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Abstract

To date, most work in grammatical error cor-
rection has focused on targeting specific er-
ror types. We present a probe study into
whether we can use round-trip translations ob-
tained from Google Translate via 8 different
pivot languages for whole-sentence grammat-
ical error correction. We develop a novel
alignment algorithm for combining multiple
round-trip translations into a lattice using the
TERp machine translation metric. We further
implement six different methods for extract-
ing whole-sentence corrections from the lat-
tice. Our preliminary experiments yield fairly
satisfactory results but leave significant room
for improvement. Most importantly, though,
they make it clear the methods we propose
have strong potential and require further study.

1 Introduction

Given the large and growing number of non-native
English speakers around the world, detecting and
correcting grammatical errors in learner text cur-
rently ranks as one of the most popular educational
NLP applications. Previously published work has
explored the effectiveness of using round-trip ma-
chine translation (translating an English sentence
to some foreign language F, called the pivot, and
then translating the F language sentence back to En-
glish) for correcting preposition errors (Hermet and
Désilets, 2009). In this paper, we present a pilot
study that explores the effectiveness of extending

∗cf. Good Applications for Crummy Machine Translation.
Ken Church & Ed Hovy. Machine Translation, 8(4). 1993

this approach to whole-sentence grammatical error
correction.

Specifically, we explore whether using the con-
cept of round-trip machine translation via multi-
ple—rather than single—pivot languages has the po-
tential of correcting most, if not all, grammatical
errors present in a sentence. To do so, we de-
velop a round-trip translation framework using the
Google Translate API. Furthermore, we propose a
novel combination algorithm that can combine the
evidence present in multiple round-trip translations
and increase the likelihood of producing a whole-
sentence correction. Details of our methodology are
presented in §3 and of the dataset we use in §4. Since
this work is of an exploratory nature, we conduct a
detailed error analysis and present the results in §5.
Finally, §6 summarizes the contributions of this pi-
lot study and provides a discussion of possible future
work.

2 Related Work

To date, most work in grammatical error detection
has focused on targeting specific error types (usu-
ally prepositions or article errors) by using rule-
based methods or statistical machine-learning clas-
sification algorithms, or a combination of the two.
Leacock et al. (2010) present a survey of the com-
mon approaches. However, targeted errors such as
preposition and determiner errors are just two of the
many types of grammatical errors present in non-
native writing. One of the anonymous reviewers for
this paper makes the point eloquently: “Given the
frequent complexity of learner errors, less holistic,
error-type specific approaches are often unable to
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disentangle compounded errors of style and gram-
mar.” Below we discuss related work that uses ma-
chine translation to address targeted errors and some
recent work that also focused on whole-sentence er-
ror correction.

Brockett et al. (2006) use information about mass
noun errors from a Chinese learner corpus to engi-
neer a “parallel” corpus with sentences containing
mass noun errors on one side and their corrected
counterparts on the other. With this parallel corpus,
the authors use standard statistical machine transla-
tion (SMT) framework to learn a translation (correc-
tion) model which can then be applied to unseen sen-
tences containing mass noun errors. This approach
was able to correct almost 62% of the errors found
in a test set of 150 errors. In our approach, we do not
treat correction directly as a translation problem but
instead rely on an MT system to round-trip translate
an English sentence back to English.

Park and Levy (2011) use a noisy channel model
to achieve whole-sentence grammar correction; they
learn a noise model from a dataset of errorful sen-
tences but do not rely on SMT. They show that the
corrections produced by their model generally have
higher n-gram overlap with human-authored refer-
ence corrections than the original errorful sentences.

The previous work that is most directly rele-
vant to our approach is that of Hermet and Désilets
(2009) who focused only on sentences containing
pre-marked preposition errors and generated a sin-
gle round-trip translation for such sentences via a
single pivot language (French). They then simply
posited this round-trip translation as the “correc-
tion” for the original sentence. In their evaluation
on sentences containing 133 unique preposition er-
rors, their round-trip translation system was able to
correct 66.4% of the cases. However, this was out-
performed by a simple method based on web counts
(68.7%). They also found that combining the round-
trip method with the web counts method into a hy-
brid system yielded higher performance (82.1%).

In contrast, we use multiple pivot languages to
generate several round-trip translations. In addition,
we use a novel alignment algorithm that allows us to
combine different parts of different round-trip trans-
lations and explore a whole new set of corrections
that go beyond the translations themselves. Finally,
we do not restrict our analysis to any single type of

error. In fact, our test sentences contain several dif-
ferent types of grammatical errors.

Outside of the literature on grammatical error de-
tection, our combination approach is directly related
to the research on machine translation system com-
bination wherein translation hypotheses produced
by different SMT systems are combined to allow the
extraction of a better, combined hypothesis (Ban-
galore et al., 2001; Rosti et al., 2007; Feng et al.,
2009). However, our combination approach is dif-
ferent in that all the round-trip translations are pro-
duced by a single system but via different pivot lan-
guages.

Finally, the idea of combining multiple surface
renderings with the same meaning has also been ex-
plored in paraphrase generation. Pang et al. (2003)
propose an algorithm to align sets of parallel sen-
tences driven entirely by the syntactic representa-
tions of the sentences. The alignment algorithm out-
puts a merged lattice from which lexical, phrasal,
and sentential paraphrases could simply be read off.
Barzilay and Lee (2003) cluster topically related
sentences into slotted word lattices by using mul-
tiple sequence alignment for the purpose of down-
stream paraphrase generation from comparable cor-
pora. More recently, Zhao et al. (2010) perform
round-trip translation of English sentences via dif-
ferent pivot languages and different off-the-shelf
SMT systems to generate candidate paraphrases.
However, they do not combine the candidate para-
phrases in any way. A detailed survey of paraphrase
generation techniques can be found in (Androut-
sopoulos and Malakasiotis, 2010) and (Madnani and
Dorr, 2010).

3 Methodology

The basic idea underlying our error correction tech-
nique is quite simple: if we can automatically gen-
erate alternative surface renderings of the meaning
expressed in the original sentence and then pick the
one that is most fluent, we are likely to have picked
a version of the sentence in which the original gram-
matical errors have been fixed.

In this paper, we propose generating such alter-
native formulations using statistical machine trans-
lation. For example, we take the original sentence E
and translate it to Chinese using the Google Trans-
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Original Both experience and books are very important about living.
Swedish Both experience and books are very important in live.
Italian Both books are very important experience and life.

Russian And the experience, and a very important book about life.
French Both experience and the books are very important in life.

German Both experience and books are very important about life.
Chinese Related to the life experiences and the books are very important.
Spanish Both experience and the books are very important about life.
Arabic Both experience and books are very important for life.

Figure 1: Illustrating the deficiency in using an n-gram language model to select one of the 8 round-trip translations
as the correction for the Original sentence. The grammatical errors in the Original sentence are shown in italics. The
round-trip translation via Russian is chosen by a 5-gram language model trained on the English gigaword corpus even
though it changes the meaning of the original sentence entirely.

late API. We then take the resulting Chinese sen-
tence C and translate it back to English. Since
the translation process is designed to be meaning-
preserving, the resulting round-trip translation E’
can be seen as an alternative formulation of the orig-
inal sentence E. Furthermore, if additional pivot lan-
guages besides Chinese are used, several alterna-
tive formulations of E can be generated. We use 8
different pivot languages: Arabic, Chinese, Span-
ish, French, Italian, German, Swedish, Russian. We
chose these eight languages since they are frequently
used in SMT research and shared translation tasks.
To obtain the eight round-trip translations via each
of these pivot languages, we use the Google Trans-
late research API.1

3.1 Round-Trip Translation Combination

Once the translations are generated, an obvious so-
lution is to pick the most fluent alternative, e.g.,
using an n-gram language model. However, since
the language model has no incentive to preserve the
meaning of the sentence, it is possible that it might
pick a translation that changes the meaning of the
original sentence entirely. For example, consider
the sentence and its round-trip translations shown
in Figure 1. For this sentence, a 5-gram language
model trained on gigaword picks the Russian round-
trip translation simply because it has n-grams that
were seen more frequently in the English gigaword
corpus.

Given the deficiencies in statistical phrase-based
translation, it is also possible that no single round-

1http://research.google.com/university/
translate/

trip translation fixes all of the errors. Again, con-
sider Figure 1. None of the 8 round-trip transla-
tions is error-free itself. Therefore, the task is more
complex than simply selecting the right round-trip
translation. We posit that a better approach will be
to combine the evidence of correction produced by
each independent translation model and increase the
likelihood of producing a final whole-sentence cor-
rection. Additionally, by engineering such a combi-
nation, we increase the likelihood that the final cor-
rection will preserve the meaning of the original sen-
tence.

In order to combine the round-trip translations,
we developed a heuristic alignment algorithm that
uses the TERp machine translation metric (Snover
et al., 2009). The TERp metric takes a pair of sen-
tences and computes the least number of edit opera-
tions that can be employed to turn one sentence into
the other.2 As a by-product of computing the edit
sequence, TERp produces an alignment between the
two sentences where each alignment link is defined
by an edit operation. Figure 2 shows an example of
the alignment produced by TERp between the orig-
inal sentence from Figure 1 and its Russian round-
trip translation. Note that TERp also allows shifting
words and phrases in the second sentence in order
to obtain a smaller edit cost (as indicated by the as-
terisk next to the word book which has shifted from
its original position in the Russian round-trip trans-
lation).

Our algorithm starts by treating the original sen-
tence as the backbone of a lattice. First, it cre-

2Edit operations in TERp include matches, substitutions, in-
sertion, deletions, paraphrase, synonymy and stemming.
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ates a node for each word in the original sentence
and creates edges between them with a weight of
1. Then, for each of the round-trip translations, it
computes its TERp alignment with the original sen-
tence and aligns it to the backbone based on the edit
operations in the alignment. Specifically, each in-
sertion, substitution, stemming, synonymy and para-
phrase operation lead to creation of new nodes that
essentially provide an alternative formulation for the
aligned substring from the backbone. Any duplicate
nodes are merged. Finally, edges produced by dif-
ferent translations between the same pairs of nodes
are merged and their weights added. Figure 3(a)
shows how our algorithm aligns the Russian round-
trip translation from Figure 1 to the original sentence
using the TERp alignment from Figure 2. Figure
3(b) shows the final lattice produced by our algo-
rithm for the sentence and all the round-trip transla-
tions from Figure 1.

-- and [I]
both -- the [S]

experience -- experience [M]
-- , [I]

and -- and [M]
books -- book [T] [*]

are -- a [S]
very -- very [M]

important -- important [M]
about -- about [M]

living -- life [Y]
. -- . [M]

Figure 2: The alignment produced by TERp between the
original sentence from Figure 1 and its Russian round-
trip translation. The alignment operations are indicated
in square brackets after each alignment link: I=insertion,
M=match, S=substitution, T=stemming and Y=WordNet
synonymy. The asterisk next to the work book denotes
that TERp chose to shift its position before computing an
edit operation for it.

3.2 Correction Generation

For each original sentence, we computed six possi-
ble corrections from the round-trip translations and
the combined lattice:

1. Baseline LM (B). The most fluent round-trip
translation out of the eight as measured by a
5-gram language model trained on the English

gigaword corpus.

2. Greedy (G). A path is extracted from the TERp
lattice using a greedy best-first strategy at each
node, i.e., at each node, the outgoing edge with
the largest weight is followed.

3. 1-Best (1): The shortest path is extracted
from the TERp lattice by using the OpenFST
toolkit.3. This method assumes that, like G, the
combined evidence from the round-trip trans-
lations itself is enough to produce a good final
correction and no external method for measur-
ing fluency is required.4

4. LM Re-ranked (L). An n-best (n=20) list is
extracted from the lattice using the OpenFST
toolkit and re-ranked using the 5-gram giga-
word language model. The 1-best reranked
item is then extracted as the correction. This
method assumes that an external method
of measuring fluency—the 5-gram language
model—can help to bring the most grammati-
cal correction to the top of the n-best list.

5. Product Re-ranked (P). Same as L except the
re-ranking is done based on the product of the
cost of each hypothesis in the n-best list and
the language model score, i.e., both the evi-
dence from the round-trip translations and the
language model is weighted equally.

6. Full LM Composition (C). The edge weights
in the TERp lattice are converted to probabil-
ities. The lattice is then composed with a tri-
gram finite state language model (trained on
a corpus of 100, 000 high-scoring student es-
says).5 The shortest path through the composed
lattice is then extracted as the correction. This
method assumes that using an n-gram language
model during the actual search process is better
than using it as a post-processing tool on an al-
ready extracted n-best list, such as for L and
P.

3http://www.openfst.org/
4Note that the edge weights in the lattice must be converted

into costs for this method (we do so by multiplying the weights
by −1).

5We adapted the code available at http://www.
ling.ohio-state.edu/˜bromberg/ngramcount/
ngramcount.html to perform the LM composition.
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No. of Errors Sentences Avg. Length
1 61 14.4
2 45 19.9
3 29 24.2
4 14 29.4

> 4 13 38.0

Table 1: The distribution of grammatical errors for the
162 errorful sentences.

Figure 3(c) shows these six corrections as computed
for the sentence from Figure 1.

4 Corpus

To assess our system, we manually selected 200
sentences from a corpus of essays written by non-
native English speakers for a college-level English
proficiency exam. In addition to sentences contain-
ing grammatical errors, we also deliberately sam-
pled sentences that contained no grammatical errors
in order to determine how our techniques perform
in those cases. In total, 162 of the sentences con-
tained at least one error, and the remaining 38 were
perfectly grammatical. For both errorful as well
as grammatical sentences, we sampled sentences of
different lengths (under 10 words, 10-20 words, 20-
30 words, 30-40 words, and over 40 words). The
162 errorful sentences varied in the number and type
of errors present. Table 1 shows the distribution of
the number of errors across these 162 sentences.

Specifically, the error types found in these sen-
tences included prepositions, articles, punctuation,
agreement, collocations, confused words, etc. Some
only contained a handful of straightforward errors,
such as “In recent day, transportation is one of the
most important thing to support human activity”,
where day and thing should be pluralized. On the
other hand, others were quite garbled to the point
where it was difficult to understand the meaning,
such as “Sometimes reading a book is give me in-
formation about the knowledge of life so that I can
prevent future happened but who knows that when it
will happen and how fastly can react to that hap-
pen.” During development, we noticed that the
round-trip translation process could not handle mis-
spelled words, so we manually corrected all spelling
mistakes which did not result in a real word.6

6A total of 82 spelling errors were manually corrected.

5 Evaluation

In order to evaluate the six techniques for generating
corrections, we designed an evaluation task where
the annotators would be shown a correction along
with the original sentence for which it was gener-
ated. Since there are 6 corrections for each of the
200 sentences, this yields a total of 1, 200 units for
pairwise preference judgments. We chose two anno-
tators, both native English speakers, each of whom
annotated half of the judgment units.

Given the idiosyncrasies of the statistical machine
translation process underlying our correction tech-
niques, it is quite possible that:

• A correction may fix some, but not all, of the
grammatical errors present in the original sen-
tence, and

• A correction may be more fluent but might
change the meaning of the original sentence.

• A correction may introduce a new disfluency,
even though other errors in the sentence have
been largely corrected. This is especially likely
to be the case for longer sentences.

Therefore, the pairwise preference judgment task
is non-trivial in that it expects the annotators to con-
sider two dimensions: that of grammaticality and of
meaning. To accommodate these considerations, we
designed the evaluation task such that it asked the
annotators to answer the following two questions:

1. Grammaticality. The annotators were asked
to choose between three options: “Original
sentence sounds better”, “Correction sounds
better” and “Both sound about the same”.

2. Meaning. The annotators were asked to choose
between two options: “Correction preserves
the original meaning” and “Correction changes
the original meaning”. It should be noted that
determining change in or preservation of mean-
ing was treated as a very strict judgment. Subtle
changes such as the omission of a determiner
were deemed to change the meaning. In some
cases, the original sentences were too garbled
to determine the original meaning itself.
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C > O C = O C < O
Meaning = 1 S D F
Meaning = 0 F F F

Table 2: A matrix illustrating the Success-Failure-Draw
evaluation criterion for the 162 errorful sentences. The
rows represent the meaning dimension (1 = meaning pre-
served, 0 = meaning changed) and the columns represent
the grammaticality dimension (C > O denotes correc-
tion being more grammatical than the original, C = O
denotes they are about the same and C < O denotes that
the correction is worse). Such a matrix is computed for
each of the six techniques.

5.1 Effectiveness

First, we concentrate our analysis on the original
sentences which contain at least one grammatical er-
ror. We aggregated the results of the pairwise pref-
erence judgments for each of the six specific correc-
tion generation techniques and applied the strictest
evaluation criterion by computing the following, for
each technique:

• Successes. Only those sentences for which
the correction generated by method is not only
more grammatical but also preserves the mean-
ing.

• Failures. All those sentences for which the cor-
rection is either less grammatical or changes
the original meaning.

• Draws. Those sentences for which the correc-
tion preserves the meaning but sounds about
the same as the original.

Table 2 shows a matrix of the six possible com-
binations of grammaticality and meaning for each
method and demonstrates which cells of the matrix
contribute to which of the above three measures:
Successes (S), Failures (F) and Draws (D).

In addition to the six techniques, we also posit an
oracle in order to determine the upper bound on the
performance of our round-trip translation approach.
The oracle picks the most accurate correction gen-
eration method for each individual sentence out of
the 6 that are available. For sentences where none of
the six techniques produce an adequate correction,
the oracle just picks the original sentence. Table 3

shows how the various techniques (including the or-
acle) perform on the 162 errorful sentences as mea-
sured by this criterion. Based on this criterion, the
greedy technique performs the best compared to the
others since it has a higher success rate (36%) and
a lower failure rate (31%). The oracle shows that
60% of the errorful sentences are fixed by at least
one of the six correction generation techniques. We
show examples of success and failure for the greedy
technique in Figure 4.

5.2 Effect of sentence length

From our observations on development data (not
part of the test set), we noticed that Google Trans-
late, like most statistical machine translation sys-
tems, performs significantly better on shorter sen-
tences. Therefore, we wanted to measure whether
the successes for the best method were biased to-
wards shorter sentences and the failures towards
longer ones. To do so, we measured the mean and
standard deviation of lengths of sentences compris-
ing the successes and failures of the greedy tech-
nique. Successful sentences had an average length
of approximately 18 words with a standard devia-
tion of 9.5. Failed sentences had an average length
of 23 words with a standard deviation of 12.31.
These numbers indicate that although the failures
are somewhat correlated with larger sentence length,
there is no evidence of a significant length bias.

5.3 Effect on grammatical sentences

Finally, we also carried out the same Success-
Failure-Draw analysis for the 38 sentences in our
test set that were perfectly grammatical to begin
with. The analysis differs from that of errorful sen-
tences in one key aspect: since the sentences are al-
ready free of any grammatical errors, no correction
can be grammatically better. Therefore, sentences
for which the correction preserves the meaning and
is not grammaticality worse will count as successes
and all other cases will count as failures. There are
no draws. Table 4 illustrates this difference and Ta-
ble 5 presents the success and failure rates for all six
methods. The greedy technique again performs the
best out of all six methods and successfully retains
the meaning and grammaticality for almost 80% of
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Method Success Draw Failure
Baseline LM (B) 21% (34) 9% (15) 70% (113)
Greedy (G) 36% (59) 33% (52) 31% (51)
1-best (1) 32% (52) 30% (48) 38% (62)
LM Re-ranked (L) 30% (48) 17% (27) 54% (87)
Product Re-ranked (P) 23% (37) 38% (61) 40% (64)
LM Composition (C) 19% (31) 12% (20) 69% (111)
Oracle 60% (97) 40% (65) -

Table 3: The success, draw and failure rates for the six correction generation techniques and the oracle as computed for
the 162 errorful sentences from the test set. The oracle picks the method that produces the most meaning-preserving
and grammatical correction for each sentence. For sentences that have no adequate correction, it picks the original
sentence. Numbers in parentheses represent counts.

Success

That’s why I like to make travel by using my own car.
That’s why I like to travel using my own car.
Having discuss all this I must say that I must rather prefer to be a leader than just a member.
After discussing all this, I must say that I would prefer to be a leader than a member.

Failure

And simply there is fantastic for everyone
All magical and simply there is fantastic for all
I hope that share a room with she can be certainly kindle, because she is likely me
and so will not be problems with she.
I hope that sharing a room with her can be certainly kindle, because it is likely that
I and so there will be no problems with it.

Figure 4: Two examples of success and failure for the Greedy (G) technique. Original sentences are shown first
followed by the corrections in bold. Grammatical errors in the original sentences are in italics.

the grammatical sentences.7

C > O C = O C < O
Meaning = 1 - S F
Meaning = 0 - F F

Table 4: A matrix illustrating the Success-Draw-Failure
evaluation criterion for the 38 grammatical sentences.
There are no draws and sentences for which corrections
preserve meaning and are not grammatically worse count
as successes. The rest are failures.

6 Discussion & Future Work

In this paper, we explored the potential of a novel
technique based on round-trip machine translation
for the more ambitious and realistic task of whole-
sentence grammatical error correction. Although the
idea of round-trip machine translation (via a single
pivot language) has been explored before in the con-
text of just preposition errors, we expanded on it sig-
nificantly by combining multiple round-trip transla-

7An oracle for this setup is uninteresting since it will simply
return the original sentence for every sentence.

Method Success Failure
Baseline LM (B) 26% (10) 74% (28)
Greedy (G) 79% (30) 21% (8)
1-best (1) 61% (23) 39% (15)
LM Re-ranked (L) 34% (13) 66% (25)
Product Re-ranked (P) 42% (16) 58% (22)
LM Composition (C) 29% (11) 71% (25)

Table 5: The success and failure rates for the six correc-
tion generation techniques as computed for the 38 gram-
matical sentences from the test set.

tions and developed several new methods for pro-
ducing whole-sentence error corrections. Our oracle
experiments show that the ideas we explore have the
potential to produce whole-sentence corrections for
a variety of sentences though there is clearly room
for improvement.

An important point needs to be made regard-
ing the motivation for the round-trip translation ap-
proach. We claim that this approach is useful not
just because it can produce alternative renderings of
a given sentence but primarily because each of those
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renderings is likely to retain at least some of mean-
ing of the original sentence.

Most of the problems with our techniques arise
due to the introduction of new errors by Google
Translate. One could use an error detection sys-
tem (or a human) to explicitly identify spans con-
taining grammatical errors and constrain the SMT
system to translate only these errorful spans while
still retaining the rest of the words in the sentence.
This approach should minimize the introduction of
new errors. Note that Google Translate does not
currently provide a way to perform such selective
translation. However, other open-source SMT sys-
tems such as Moses8 and Joshua9 do. Furthermore,
it might also be useful to exploit n-best translation
outputs instead of just relying on the 1-best as we
currently do.

As an alternative to selective translation, one
could simply extract the identified errorful spans and
round-trip translate each of them individually. For
example, consider the sentence: “Most of all, luck
is null prep no use without a hard work.” where the
preposition of is omitted and there is an extraneous
article a before “hard work”. With this approach,
one would simply provide Google Translate with the
two phrasal spans containing the errors, instead of
the entire sentence.

More generally, although we use Google Trans-
late for this pilot study due to its easy availability, it
might be more practical and useful to rely on an in-
house SMT system that trades-off translation quality
for additional features.

We also found that the language-model based
techniques performed quite poorly compared to the
other techniques. We suspect that this is due to the
fact that Google Translate already employs large-
order language models trained on trillions of words.
Using lower-order models trained on much smaller
corpora might simply introduce noise. However, a
detailed analysis is certainly warranted.

In conclusion, we claim that our preliminary ex-
ploration of large-scale round-trip translation based
techniques yielded fairly reasonable results. How-
ever, more importantly, it makes it clear that, with
additional research, these techniques have the poten-

8http://www.statmt.org/moses
9https://github.com/joshua-decoder

tial to be very effective at whole-sentence grammat-
ical error correction.

Acknowledgments

We would like to thank Aoife Cahill, Michael Heil-
man and the three anonymous reviewers for their
useful comments and suggestions. We would also
like to thank Melissa Lopez and Matthew Mulhol-
land for helping with the annotation.

References
Ion Androutsopoulos and Prodromos Malakasiotis.

2010. A Survey of Paraphrasing and Textual Entail-
ment Methods. J. Artif. Int. Res., 38(1):135–187.

Srinivas Bangalore, German Bordel, and Giuseppe Ric-
cardi. 2001. Computing Consensus Translation from
Multiple Machine Translation Systems. In Proceed-
ings of ASRU, pages 351–354.

Regina Barzilay and Lillian Lee. 2003. Learning to Para-
phrase: An Unsupervised Approach Using Multiple-
Sequence Alignment. In Proceedings of HLT-NAACL
2003, pages 16–23.

Chris Brockett, William B. Dolan, and Michael Gamon.
2006. Correcting ESL Errors Using Phrasal SMT
Techniques. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 249–256.

Yang Feng, Yang Liu, Haitao Mi, Qun Liu, and Ya-
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