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Abstract 

This paper proposes a new discriminative 
training method in constructing phrase and 
lexicon translation models. In order to 
reliably learn a myriad of parameters in 
these models, we propose an expected 
BLEU score-based utility function with KL 
regularization as the objective, and train the 
models on a large parallel dataset. For 
training, we derive growth transformations 
for phrase and lexicon translation 
probabilities to iteratively improve the 
objective. The proposed method, evaluated 
on the Europarl German-to-English dataset, 
leads to a 1.1 BLEU point improvement 
over a state-of-the-art baseline translation 
system. In IWSLT 2011 Benchmark, our 
system using the proposed method achieves 
the best Chinese-to-English translation 
result on the task of translating TED talks.  

1. Introduction 

Discriminative training is an active area in 
statistical machine translation (SMT) (e.g., Och et 
al., 2002, 2003, Liang et al., 2006, Blunsom et al., 
2008, Chiang et al., 2009, Foster et al, 2010, Xiao 
et al. 2011). Och (2003) proposed using a log-
linear model to incorporate multiple features for 
translation, and proposed a minimum error rate 
training (MERT) method to train the feature 
weights to optimize a desirable translation metric.  

While the log-linear model itself is 
discriminative, the phrase and lexicon translation 
features, which are among the most important 
components of SMT, are derived from either 
generative models or heuristics (Koehn et al., 
2003, Brown et al., 1993). Moreover, the 

parameters in the phrase and lexicon translation 
models are estimated by relative frequency or 
maximizing joint likelihood, which may not 
correspond closely to the translation measure, e.g., 
bilingual evaluation understudy (BLEU) (Papineni 
et al., 2002). Therefore, it is desirable to train all 
these parameters to directly maximize an objective 
that directly links to translation quality. 

However, there are a large number of 
parameters in these models, making discriminative 
training for them non-trivial (e.g., Liang et al., 
2006, Chiang et al., 2009). Liang et al. (2006) 
proposed a large set of lexical and Part-of-Speech  
features and trained the model weights associated 
with these features using perceptron. Since many 
of the reference translations are non-reachable, an 
empirical local updating strategy had to be devised 
to fix this problem by picking a pseudo reference. 
Many such non-desirable heuristics led to 
moderate gains reported in that work. Chiang et al. 
(2009) improved a syntactic SMT system by 
adding as many as ten thousand syntactic features, 
and used Margin Infused Relaxed Algorithm 
(MIRA) to train the feature weights. However, the 
number of parameters in common phrase and 
lexicon translation models is much larger.  

In this work, we present a new, highly effective 
discriminative learning method for phrase and 
lexicon translation models. The training objective 
is an expected BLEU score, which is closely linked 
to translation quality. Further, we apply a 
Kullback–Leibler (KL) divergence regularization 
to prevent over-fitting. 

For effective optimization, we derive updating 
formulas of growth transformation (GT) for phrase 
and lexicon translation probabilities. A GT is a 
transformation of the probabilities that guarantees 
strict non-decrease of the objective over each GT 
iteration unless a local maximum is reached. A 
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similar GT technique has been successfully used in 
speech recognition (Gopalakrishnan et al., 1991, 
Povey, 2004, He et al., 2008). Our work 
demonstrates that it works with large scale 
discriminative training of SMT model as well. 

Our work is based on a phrase-based SMT 
system. Experiments on the Europarl German-to-
English dataset show that the proposed method 
leads to a 1.1 BLEU point improvement over a 
strong baseline. The proposed method is also 
successfully evaluated on the IWSLT 2011 
benchmark test set, where the task is to translate 
TED talks (www.ted.com). Our experimental 
results on this open-domain spoken language 
translation task show that the proposed method 
leads to significant translation performance 
improvement over a state-of-the-art baseline, and 
the system using the proposed method achieved the 
best single system translation result in the Chinese-
to-English MT track.  

2. Related Work 

One best known approach in discriminative 
training for SMT is proposed by Och (2003). In 
that work, multiple features, most of them are 
derived from generative models, are incorporated 
into a log-linear model, and the relative weights of 
them are tuned discriminatively on a small tuning 
set. However, in practice, this approach only works 
with a handful of parameters.  

More closely related to our work, Liang et al. 
(2006) proposed a large set of lexical and Part-of-
Speech features in addition to the phrase 
translation model. Weights of these features are 
trained using perceptron on a training set of 67K 
sentences. In that paper, the authors pointed out 
that forcing the model to update towards the 
reference translation could be problematic. This is 
because the hidden structure such as phrase 
segmentation and alignment could be abused if the 
system is forced to produce a reference translation. 
Therefore, instead of pushing the parameter update 
towards the reference translation (a.k.a. bold 
updating), the author proposed a local updating 
strategy where the model parameters are updated 
towards a pseudo-reference (i.e., the hypothesis in 
the n-best list that gives the best BLEU score). 
Experimental results showed that their approach 
outperformed a baseline by 0.8 BLEU point when 
using monotonic decoding, but there was no 

significant gain over a stronger baseline with a 
full-distortion model. In our work, we use the 
expectation of BLEU scores as the objective. This 
avoids the heuristics of picking the updating 
reference and therefore gives a more principal way 
of setting the training objective.  

As another closely related study, Chiang et al. 
(2009) incorporated about ten thousand syntactic 
features in addition to the baseline features. The 
feature weights are trained on a tuning set with 
2010 sentences using MIRA. In our work, we have 
many more parameters to train, and the training is 
conducted on the entire training corpora. Our GT 
based optimization algorithm is highly 
parallelizable and efficient, which is the key for 
large scale discriminative training. 

As a further related work, Rosti et al. (2011) 
have proposed using differentiable expected BLEU 
score as the objective to train system combination 
parameters. Other work related to the computation 
of expected BLEU in common with ours includes 
minimum Bayes risk approaches (Smith and Eisner 
2006, Tromble et al., 2008) and lattice-based 
MERT (Macherey et al., 2008). In these earlier work, 
however, the phrase and lexicon translation models 
used remained unchanged. 

Another line of research that is closely related to 
our work is phrase table refinement and pruning. 
Wuebker et al. (2010) proposed a method to train 
the phrase translation model using Expectation-
Maximization algorithm with a leave-one-out 
strategy. The parallel sentences were forced to be 
aligned at the phrase level using the phrase table 
and other features as in a decoding process. Then 
the phrase translation probabilities were estimated 
based on the phrase alignments. To prevent 
overfitting, the statistics of phrase pairs from a 
particular sentence was excluded from the phrase 
table when aligning that sentence. However, as 
pointed out by Liang et al (2006), the same 
problem as in the bold updating existed, i.e., forced 
alignment between a source sentence and its 
reference translation was tricky, and the proposed 
alignment was likely to be unreliable. The method 
presented in this paper is free from this problem. 

3. Phrase-based Translation System 

The translation process of phrase-based SMT can 
be briefly described in three steps: segment source 
sentence into a sequence of phrases, translate each 
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source phrase to a target phrase, re-order target 
phrases into target sentence (Koehn et al., 2003).  

In decoding, the optimal translation 𝐸 given the 
source sentence F is obtained according to  

 
𝐸 = argmax

!
𝑃 𝐸 𝐹  (1) 

where 
 

𝑃 𝐸 𝐹 =
1
𝑍
𝑒𝑥𝑝 𝜆!log   ℎ!(𝐸,𝐹)

!

 (2) 

 
and 𝑍 = 𝑒𝑥𝑝 𝜆!log   ℎ!(𝐸,𝐹)!!  is the 
normalization denominator to ensure that the 
probabilities sum to one. Note that we define the 
feature functions {ℎ!(𝐸,𝐹)}  in log domain to 
simplify the notation in later sections. Feature 
weights 𝛌 =    {𝜆!} are usually tuned by MERT. 

Features used in a phrase-based system usually 
include LM, reordering model, word and phrase 
counts, and phrase and lexicon translation models. 
Given the focus of this paper, we review only the 
phrase and lexicon translation models below.  

 
3.1. Phrase translation model 
A set of phrase pairs are extracted from word-
aligned parallel corpus according to phrase 
extraction rules (Koehn et al., 2003). Phrase 
translation probabilities are then computed as 
relative frequencies of phrases over the training 
dataset. i.e., the probability of translating a source 
phrase 𝑓 to a target phrase 𝑒 is computed by  

 

𝑝 𝑒 𝑓 =   
𝐶(𝑒, 𝑓)
𝐶(𝑓)

 (3) 

 
where 𝐶(𝑒, 𝑓) is the joint counts of 𝑒 and 𝑓, and 
𝐶(𝑓) is the marginal counts of 𝑓. 

In translation, the input sentence is segmented 
into K phrases, and the source-to-target forward 
phrase (FP) translation feature is scored as: 

 

ℎ!" 𝐸,𝐹 = 𝑝 𝑒! 𝑓!
!

 (4) 

 
where 𝑒! and 𝑓! are the k-th phrase in E and F, 
respectively.  The target-to-source (backward) 
phrase translation model is defined similarly.  
 

3.2. Lexicon translation model 
There are several variations in lexicon translation 
features (Ayan and Dorr 2006, Koehn et al., 2003, 
Quirk et al., 2005). We use the word translation 
table from IBM Model 1 (Brown et al., 1993) and 
compute the sum over all possible word alignments 
within a phrase pair without normalizing for length 
(Quirk et al., 2005). The source-to-target forward 
lexicon (FL) translation feature is: 
 

ℎ!" 𝐸,𝐹 = 𝑝 𝑒!,! 𝑓!,!
!!!

 (5) 

 
where 𝑒!,!  is the m-th word of the k-th target 
phrase 𝑒!,  𝑓!,! is the r-th word in the k-th source 
phrase 𝑓! , and 𝑝(𝑒!,!|𝑓!,!)  is the probability of 
translating word 𝑓!,! to word 𝑒!,!. In IBM model 
1, these probabilities are learned via maximizing a 
joint likelihood between the source and target 
sentences. The target-to-source (backward) lexicon 
translation model is defined similarly. 

4. Maximum Expected-BLEU Training  

4.1. Objective function 
We denote by 𝛉 the set of all the parameters to be 
optimized, including forward phrase and lexicon 
translation probabilities and their backward 
counterparts. For simplification of notation,   𝛉  is 
formed as a matrix, where its elements {𝜃!"} are 
probabilities subject to 𝜃!"! = 1. E.g., each row 
is a probability distribution.  

The utility function over the entire training set is 
defined as: 

    
𝑈(𝛉)   

=    𝑃𝛉(𝐸!,… ,𝐸!|𝐹!,… ,𝐹!) 𝐵𝐿𝐸𝑈(𝐸!,𝐸!∗)
!

!!!

  
!!,…,!!

  

(6) 
 

where N is the number of sentences in the training 
set, 𝐸!∗  is the reference translation of the n-th 
source sentence 𝐹!, and 𝐸! ∊ 𝐻𝑦𝑝(𝐹!) that denotes 
the list of translation hypotheses of 𝐹!. Since the 
sentences are independent with each other, the 
joint posterior can be decomposed: 

𝑃𝛉 𝐸!,… ,𝐸! 𝐹!,… ,𝐹! =    𝑃𝛉 𝐸! 𝐹!

!

!!!

   (7) 
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and 𝑃𝛉 𝐸! 𝐹!  is the posterior defined in (2), the 
subscript 𝛉 indicates that it is computed based on 
the parameter set 𝛉. 𝑈 𝛉  is proportional (with a 
factor of N) to the expected sentence BLEU score 
over the entire training set, i.e., after some algebra,  

𝑈(𝛉)   =    𝑃𝛉(𝐸!|𝐹!)𝐵𝐿𝐸𝑈(𝐸!,𝐸!∗)
!!

!

!!!

 

In a phrase-based SMT system, the total number 
of parameters of phrase and lexicon translation 
models, which we aim to learn discriminatively, is 
very large (see Table 1). Therefore, regularization 
is critical to prevent over-fitting. In this work, we 
regularize the parameters with KL regularization. 

KL divergence is commonly used to measure 
the distance between two probability distributions. 
For the whole parameter set 𝛉 , the KL 
regularization is defined in this work as the sum of 
KL divergence over the entire parameter space: 

 

𝐾𝐿(𝛉!||𝛉) = 𝜃!"! log
𝜃!"!

𝜃!"!!

 (8) 

 
where 𝛉!  is a constant prior parameter set. In 
training, we want to improve the utility function 
while keeping the changes of the parameters from 
𝛉! at minimum. Therefore, we design the objective 
function to be maximized as: 

 
𝑂 𝛉 = log𝑈 𝛉 − 𝜏 · 𝐾𝐿(𝛉!||𝛉)   (9) 

 
where the prior model 𝛉! in our approach is the 
relative-frequency-based phrase translation model 
and the maximum-likelihood-estimated IBM 
model 1 (word translation model). 𝜏 is a hyper-
parameter controlling the degree of regularization. 
 
 4.2. Optimization 
In this section, we derived GT formulas for 
iteratively updating the parameters so as to 
optimize objective (9). GT is based on extended 
Baum-Welch (EBW) algorithm first proposed by 
Gopalakrishnan et al. (1991) and commonly used 
in speech recognition (e.g., He et al. 2008). 
 
4.2.1. Extended Baum-Welch Algorithm 
Baum-Eagon inequality (Baum and Eagon, 1967) 
gives the GT formula to iteratively maximize 
positive-coefficient polynomials of random 

variables that are subject to sum-to-one constants. 
Baum-Welch algorithm is a model update 
algorithm for hidden Markov model which uses 
this GT. Gopalakrishnan et al. (1991) extended the 
algorithm to handle rational function, i.e., a ratio of 
two polynomials, which is more commonly 
encountered in discriminative training.  

Here we briefly review EBW. Assuming a set of 
random variables 𝐩 = {𝑝!"}  that subject to the 
constraint that 𝑝!"! = 1 , and assume 𝑔(𝐩)and 
ℎ(𝐩) are two positive polynomial functions of 𝐩 , a 
GT of 𝐩 for the rational function 𝑟 𝐩 = !(𝐩)

!(𝐩)
  can 

be obtained through the following two steps: 
 

i) Construct the auxiliary function: 
 

𝑓 𝐩 = 𝑔 𝐩 − 𝑟 𝐩! ℎ 𝐩  (10) 
 

where 𝐩! are the values from the previous iteration. 
Increasing f guarantees an increase of r, i.e.,  ℎ 𝐩  
> 0 and 𝑟 𝐩 − 𝑟 𝐩′ =    !

! 𝐩
𝑓 𝐩 − 𝑓 𝐩′ . 

 
ii) Derive GT formula for 𝑓 𝐩   

 

𝑝!" =
𝑝!"!

𝜕𝑓(𝐩)
𝜕𝑝!" 𝐩!𝐩!

+ 𝐷 ∙ 𝑝!"!

𝑝!"!
𝜕𝑓(𝐩)
𝜕𝑝!" 𝐩!𝐩!

! + 𝐷
     

(11) 

 
where D is a smoothing factor.  

 
4.2.2. GT of Translation Models 
Now we derive the GTs of translation models for 
our objective.  Since maximizing 𝑂 𝛉  is 
equivalent to maximizing 𝑒! 𝛉 , we have the 
following auxiliary function: 

 
𝑅 𝛉 = 𝑈(𝛉)𝑒!!·!"(𝛉!||𝛉)    (12) 

 
After substituting (2) and (7) into (6), and drop 

optimization irrelevant terms in KL regularization, 
we have 𝑅 𝛉  in a rational function form: 

 

𝑅 𝛉 =
𝐺 𝛉 · 𝐽 𝛉
𝐻(𝛉)

    (13) 

where     𝐻 𝛉 = ℎ!
!! 𝐸!,𝐹!!

!
!!!   !!,…,!! , 

𝐽 𝛉 = 𝜃!"
!!!"

!

!!  , and 𝐺 𝛉 =  
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ℎ!
!! 𝐸!,𝐹!!

!
!!! 𝐵𝐿𝐸𝑈 𝐸!,𝐸!∗!

!!!   !!,…,!!  
are all positive polynomials of 𝛉. Therefore, we 
can follow the two steps of EBW to derive the GT 
formulas for 𝛉. 

If we denote by  𝑝!"  the probability of 
translating the source phrase i to the target phrase j. 
Then, the updating formula is (derivation omitted): 

 

𝑝!" =
𝛾!"(𝐸!, 𝑛, 𝑖, 𝑗)!!! + 𝑈 𝛉′ 𝜏!"𝑝!"! + 𝐷!𝑝!"!

𝛾!"(𝐸!, 𝑛, 𝑖, 𝑗)!!!! + 𝑈 𝛉′ 𝜏!" + 𝐷!
 

(14) 

where 𝜏!" = 𝜏/𝜆!" and 
 𝛾!" 𝐸!, 𝑛, 𝑖, 𝑗 =  𝑃𝛉! 𝐸! 𝐹!  ·    𝐵𝐿𝐸𝑈 𝐸!,𝐸!∗ −
𝑈! 𝛉′  · 𝟏(𝑓!,! = 𝑖, 𝑒!,! = 𝑗)! . In which 
𝑈! 𝛉′  takes a form similar to (6), but is the 
expected BLEU score for sentence n using models 
from the previous iteration. 𝑓!,! and 𝑒!,! are the k-
th phrases of 𝐹! and 𝐸!, respectively. 

The smoothing factor set of  𝐷! according to the 
Baum-Eagon inequality is usually far too large for 
practical use. In practice, one general guide of 
setting 𝐷!  is to make all updated value positive. 
Similar to (Povey 2004), we set 𝐷! by 

 

𝐷! = max  (0,−𝛾!"(𝐸!, 𝑛, 𝑖, 𝑗)
!!!!

)   (15) 

 
to ensure the denominator of (15) is positive. 
Further, we set a low-bound of 𝐷!  as 
max!{

! !!" !!,!,!,!!!!

!!"
! }  to guarantee the 

numerator to be positive. 
We denote by 𝑙!" the probability of translating 

the source word i to the target word j. Then 
following the same derivation, we get the updating 
formula for forward lexicon translation model: 

 

𝑙!" =
𝛾!"(𝐸!, 𝑛, 𝑖, 𝑗)!!! + 𝑈 𝛉′ 𝜏!"𝑙!"! + 𝐷!𝑙!"!

𝛾!"(𝐸!,𝐹!, 𝑖, 𝑗)!!!! + 𝑈 𝛉′ 𝜏!" + 𝐷!
 

(16) 

where 𝜏!" = 𝜏/𝜆!" and 
𝛾!" 𝐸!, 𝑛, 𝑖, 𝑗   =  𝑃𝛉! 𝐸! 𝐹!  ·    𝐵𝐿𝐸𝑈 𝐸!,𝐸!∗ −
𝑈! 𝛉′ · 𝟏(𝑒!,!,! = 𝑗)!! 𝛾 𝑛, 𝑘,𝑚, 𝑖 , and   
𝛾 𝑛, 𝑘,𝑚, 𝑖 = 𝟏(!!,!,!!!)!!(!!,!,!|!!,!,!)!

!!(!!,!,!|!!,!,!)!
, in which 

𝑓!,!,! and 𝑒!,!,! are the r-th and m-th word in the 
k-th phrase of the source sentence 𝐹! and the target 
hypothesis 𝐸!, respectively. Value of 𝐷!  is set in a 

way similar to (15). 
GTs for updating backward phrase and lexicon 

translation models can be derived in a similar way, 
and is omitted here. 
 
4.3. Implementation issues  
 
4.3.1. Normalizing 𝝀 
The posterior 𝑝𝛉! 𝐸! 𝐹!  in the model updating 
formula is computed according to (2). In decoding, 
only the relative values of 𝛌 matters. However, the 
absolute value will affect the posterior distribution, 
e.g., an overly large absolute value of 𝛌 would lead 
to a very sharp posterior distribution. In order to 
control the sharpness of the posterior distribution, 
we normalize 𝛌 by its L1 norm: 

 

𝜆! =
𝜆!
|𝜆!|!

  (17) 

 
4.3.2. Computing the sentence BLEU sore 
The commonly used BLEU-4 score is computed by 

 

𝐵𝐿𝐸𝑈-‐ 4 = BP ∙ exp
1
4

log𝑝!

!

!!!

   (18) 

 
In the updating formula, we need to compute the 
sentence-level 𝐵𝐿𝐸𝑈 𝐸!,𝐸!∗ . Since the matching 
count may be sparse at the sentence level, we 
smooth raw precisions of high-order n-grams by: 

 

𝑝! =
#(𝑛-‐𝑔𝑟𝑎𝑚  𝑚𝑎𝑡𝑐ℎ𝑒𝑑) + 𝜂 ∙ 𝑝!!

#(𝑛-‐𝑔𝑟𝑎𝑚) + 𝜂
   (19) 

 
where 𝑝!! is the prior value of 𝑝!, 𝜂 is a smoothing 
factor usually takes a value of 5 and  𝑝!! can be set 
by 𝑝!! = 𝑝!!! ∙ 𝑝!!! 𝑝!!!, for n = 3, 4. 𝑝! and 𝑝! 
are estimated empirically. Brevity penalty (BP) 
also plays a key role. Instead of clip it at 1, we use 
a non-clipped BP, 𝐵𝑃 = 𝑒(!!

!
!), for sentence-level 

BLEU1. We further scale the reference length, r, by 
a factor such that the total length of references on 
the training set equals that of the baseline output2.  
                                                             
1 This is to better approximate corpus-level BLEU, i.e., as 
discussed in (Chiang, et al., 2008), the per-sentence BP might 
effectively exceed unity in corpus-level BLEU computation. 
2  This is to focus the training on improving BLEU by 
improving n-gram match instead of by improving BP, e.g., this 
makes the BP of the baseline output already being perfect. 
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4.3.3. Training procedure 
The parameter set θ is optimized on the training set 
while the feature weights λ are tuned on a small 
tuning set3. Since θ and λ affect the training of 
each other, we train them in alternation. I.e., at 
each iteration, we first fix λ and update θ, then we 
re-tune λ given the new θ. Due to mismatch 
between training and tuning data, the training 
process might not always converge. Therefore, we 
need a validation set to determine the stop point of 
training. At the end, θ and λ that give the best 
score on the validation set are selected and applied 
to the test set. Fig. 1 gives a summary of the 
training procedure. Note that step 2 and 4 are 
parallelize-able across multiple processors.  
 

 
Figure 1. The max expected-BLEU training algorithm. 

5. Evaluation 

In evaluating the proposed method, we use two 
separate datasets. We first describe the 
experiments with the Europarl dataset (Koehn 
2002), followed by the experiments with the more 
recent IWSLT-2011 task (Federico et al., 2011). 
 
5.1 Experimental setup in the Europarl task 
In evaluating the proposed method, we use two 
separate datasets. First, we conduct experiments on 
the Europarl German-to-English dataset. The 
training corpus contains 751K sentence pairs, 21 
words per sentence on average. 2000 sentences are 
provided in the development set. We use the first 
1000 sentences for 𝛌  tuning, and the rest for 
validation. The test set consists of 2000 sentences.  

                                                             
3 Usually, the tuning set matches the test condition better, and 
therefore is preferable for λ tuning. 

To build the baseline phrase-based SMT system, 
we first perform word alignment on the training set 
using a hidden Markov model with lexicalized 
distortion (He 2007), then extract the phrase table 
from the word aligned bilingual texts (Koehn et al., 
2003). The maximum phrase length is set to four. 
Other models used in the baseline system include 
lexicalized ordering model, word count and phrase 
count, and a 3-gram LM trained on the English 
side of the parallel training corpus. Feature weights 
are tuned by MERT. A fast beam-search phrase-
based decoder (Moore and Quirk 2007) is used and 
the distortion limit is set to four. Details of the 
phrase and lexicon translation models are given in 
Table 1. This baseline achieves a BLEU score of 
26.22% on the test set. This baseline system is also 
used to generate a 100-best list of the training 
corpus during maximum expected BLEU training. 

 
     Translation model  # parameters 
Phrase models (fore. & back.)   9.2 M 
Lexicon model (IBM-1 src-to-tgt) 12.9 M 
Lexicon model (IBM-1 tgt-to-src) 11.9 M 

Table 1. Summary of phrase and lexicon translation 
models 

 
5.2 Experimental results on the Europarl task 
During training, we first tune the regularization 
factor τ based on the performance on the validation 
set. For simplicity reasons, the tuning of τ makes 
use of only the phrase translation models.  Table 2 
reports the BLEU scores and gains over the 
baseline given different values of τ. The results 
highlight the importance of regularization. While τ 
=       5×10!! gives the best score on the validation 
set, the gain is shown to be substantially reduced to 
merely 0.2 BLEU point when τ = 0, i.e., no 
regularization.  We set the optimal value of τ = 
5×10!! in all remaining experiments.  

 
Test on Validation Set 𝐵𝐿𝐸𝑈% Δ𝐵𝐿𝐸𝑈% 
Baseline 26.70 -- 
τ = 0 (no regularization) 26.91 +0.21 
τ =       1×10!! 27.31 +0.61 
τ =       5×10!! 27.44 +0.74 
τ = 10×10!! 27.27 +0.57 

Table 2. Results on degrees of regularizations. BLEU 
scores are reported on the validation set. Δ𝐵𝐿𝐸𝑈 
denotes the gain over the baseline. 

 
Fixing the optimal regularization factor τ, we 

then study the relationship between the expected 

1. Build the baseline system, estimate { θ, λ }. 
2. Decode N-best list for training corpus using 

the baseline system, compute 𝐵𝐿𝐸𝑈(𝐸!,𝐸!∗). 
3. set 𝛉′ = 𝛉, 𝛌! = 𝛌. 
4. Max expected BLEU training  

a. Go through the training set. 
i. Compute  𝑃𝛉!(𝐸!|𝐹!) and 𝑈!(𝛉′) . 

ii. Accumulate statistics {𝛾}. 
b. Update: 𝛉! →   𝛉 by one iteration of GT. 

5. MERT on the tuning set:  𝛌! → 𝛌. 
6. Test on the validation set using { θ, λ }. 
7. Go to step 3 unless training converges or 

reaches a certain number of iterations. 
8. Pick the best { θ, λ } on the validation set. 
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sentence-level BLEU (Exp. BLEU) score of N-best 
lists and the corpus-level BLEU score of 1-best 
translations. The conjectured close relationship 
between the two is important in justifying our use 
of the former as the training objective. Fig. 2 
shows these two scores on the training set over 
training iterations. Since the expected BLEU is 
affected by λ strongly, we fix the value of λ in 
order to make the expected BLEU comparable 
across different iterations. From Fig. 2 it is clear 
that the expected BLEU score correlates strongly 
with the real BLEU score, justifying its use as our 
training objective.  

     
   

Figure 2. Expected sentence BLEU and 1-best corpus 
BLEU on the 751K sentence of training data. 

 
Next, we study the effects of training the phrase 

translation probabilities and the lexicon translation 
probabilities according to the GT formulas 
presented in the preceding section. The break-
down results are shown in Table 3. Compared with 
the baseline, training phrase or lexicon models 
alone gives a gain of 0.7 and 0.5 BLEU points, 
respectively, on the test set. For a full training of 
both phrase and lexicon models, we adopt two 
learning schedules: update both models together at 
each iteration (simultaneously), or update them in 
two stages (two-stage), where the phrase models 
are trained first until reaching the best score on the 
validation set and then the lexicon models are 
trained. Both learning schedules give significant 
improvements over the baseline and also over 
training phrase or lexicon models alone. The two-
stage training of both models gives the best result 
of 27.33%, outperforming the baseline by 1.1 
BLEU points.  

More detail of the two-stage training is provided 
in Fig. 3, where BLEU scores in each stage are 
shown as a function of the GT training iteration. 
The phrase translation probabilities (PT) are 
trained alone in the first stage, shown in blue color. 
After five iterations, the BLEU score on the 
validation set reaches the peak value, with further 
iteration giving BLEU score fluctuation. Hence, 
we perform lexicon model (LEX) training starting 
from the sixth iteration with the corresponding 
BLEU scores shown in red color in Fig. 3. The 
BLEU score is further improved by 0.4 points after 
additional three iterations of training the lexicon 
models. In total, nine iterations are performed to 
complete the two-stage GT training of all phrase 
and lexicon models.  

 
BLEU (%) validation test 
Baseline 26.70 26.22 
Train phrase models alone 27.44 26.94* 
Train lexicon models alone 27.36 26.71 
Both models: simultaneously  27.65 27.13* 
Both models: two-stage 27.82 27.33* 

Table 3. Results on the Europarl German-to-English 
dataset. The BLEU measures from various settings of 
maximum expected BLEU training are compared with 
the baseline, where * denotes that the gain over the 
baseline is statistically significant with a significance 
level > 99%, measured by paired bootstrap resampling 
method proposed by Koehn (2004). 

             

 
 
Figure 3. BLEU scores on the validation set as a 
function of the GT training iteration in two-stage 
training of both the phrase translation models (PT) and 
the lexicon models (LEX). The BLEU scores on 
training phrase models are shown in blue, and on 
training lexicon models in red. 
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5.3 Experiments on the IWSLT2011 benchmark 
As the second evaluation task, we apply our new 
method described in this paper to the 2011 IWSLT 
Chinese-to-English machine translation benchmark 
(Federico et al., 2011). The main focus of the 
IWSLT2011 Evaluation is the translation of TED 
talks (www.ted.com). These talks are originally 
given in English. In the Chinese-to-English 
translation task, we are provided with human 
translated Chinese text with punctuations inserted. 
The goal is to match the human transcribed English 
speech with punctuations.  

This is an open-domain spoken language 
translation task. The training data consist of 110K 
sentences in the transcripts of the TED talks and 
their translations, in English and Chinese, 
respectively. Each sentence consists of 20 words 
on average. Two development sets are provided, 
namely, dev2010 and tst2010. They consist of 934 
sentences and 1664 sentences, respectively. We 
use dev2010 for λ tuning and tst2010 for 
validation. The test set tst2011 consists of 1450 
sentences. 

In our system, a primary phrase table is trained 
from the 110K TED parallel training data, and a 3-
gram LM is trained on the English side of the 
parallel data. We are also provided additional out-
of-domain data for potential usage. From them, we 
train a secondary 5-gram LM on 115M sentences 
of supplementary English data, and a secondary 
phrase table from 500K sentences selected from 
the supplementary UN corpus by the method 
proposed by Axelrod et al. (2011).  

In carrying out the maximum expected BLEU 
training, we use 100-best list and tune the 
regularization factor to the optimal value of τ = 
1×10!! . We only train the parameters of the 
primary phrase table. The secondary phrase table 
and LM are excluded from the training process 
since the out-of-domain phrase table is less 
relevant to the TED translation task, and the large 
LM slows down the N-best generation process 
significantly.  

At the end, we perform one final MERT to tune 
the relative weights with all features including the 
secondary phrase table and LM.  

The translation results are presented in Table 4. 
The baseline is a phrase-based system with all 
features including the secondary phrase table and 
LM. The new system uses the same features except 
that the primary phrase table is discriminatively 

trained using maximum expected-BLEU and GT 
optimization as described earlier in this paper.   
The results are obtained using the two-stage 
training schedule, including six iterations for 
training phrase translation models and two 
iterations for training lexicon translation models. 
The results in Table 4 show that the proposed 
method leads to an improvement of 1.2 BLEU 
point over the baseline. This gives the best single 
system result on this task. 

 
BLEU (%) Validation Test 
Baseline 11.48 14.68 
Max expected  BLEU training 12.39 15.92 

Table 4. The translation results on IWSLT 2011 
MT_CE task.  

6. Summary  

The contributions of this work can be summarized 
as follows. First, we propose a new objective 
function (Eq. 9) for training of large-scale 
translation models, including phrase and lexicon 
models, with more parameters than all previous 
methods have attempted. The objective function 
consists of 1) the utility function of expected 
BLEU score, and 2) the regularization term taking 
the form of KL divergence in the parameter space. 
The expected BLEU score is closely linked to 
translation quality and the regularization is 
essential when many parameters are trained at 
scale. The importance of both is verified 
experimentally with the results presented in this 
paper.  

Second, through non-trivial derivation, we show 
that the novel objective function of Eq. (9) is 
amenable to iterative GT updates, where each 
update is equipped with a closed-form formula.  

Third, the new objective function and new 
optimization technique are successfully applied to 
two important machine translation tasks, with 
implementation issues resolved (e.g., training 
schedule and hyper-parameter tuning, etc.).  The 
superior results clearly demonstrate the 
effectiveness of the proposed algorithm. 
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