤
k ≤ i−n), we can capture long-distance dependen-
cies that are outside the scope of forward n-grams.

We integrate the proposed backward language
model and the MI trigger model into a state-of-
the-art phrase-based SMT system. We evaluate
the effectiveness of both models on Chinese-to-
English translation tasks with large-scale training
data. Compared with the baseline which only uses
the forward language model, our experimental re-
sults show that the additional backward language
model is able to gain about 0.5 BLEU points, while
the MI trigger model gains about 0.4 BLEU points.
When both models are integrated into the decoder,
they collectively improve the performance by up to
1 BLEU point.

The paper is structured as follows. In Section 2,
we will briefly introduce related work and show how
our models differ from previous work. Section 3 and
4 will elaborate the backward language model and
the MI trigger model respectively in more detail, de-
scribe the training procedures and explain how the
models are integrated into the phrase-based decoder.
Section 5 will empirically evaluate the effectiveness
of these two models. Section 6 will conduct an in-
depth analysis. In the end, we conclude in Section
7.

2 Related Work

Previous work devoted to improving language mod-
els in SMT mostly focus on two categories as we

mentioned before1: large language models (Zhang
et al., 2006; Emami et al., 2007; Brants et al., 2007;
Talbot and Osborne, 2007) and syntax-based lan-
guage models (Charniak et al., 2003; Shen et al.,
2008; Post and Gildea, 2008). Since our philoso-
phy is fundamentally different from them in that we
build contextually-informed language models by us-
ing backward n-grams and MI triggers, we discuss
previous work that explore these two techniques
(backward n-grams and MI triggers) in this section.

Since the context “history” in the backward lan-
guage model (BLM) is actually the future words
to be generated, BLM is normally used in a post-
processing where all words have already been gener-
ated or in a scenario where sentences are proceeded
from the ending to the beginning. Duchateau et al.
(2002) use the BLM score as a confidence measure
to detect wrongly recognized words in speech recog-
nition. Finch and Sumita (2009) use the BLM in
their reverse translation decoder where source sen-
tences are proceeded from the ending to the begin-
ning. Our BLM is different from theirs in that we ac-
cess the BLM during decoding (rather than after de-
coding) where source sentences are still proceeded
from the beginning to the ending.

Rosenfeld et al. (1994) introduce trigger pairs
into a maximum entropy based language model as
features. The trigger pairs are selected accord-
ing to their mutual information. Zhou (2004) also
propose an enhanced language model (MI-Ngram)
which consists of a standard forward n-gram lan-
guage model and an MI trigger model. The latter
model measures the mutual information of distance-
dependent trigger pairs. Our MI trigger model is
mostly inspired by the work of these two papers, es-
pecially by Zhou’s MI-Ngram model (2004). The
difference is that our model is distance-independent
and, of course, we are interested in an SMT problem
rather than a speech recognition one.

Raybaud et al. (2009) use MI triggers in their con-
fidence measures to assess the quality of translation
results after decoding. Our method is different from
theirs in the MI calculation and trigger pair selec-
tion. Mauser et al. (2009) propose bilingual triggers
where two source words trigger one target word to

1Language model adaptation is not very related to our work
so we ignore it.
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improve lexical choice of target words. Our analysis
(Section 6) show that our monolingual triggers can
also help in the selection of target words.

3 Backward Language Model

Given a sequence of words wm
1 = (w1...wm), a

standard forward n-gram language model assigns a
probability Pf (wm

1 ) to wm
1 as follows.

Pf (wm
1 ) =

m∏
i=1

P (wi|wi−1
1 ) ≈

m∏
i=1

P (wi|wi−1
i−n+1) (1)

where the approximation is based on the nth order
Markov assumption. In other words, when we pre-
dict the current word wi, we only consider the pre-
ceding n − 1 words wi−n+1...wi−1 instead of the
whole context history w1...wi−1.

Different from the forward n-gram language
model, the backward n-gram language model as-
signs a probability Pb(w

m
1 ) to wm

1 by looking at the
succeeding context according to

Pb(w
m
1 ) =

m∏
i=1

P (wi|wm
i+1) ≈

m∏
i=1

P (wi|wi+n−1
i+1 ) (2)

3.1 Training
For the convenience of training, we invert the or-
der in each sentence in the training data, i.e., from
the original order (w1...wm) to the reverse order
(wm...w1). In this way, we can use the same toolkit
that we use to train a forward n-gram language
model to train a backward n-gram language model
without any other changes. To be consistent with
training, we also need to reverse the order of trans-
lation hypotheses when we access the trained back-
ward language model2. Note that the Markov con-
text history of Eq. (2) is wi+n−1...wi+1 instead of
wi+1...wi+n−1 after we invert the order. The words
are the same but the order is completely reversed.

3.2 Decoding
In this section, we will present two algorithms
to integrate the backward n-gram language model
into two kinds of phrase-based decoders respec-
tively: 1) a CKY-style decoder that adopts bracket-
ing transduction grammar (BTG) (Wu, 1997; Xiong

2This is different from the reverse decoding in (Finch and
Sumita, 2009) where source sentences are reversed in the order.

et al., 2006) and 2) a standard phrase-based decoder
(Koehn et al., 2003). Both decoders translate source
sentences from the beginning of a sentence to the
ending. Wu (1996) introduce a dynamic program-
ming algorithm to integrate a forward bigram lan-
guage model with inversion transduction grammar.
His algorithm is then adapted and extended for inte-
grating forward n-gram language models into syn-
chronous CFGs by Chiang (2007). Our algorithms
are different from theirs in two major aspects

1. The string input to the algorithms is in a reverse
order.

2. We adopt a different way to calculate language
model probabilities for partial hypotheses so
that we can utilize incomplete n-grams.

Before we introduce the integration algorithms,
we define three functions P , L, and R on strings (in
a reverse order) over the English terminal alphabet
T . The function P is defined as follows.

P(wk...w1) = P (wk)...P (wk−n+2|wk...wk−n+3)︸ ︷︷ ︸
a

×
∏

1≤i≤k−n+1

P (wi|wi+n−1...wi+1)︸ ︷︷ ︸
b

(3)

This function consists of two parts:

• The first part (a) calculates incomplete n-gram
language model probabilities for word wk to
wk−n+2. That means, we calculate the uni-
gram probability for wk (P (wk)), bigram prob-
ability for wk−1 (P (wk−1|wk)) and so on un-
til we take n − 1-gram probability for wk−n+2

(P (wk−n+2|wk...wk−n+3)). This resembles
the way in which the forward language model
probability in the future cost is computed in
the standard phrase-based SMT (Koehn et al.,
2003).

• The second part (b) calculates complete n-
gram backward language model probabilities
for word wk−n+1 to w1.

The function is different from Chiang’s p func-
tion in that his function p only calculates language
model probabilities for the complete n-grams. Since
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we calculate backward language model probabilities
during a beginning-to-ending (left-to-right) decod-
ing process, the succeeding context for the current
word is either yet to be generated or incomplete in
terms of n-grams. The P function enables us to
utilize incomplete succeeding contexts to approxi-
mately predict words. Once the succeeding con-
texts are complete, we can quickly update language
model probabilities in an efficient way in our algo-
rithms.

The other two functions L and R are defined as
follows

L(wk...w1) =

{
wk...wk−n+2, if k ≥ n
wk...w1, otherwise (4)

R(wk...w1) =

{
wn−1...w1, if k ≥ n
wk...w1, otherwise (5)

The L and R function return the leftmost and right-
most n − 1 words from a string in a reverse order
respectively.

Following Chiang (2007), we describe our algo-
rithms in a deductive system. We firstly show the
algorithm3 that integrates the backward language
model into a BTG-style decoder (Xiong et al., 2006)
in Figure 1. The item [A, i, j; l|r] indicates that a
BTG node A has been constructed spanning from i
to j on the source side with the leftmost|rightmost
n− 1 words l|r on the target side. As mentioned be-
fore, all target strings assessed by the defined func-
tions (P , L, and R) are in an inverted order (de-
noted by e). We only display the backward lan-
guage model probability for each item, ignoring all
other scores such as phrase translation probabilities.
The Eq. (8) in Figure 1 shows how we calculate
the backward language model probability for the ax-
iom which applies a BTG lexicon rule to translate
a source phrase c into a target phrase e. The Eq.
(9) and (10) show how we update the backward lan-
guage model probabilities for two inference rules
which combine two neighboring blocks in a straight
and inverted order respectively. The fundamental
theories behind this update are

P(e1e2) = P(e1)P(e2)
P(R(e2)L(e1))

P(R(e2))P(L(e1))
(6)

3It can also be easily adapted to integrate the forward n-
gram language model.

Function Value
e1 a1a2a3

e2 b1b2b3

R(e2) b2b1

L(e1) a3a2

P(R(e2)) P (b2)P (b1|b2)
P(L(e1)) P (a3)P (a2|a3)
P(e1) P (a3)P (a2|a3)P (a1|a3a2)
P(e2) P (b3)P (b2|b3)P (b1|b3b2)

P(R(e2)L(e1))
P (b2)P (b1|b2)
P (a3|b2b1)P (a2|b1a3)

P(e1e2)
P (b3)P (b2|b3)P (b1|b3b2)
P (a3|b2b1)P (a2|b1a3)P (a1|a3a2)

Table 1: Values of P , L, and R in a 3-gram example .

P(e2e1) = P(e1)P(e2)
P(R(e1)L(e2))

P(R(e1))P(L(e2))
(7)

Whenever two strings e1 and e2 are concatenated
in a straight or inverted order, we can reuse their
P values (P(e1) and P(e2)) in terms of dynamic
programming. Only the probabilities of boundary
words (e.g., R(e2)L(e1) in Eq. (6)) need to be re-
calculated since they have complete n-grams after
the concatenation. Table 1 shows values of P , L,
and R in a 3-gram example which helps to verify
Eq. (6). These two equations guarantee that our
algorithm can correctly compute the backward lan-
guage model probability of a sentence stepwise in a
dynamic programming framework.4

The theoretical time complexity of this algorithm
is O(m3|T |4(n−1)) because in the update parts in
Eq. (6) and (7) both the numerator and denomina-
tor have up to 2(n−1) terminal symbols. This is the
same as the time complexity of Chiang’s language
model integration (Chiang, 2007).

Figure 2 shows the algorithm that integrates the
backward language model into a standard phrase-
based SMT (Koehn et al., 2003). V denotes a cover-
age vector which records source words translated so
far. The Eq. (11) shows how we update the back-
ward language model probability for a partial hy-
pothesis when it is extended into a longer hypothesis
by a target phrase translating an uncovered source

4The start-of-sentence symbol ⟨s⟩ and end-of-sentence sym-
bol ⟨/s⟩ can be easily added to update the final language model
probability when a translation hypothesis covering the whole
source sentence is completed.
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A → c/e

[A, i, j;L(e)|R(e)] : P(e)
(8)

A → [A1, A2] [A1, i, k;L(e1)|R(e1)] : P(e1) [A2, k + 1, j;L(e2)|R(e2)] : P(e2)

[A, i, j;L(e1e2)|R(e1e2)] : P(e1)P(e2)
P(R(e2)L(e1))

P(R(e2))P(L(e1))

(9)

A → ⟨A1, A2⟩ [A1, i, k;L(e1)|R(e1)] : P(e1) [A2, k + 1, j;L(e2)|R(e2)] : P(e2)

[A, i, j;L(e2e1)|R(e2e1)] : P(e1)P(e2)
P(R(e1)L(e2))

P(R(e1))P(L(e2))

(10)

Figure 1: Integrating the backward language model into a BTG-style decoder.

[V;L(e1)] : P(e1) c/e2 : P(e2)

[V ′;L(e1e2)] : P(e1)P(e2)
P(R(e2)L(e1))

P(R(e2))P(L(e1))

(11)

Figure 2: Integrating the backward language model into
a standard phrase-based decoder.

segment. This extension on the target side is simi-
lar to the monotone combination of Eq. (9) in that a
newly translated phrase is concatenated to an early
translated sequence.

4 MI Trigger Model

It is well-known that long-distance dependencies be-
tween words are very important for statistical lan-
guage modeling. However, n-gram language models
can only capture short-distance dependencies within
an n-word window. In order to model long-distance
dependencies, previous work such as (Rosenfeld et
al., 1994) and (Zhou, 2004) exploit trigger pairs. A
trigger pair is defined as an ordered 2-tuple (x, y)
where word x occurs in the preceding context of
word y. It can also be denoted in a more visual man-
ner as x → y with x being the trigger and y the
triggered word5.

We use pointwise mutual information (PMI)
(Church and Hanks, 1990) to measure the strength
of the association between x and y, which is defined
as follows

PMI(x, y) = log(
P (x, y)

P (x)P (y)
) (12)

5In this paper, we require that word x and y occur in the
same sentence.

Zhou (2004) proposes a new language model en-
hanced with MI trigger pairs. In his model, the prob-
ability of a given sentence wm

1 is approximated as

P (wm
1 ) ≈(

m∏
i=1

P (wi|wi−1
i−n+1))

×
m∏

i=n+1

i−n∏
k=1

exp(PMI(wk, wi, i− k − 1))

(13)

There are two components in his model. The first
component is still the standard n-gram language
model. The second one is the MI trigger model
which multiples all exponential PMI values for trig-
ger pairs where the current word is the triggered
word and all preceding words outside the n-gram
window of the current word are triggers. Note that
his MI trigger model is distance-dependent since
trigger pairs (wk, wi) are sensitive to their distance
i− k− 1 (zero distance for adjacent words). There-
fore the distance between word x and word y should
be taken into account when calculating their PMI.

In this paper, for simplicity, we adopt a distance-
independent MI trigger model as follows

MI(wm
1 ) =

m∏
i=n+1

i−n∏
k=1

exp(PMI(wk, wi)) (14)

We integrate the MI trigger model into the log-
linear model of machine translation as an additional
knowledge source which complements the standard
n-gram language model in capturing long-distance
dependencies. By MERT (Och, 2003), we are even
able to tune the weight of the MI trigger model
against the weight of the standard n-gram language
model while Zhou (2004) sets equal weights for both
models.
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4.1 Training

We can use the maximum likelihood estimation
method to calculate PMI for each trigger pair by tak-
ing counts from training data. Let C(x, y) be the
co-occurrence count of the trigger pair (x, y) in the
training data. The joint probability of (x, y) is cal-
culated as

P (x, y) =
C(x, y)∑
x,y C(x, y)

(15)

The marginal probabilities of x and y can be de-
duced from the joint probability as follows

P (x) =
∑

y
P (x, y) (16)

P (y) =
∑

x
P (x, y) (17)

Since the number of distinct trigger pairs is
O(|T |2), the question is how to select valuable trig-
ger pairs. We select trigger pairs according to the
following three steps

1. The distance between x and y must not be less
than n− 1. Suppose we use a 5-gram language
model and y = wi , then x ∈ {w1...wi−5}.

2. C(x, y) > c. In all our experiments we set c =
10.

3. Finally, we only keep trigger pairs whose PMI
value is larger than 0. Trigger pairs whose PMI
value is less than 0 often contain stop words,
such as “the”, “a”. These stop words have very
large marginal probabilities due to their high
frequencies.

4.2 Decoding

The MI trigger model of Eq. (14) can be directly
integrated into the decoder. For the standard phrase-
based decoder (Koehn et al., 2003), whenever a par-
tial hypothesis is extended by a new target phrase,
we can quickly retrieve the pre-computed PMI value
for each trigger pair where the triggered word lo-
cates in the newly translated target phrase and the
trigger is outside the n-word window of the trig-
gered word. It’s a little more complicated to in-
tegrate the MI trigger model into the CKY-style

phrase-based decoder. But we still can handle it by
dynamic programming as follows

MI(e1e2) = MI(e1)MI(e2)MI(e1 → e2) (18)

where MI(e1 → e2) represents the PMI values in
which a word in e1 triggers a word in e2. It is defined
as follows

MI(e1 → e2) =
∏

wi∈e2

∏
wk∈e1
i−k≥n

exp(PMI(wk, wi))

(19)

5 Experiments

In this section, we conduct large-scale experiments
on NIST Chinese-to-English translation tasks to
evaluate the effectiveness of the proposed backward
language model and MI trigger model in SMT. Our
experiments focus on the following two issues:

1. How much improvements can we achieve by
separately integrating the backward language
model and the MI trigger model into our
phrase-based SMT system?

2. Can we obtain a further improvement if we
jointly apply both models?

5.1 System Overview
Without loss of generality6, we evaluate our models
in a phrase-based SMT system which adapts brack-
eting transduction grammars to phrasal translation
(Xiong et al., 2006). The log-linear model of this
system can be formulated as

w(D) =MT (rl
1..nl

) ·MR(rm
1..nm

)λR

· PfL(e)λfL · exp(|e|)λw
(20)

where D denotes a derivation, rl
1..nl

are the BTG
lexicon rules which translate source phrases to tar-
get phrases, and rm

1..nm
are the merging rules which

combine two neighboring blocks into a larger block
in a straight or inverted order. The translation
model MT consists of widely used phrase and lex-
ical translation probabilities (Koehn et al., 2003).

6We have discussed how to integrate the backward language
model and the MI trigger model into the standard phrase-based
SMT system (Koehn et al., 2003) in Section 3.2 and 4.2 respec-
tively.
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The reordering model MR predicts the merging or-
der (straight or inverted) by using discriminative
contextual features (Xiong et al., 2006). PfL is the
standard forward n-gram language model.

If we simultaneously integrate both the backward
language model PbL and the MI trigger model MI
into the system, the new log-linear model will be
formulated as

w(D) =MT (rl
1..nl

) ·MR(rm
1..nm

)λR · PfL(e)λfL

· PbL(e)λbL ·MI(e)λMI · exp(|e|)λw
(21)

5.2 Experimental Setup
Our training corpora7 consist of 96.9M Chinese
words and 109.5M English words in 3.8M sentence
pairs. We used all corpora to train our translation
model and smaller corpora without the United Na-
tions corpus to build a maximum entropy based re-
ordering model (Xiong et al., 2006).

To train our language models and MI trigger
model, we used the Xinhua section of the En-
glish Gigaword corpus (306 million words). Firstly,
we built a forward 5-gram language model using
the SRILM toolkit (Stolcke, 2002) with modified
Kneser-Ney smoothing. Then we trained a back-
ward 5-gram language model on the same monolin-
gual corpus in the way described in Section 3.1. Fi-
nally, we trained our MI trigger model still on this
corpus according to the method in Section 4.1. The
trained MI trigger model consists of 2.88M trigger
pairs.

We used the NIST MT03 evaluation test data as
the development set, and the NIST MT04, MT05 as
the test sets. We adopted the case-insensitive BLEU-
4 (Papineni et al., 2002) as the evaluation metric,
which uses the shortest reference sentence length for
the brevity penalty. Statistical significance in BLEU
differences is tested by paired bootstrap re-sampling
(Koehn, 2004).

5.3 Experimental Results
The experimental results on the two NIST test sets
are shown in Table 2. When we combine the back-
ward language model with the forward language

7LDC2004E12, LDC2004T08, LDC2005T10,
LDC2003E14, LDC2002E18, LDC2005T06, LDC2003E07
and LDC2004T07.

Model MT-04 MT-05
Forward (Baseline) 35.67 34.41
Forward+Backward 36.16+ 34.97+
Forward+MI 36.00+ 34.85+
Forward+Backward+MI 36.76+ 35.12+

Table 2: BLEU-4 scores (%) on the two test sets for dif-
ferent language models and their combinations. +: better
than the baseline (p < 0.01).

model, we obtain 0.49 and 0.56 BLEU points over
the baseline on the MT-04 and MT-05 test set respec-
tively. Both improvements are statistically signifi-
cant (p < 0.01). The MI trigger model also achieves
statistically significant improvements of 0.33 and
0.44 BLEU points over the baseline on the MT-04
and MT-05 respectively.

When we integrate both the backward language
model and the MI trigger model into our system,
we obtain improvements of 1.09 and 0.71 BLEU
points over the single forward language model on
the MT-04 and MT-05 respectively. These improve-
ments are larger than those achieved by using only
one model (the backward language model or the MI
trigger model).

6 Analysis

In this section, we will study more details of the two
models by looking at the differences that they make
on translation hypotheses. These differences will
help us gain some insights into how the presented
models improve translation quality.

Table 3 shows an example from our test set. The
italic words in the hypothesis generated by using the
backward language model (F+B) exactly match the
reference. However, the italic words in the base-
line hypothesis fail to match the reference due to
the incorrect position of the word “decree” (法令).
We calculate the forward/backward language model
score (the logarithm of language model probability)
for the italic words in both the baseline and F+B hy-
pothesis according to the trained language models.
The difference in the forward language model score
is only 1.58, which may be offset by differences in
other features in the log-linear translation model. On
the other hand, the difference in the backward lan-
guage model score is 3.52. This larger difference
may guarantee that the hypothesis generated by F+B
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Source 北京青年报报导 ,北京农业局最
近发出一连串的防治及监督法
令

Baseline Beijing Youth Daily reported that
Beijing Agricultural decree recently
issued a series of control and super-
vision

F+B Beijing Youth Daily reported that
Beijing Bureau of Agriculture re-
cently issued a series of prevention
and control laws

Reference Beijing Youth Daily reported that
Beijing Bureau of Agriculture re-
cently issued a series of preventative
and monitoring ordinances

Table 3: Translation example from the MT-04 test set,
comparing the baseline with the backward language
model. F+B: forward+backward language model .

is better enough to be selected as the best hypothe-
sis by the decoder. This suggests that the backward
language model is able to provide useful and dis-
criminative information which is complementary to
that given by the forward language model.

In Table 4, we present another example to show
how the MI trigger model improves translation qual-
ity. The major difference in hypotheses of this ex-
ample is the word choice between “is” and “was”.
The new system enhanced with the MI trigger model
(F+M) selects the former while the baseline selects
the latter. The forward language model score for the
baseline hypothesis is -26.41, which is higher than
the score of the F+M hypothesis -26.67. This could
be the reason why the baseline selects the word
“was” instead of “is”. As can be seen, there is an-
other “is” in the preceding context of the word “was”
in the baseline hypothesis. Unfortunately, this word
“is” is located just outside the scope of the preceding
5-gram context of “was”. The forward 5-gram lan-
guage model is hence not able to take it into account
when calculating the probability of “was”. However,
this is not a problem for the MI trigger model. Since
“is” and “was” rarely co-occur in the same sentence,
the PMI value of the trigger pair (is, was)8 is -1.03

8Since we remove all trigger pairs whose PMI value is neg-
ative, the PMI value of this pair (is, was) is set 0 in practice in
the decoder.

Source 自卫队此行之所以引人瞩目 ,是
因为它并非是一个孤立的事件
。

Baseline Self-Defense Force ’s trip is remark-
able , because it was not an isolated
incident .

F+M Self-Defense Force ’s trip is remark-
able , because it is not an isolated in-
cident .

Reference The Self-Defense Forces’ trip
arouses attention because it is not an
isolated incident.

Table 4: Translation example from the MT-04 test set,
comparing the baseline with the MI trigger model. Both
system outputs are not detokenized so that we can see
how language model scores are calculated. The un-
derlined words highlight the difference between the en-
hanced models and the baseline. F+M: forward language
model + MI trigger model.

while the PMI value of the trigger pair (is, is) is as
high as 0.32. Therefore our MI trigger model selects
“is” rather than “was”.9 This example illustrates that
the MI trigger model is capable of selecting correct
words by using long-distance trigger pairs.

7 Conclusion

We have presented two models to enhance the abil-
ity of standard n-gram language models in captur-
ing richer contexts and long-distance dependencies
that go beyond the scope of forward n-gram win-
dows. The two models have been integrated into
the decoder and have shown to improve a state-of-
the-art phrase-based SMT system. The first model
is the backward language model which uses back-
ward n-grams to predict the current word. We in-
troduced algorithms that directly integrate the back-
ward language model into a CKY-style and a stan-
dard phrase-based decoder respectively. The sec-
ond model is the MI trigger model that incorporates
long-distance trigger pairs into language modeling.

Overall improvements are up to 1 BLEU point on
the NIST Chinese-to-English translation tasks with
large-scale training data. Further study of the two

9The overall MI trigger model scores (the logarithm of Eq.
(14)) of the baseline hypothesis and the F+M hypothesis are
2.09 and 2.25 respectively.
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models indicates that backward n-grams and long-
distance triggers provide useful information to im-
prove translation quality.

In future work, we would like to integrate the
backward language model into a syntax-based sys-
tem in a way that is similar to the proposed algo-
rithm shown in Figure 1. We are also interested in
exploring more morphologically- or syntactically-
informed triggers. For example, a verb in the past
tense triggers another verb also in the past tense
rather than the present tense.
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