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Abstract

In this paper we show how to train statis-
tical machine translation systems on real-
life tasks using only non-parallel monolingual
data from two languages. We present a mod-
ification of the method shown in (Ravi and
Knight, 2011) that is scalable to vocabulary
sizes of several thousand words. On the task
shown in (Ravi and Knight, 2011) we obtain
better results with only 5% of the computa-
tional effort when running our method with
an n-gram language model. The efficiency
improvement of our method allows us to run
experiments with vocabulary sizes of around
5,000 words, such as a non-parallel version of
the VERBMOBIL corpus. We also report re-
sults using data from the monolingual French
and English GIGAWORD corpora.

1 Introduction

It has long been a vision of science fiction writers
and scientists to be able to universally communi-
cate in all languages. In these visions, even previ-
ously unknown languages can be learned automati-
cally from analyzing foreign language input.

In this work, we attempt to learn statistical trans-
lation models from only monolingual data in the
source and target language. The reasoning behind
this idea is that the elements of languages share sta-
tistical similarities that can be automatically identi-
fied and matched with other languages.

This work is a big step towards large-scale and
large-vocabulary unsupervised training of statistical
translation models. Previous approaches have faced
constraints in vocabulary or data size. We show how

∗Author now at Google Inc., amauser@google.com.

to scale unsupervised training to real-life transla-
tion tasks and how large-scale experiments can be
done. Monolingual data is more readily available,
if not abundant compared to true parallel or even
just translated data. Learning from only monolin-
gual data in real-life translation tasks could improve
especially low resource language pairs where few or
no parallel texts are available.

In addition to that, this approach offers the op-
portunity to decipher new or unknown languages
and derive translations based solely on the available
monolingual data. While we do tackle the full unsu-
pervised learning task for MT, we make some very
basic assumptions about the languages we are deal-
ing with:

1. We have large amounts of data available in
source and target language. This is not a very
strong assumption as books and text on the in-
ternet are readily available for almost all lan-
guages.

2. We can divide the given text in tokens and
sentence-like units. This implies that we know
enough about the language to tokenize and
sentence-split a given text. Again, for the vast
majority of languages, this is not a strong re-
striction.

3. The writing system is one-dimensional left-to-
right. It has been shown (Lin and Knight, 2006)
that the writing direction can be determined
separately and therefore this assumption does
not pose a real restriction.

Previous approaches to unsupervised training for
SMT prove feasible only for vocabulary sizes up to
around 500 words (Ravi and Knight, 2011) and data
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sets of roughly 15,000 sentences containing only
about 4 tokens per sentence on average. Real data
as it occurs in texts such as web pages or news texts
does not meet any of these characteristics.

In this work, we will develop, describe, and
evaluate methods for large vocabulary unsupervised
learning of machine translation models suitable for
real-world tasks. The remainder of this paper is
structured as follows: In Section 2, we will review
the related work and describe how our approach ex-
tends existing work. Section 3 describes the model
and training criterion used in this work. The im-
plementation and the training of this model is then
described in Section 5 and experimentally evaluated
in Section 6.

2 Related Work

Unsupervised training of statistical translations sys-
tems without parallel data and related problems have
been addressed before. In this section, we will re-
view previous approaches and highlight similarities
and differences to our work. Several steps have been
made in this area, such as (Knight and Yamada,
1999), (Ravi and Knight, 2008), or (Snyder et al.,
2010), to name just a few. The main difference of
our work is, that it allows for much larger vocab-
ulary sizes and more data to be used than previous
work while at the same time not being dependent on
seed lexica and/or any other knowledge of the lan-
guages.

Close to the methods described in this work,
Ravi and Knight (2011) treat training and transla-
tion without parallel data as a deciphering prob-
lem. Their best performing approach uses an EM-
Algorithm to train a generative word based trans-
lation model. They perform experiments on a
Spanish/English task with vocabulary sizes of about
500 words and achieve a performance of around
20 BLEU compared to 70 BLEU obtained by a sys-
tem that was trained on parallel data. Our work uses
the same training criterion and is based on the same
generative story. However, we use a new training
procedure whose critical parts have constant time
and memory complexity with respect to the vocab-
ulary size so that our methods can scale to much
larger vocabulary sizes while also being faster.

In a different approach, Koehn and Knight (2002)

induce a bilingual lexicon from only non-parallel
data. To achieve this they use a seed lexicon which
they systematically extend by using orthographic as
well as distributional features such as context, and
frequency. They perform their experiments on non-
parallel German-English news texts, and test their
mappings against a bilingual lexicon. We use a
greedy method similar to (Koehn and Knight, 2002)
for extending a given lexicon, and we implicitly also
use the frequency as a feature. However, we perform
fully unsupervised training and do not start with a
seed lexicon or use linguistic features.

Similarly, Haghighi et al. (2008) induce a one-
to-one translation lexicon only from non-parallel
monolingual data. Also starting with a seed lexi-
con, they use a generative model based on canoni-
cal correlation analysis to systematically extend the
lexicon using context as well as spelling features.
They evaluate their method on a variety of tasks,
ranging from inherently parallel data (EUROPARL)
to unrelated corpora (100k sentences of the GIGA-
WORD corpus). They report F-measure scores of the
induced entries between 30 to 70. As mentioned
above, our work neither uses a seed lexicon nor or-
thographic features.

3 Translation Model

In this section, we describe the statistical training
criterion and the translation model that is trained us-
ing monolingual data. In addition to the mathemat-
ical formulation of the model we describe approxi-
mations used.

Throughout this work, we denote the source lan-
guage words as f and target language words as e.
The source vocabulary is Vf and we write the size
of this vocabulary as |Vf |. The same notation holds
for the target vocabulary with Ve and |Ve|.

As training criterion for the translation model’s
parameters θ, Ravi and Knight (2011) suggest

arg max
θ

∏
f

∑
e

P (e) · pθ(f |e)

 (1)

We would like to obtain θ from Equation 1 using
the EM Algorithm (Dempster et al., 1977). This
becomes increasingly difficult with more complex
translation models. Therefore, we use a simplified
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translation model that still contains all basic phe-
nomena of a generic translation process. We formu-
late the translation process with the same generative
story presented in (Ravi and Knight, 2011):

1. Stochastically generate the target sentence ac-
cording to an n-gram language model.

2. Insert NULL tokens between any two adjacent
positions of the target string with uniform prob-
ability.

3. For each target token ei (including NULL)
choose a foreign translation fi (including
NULL) with probability Pθ(fi|ei).

4. Locally reorder any two adjacent foreign words
fi−1, fi with probability P (SWAP) = 0.1.

5. Remove the remaining NULL tokens.

In practice, however, it is not feasible to deal with
the full parameter table Pθ(fi|ei) which models the
lexicon. Instead we only allow translation models
where for each source word f the number of words
e′ with P (f |e′) 6= 0 is below some fixed value. We
will refer to this value as the maximum number of
candidates of the translation model and denote it
with NC . Note that for a given e this does not nec-
essarily restrict the number of entries P (f ′|e) 6= 0.
Also note that with a fixed value of NC , time and
memory complexity of the EM step isO(1) with re-
spect to |Ve| and |Vf |.

In the following we divide the problem of maxi-
mizing Equation 1 into two parts:

1. Determining a set of active lexicon entries.

2. Choosing the translation probabilities for the
given set of active lexicon entries.

The second task can be achieved by running the
EM algorithm on the restricted translation model.
We deal with the first task in the following section.

4 Monolingual Context Similarity

As described in Section 3 we need some mecha-
nism to iteratively choose an active set of translation
candidates. Based on the assumption that some of
the active candidates and their respective probabili-
ties are already correct, we induce new active candi-
dates. In the context of information retrieval, Salton
et al. (1975) introduce a document space where each

document identified by one or more index terms is
represented by a high dimensional vector of term
weights. Given two vectors v1 and v2 of two doc-
uments it is then possible to calculate a similarity
coefficient between those given documents (which
is usually denoted as s(v1, v2)). Similar to this we
represent source and target words in a high dimen-
sional vector space of target word weights which we
call context vectors and use a similarity coefficient
to find possible translation pairs. We first initialize
these context vectors using the following procedure:

1. Using only the monolingual data for the target
language, prepare the context vectors vei with
entries vei,ej :

(a) Initialize all vei,ej = 0

(b) For each target sentence E:
For each word ei in E:

For each word ej 6= ei in E:
vei,ej = vei,ej + 1.

(c) Normalize each vector vei such that∑
ej

(vei,ej )
2 !

= 1 holds.

Using the notation ei =
(
ej : vei,ej , . . .

)
these

vectors might for example look like

work = (early : 0.2, late : 0.1, . . . )

time = (early : 0.2, late : 0.2, . . . ).

2. Prepare context vectors vfi,ej for the source
language using only the monolingual data for
the source language and the translation model’s
current parameter estimate θ:

(a) Initialize all vfi,ej = 0

(b) Let Ẽθ(F ) denote the most probable
translation of the foreign sentence F ob-
tained by using the current estimate θ.

(c) For each source sentence F :
For each word fi in F :

For each word ej 6= Eθ(fi)
1 in

Eθ(F ):
vfi,ej = vfi,ej + 1

(d) Normalize each vector vfi such that∑
ej

(vfi,ej )
2 !

= 1 holds.

1denoting that ej is not the translation of fi in Eθ(F )
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Adapting the notation described above, these
vectors might for example look like

Arbeit = (early : 0.25, late : 0.05, . . . )

Zeit = (early : 0.15, late : 0.25, . . . )

Once we have set up the context vectors ve and
vf , we can retrieve translation candidates for some
source word f by finding those words e′ that maxi-
mize the similarity coefficient s(ve′ , vf ), as well as
candidates for a given target word e by finding those
words f ′ that maximize s(ve, vf ′). In our implemen-
tation we use the Euclidean distance

d(ve, vf ) = ||ve − vf ||2. (2)

as distance measure.2 The normalization of context
vectors described above is motivated by the fact that
the context vectors should be invariant with respect
to the absolute number of occurrences of words.3

Instead of just finding the best candidates for a
given word, we are interested in an assignment that
involves all source and target words, minimizing the
sum of distances between the assigned words. In
case of a one-to-one mapping the problem of assign-
ing translation candidates such that the sum of dis-
tances is minimal can be solved optimally in poly-
nomial time using the hungarian algorithm (Kuhn,
1955). In our case we are dealing with a many-
to-many assignment that needs to satisfy the max-
imum number of candidates constraints. For this,
we solve the problem in a greedy fashion by simply
choosing the best pairs (e, f) first. As soon as a tar-
get word e or source word f has reached the limit
of maximum candidates, we skip all further candi-
dates for that word e (or f respectively). This step
involves calculating and sorting all |Ve| · |Vf | dis-
tances which can be done in time O(V 2 · log(V )),
with V = max(|Ve|, |Vf |). A simplified example of
this procedure is depicted in Figure 1. The example
already shows that the assignment obtained by this
algorithm is in general not optimal.

2We then obtain pairs (e, f) that minimize d.
3This gives the same similarity ordering as using un-

normalized vectors with the cosine similarity measure
ve·vf

||ve||2·||vf ||2
which can be interpreted as measuring the cosine

of the angle between the vectors, see (Manning et al., 2008).
Still it is noteworthy that this procedure is not equivalent to the
tf-IDF context vectors described in (Salton et al., 1975).

x

y

time (e)
Arbeit (f)

work (e) Zeit (f)

Figure 1: Hypothetical example for a greedy one-to-one
assignment of translation candidates. The optimal assign-
ment would contain (time,Zeit) and (work,Arbeit).

5 Training Algorithm and Implementation

Given the model presented in Section 3 and the
methods illustrated in Section 4, we now describe
how to train this model.

As described in Section 4, the overall procedure
is divided into two alternating steps: After initializa-
tion we first perform EM training of the translation
model for 20-30 iterations using a 2-gram or 3-gram
language model in the target language. With the ob-
tained best translations we induce new translation
candidates using context similarity. This procedure
is depicted in Figure 2.

5.1 Initialization
Let NC be the maximum number of candidates per
source word we allow, Ve and Vf be the target/source
vocabulary and r(e) and r(f) the frequency rank of
a source/target word. Each word f ∈ Vf with fre-
quency rank r(f) is assigned to all words e ∈ Ve
with frequency rank

r(e) ∈ [ start(f) , end(f) ] (3)

where

start(f) = max(0 , min
(
|Ve| −Nc ,

⌊
|Ve|
|Vf |

· r(f)− Nc

2

⌋ )
)

(4)

end(f) = min (start(f) + Nc, |Ve|) . (5)

This defines a diagonal beam4 when visualizing
the lexicon entries in a matrix where both source
and target words are sorted by their frequency rank.
However, note that the result of sorting by frequency

4The diagonal has some artifacts for the highest and lowest
frequency ranks. See, for example, left side of Figure 2.
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Figure 2: Visualization of the training procedure. The big rectangles represent word lexica in different stages of the
training procedure. The small rectangles represent word pairs (e, f) for which e is a translation candidate of f , while
dots represent word pairs (e, f) for which this is not the case. Source and target words are sorted by frequency so that
the most frequent source words appear on the very left, and the most frequent target words appear at the very bottom.

and thus the frequency ranks are not unique when
there are words with the same frequency. In this
case, we initially obtain some not further specified
frequency ordering, which is then kept throughout
the procedure.

This initialization proves useful as we show by
taking an IBM1 lexicon P (f |e) extracted on the
parallel VERBMOBIL corpus (Wahlster, 2000): For
each word e we calculate the weighted rank differ-
ence

∆ravg(e) =
∑
f

P (f |e) · |(r(e)− r(f)| (6)

and count how many of those weighted rank dif-
ferences are smaller than a given value NC

2 . Here
we see that for about 1% of the words the weighted
rank difference lies withinNC = 50, and even about
3% for NC = 150 respectively. This shows that the
initialization provides a first solid guess of possible
translations.

5.2 EM Algorithm

The generative story described in Section 3 is im-
plemented as a cascade of a permutation, insertion,
lexicon, deletion and language model finite state
transducers using OpenFST (Allauzen et al., 2007).
Our FST representation of the LM makes use of
failure transitions as described in (Allauzen et al.,
2003). We use the forward-backward algorithm on
the composed transducers to efficiently train the lex-
icon model using the EM algorithm.

5.3 Context Vector Step

Given the trained parameters θ from the previous run
of the EM algorithm we set the context vectors ve

and vf up as described in Section 4. We then calcu-
late and sort all |Ve|·|Vf | distances which proves fea-
sible in a few CPU hours even for vocabulary sizes
of more than 50,000 words. This is achieved with
the GNU SORT tool, which uses external sorting for
sorting large amounts of data.

To set up the new lexicon we keep the bNC2 c
best translations for each source word with respect
to P (e|f), which we obtained in the previous EM
run. Experiments showed that it is helpful to also
limit the number of candidates per target words. We
therefore prune the resulting lexicon using P (f |e)
to a maximum of bN

′
C
2 c candidates per target word

afterwards. Then we fill the lexicon with new can-
didates using the previously sorted list of candidate
pairs such that the final lexicon has at most NC

candidates per source word and at most N ′C can-
didates per target word. We set N ′C to some value
N ′C > NC . All experiments in this work were run
with N ′C = 300. Values of N ′C ≈ NC seem to pro-
duce poorer results. Not limiting the number of can-
didates per target word at all also typically results in
weaker performance. After the lexicon is filled with
candidates, we initialize the probabilities to be uni-
form. With this new lexicon the process is iterated
starting with the EM training.

6 Experimental Evaluation

We evaluate our method on three different corpora.
At first we apply our method to non-parallel Span-

ish/English data that is based on the OPUS corpus
(Tiedemann, 2009) and that was also used in (Ravi
and Knight, 2011). We show that our method per-
forms better by 1.6 BLEU than the best performing
method described in (Ravi and Knight, 2011) while
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Name Lang. Sent. Words Voc.

OPUS
Spanish 13,181 39,185 562

English 19,770 61,835 411

VERBMOBIL
German 27,861 282,831 5,964

English 27,862 294,902 3,723

GIGAWORD
French 100,000 1,725,993 68,259

English 100,000 1,788,025 64,621

Table 1: Statistics of the corpora used in this paper.

being approximately 15 to 20 times faster than their
n-gram based approach.

After that we apply our method to a non-parallel
version of the German/English VERBMOBIL corpus,
which has a vocabulary size of 6,000 words on the
German side, and 3,500 words on the target side and
which thereby is approximately one order of magni-
tude larger than the previous OPUS experiment.

We finally run our system on a subset of the non-
parallel French/English GIGAWORD corpus, which
has a vocabulary size of 60,000 words for both
French and English. We show first interesting re-
sults on such a big task.

In case of the OPUS and VERBMOBIL corpus,
we evaluate the results using BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) to reference
translations. We report all scores in percent. For
BLEU higher values are better, for TER lower val-
ues are better. We also compare the results on these
corpora to a system trained on parallel data.

In case of the GIGAWORD corpus we show lexi-
con entries obtained during training.

6.1 OPUS Subtitle Corpus

6.1.1 Experimental Setup
We apply our method to the corpus described in

Table 6. This exact corpus was also used in (Ravi
and Knight, 2011). The best performing methods
in (Ravi and Knight, 2011) use the full 411 × 579
lexicon model and apply standard EM training. Us-
ing a 2-gram LM they obtain 15.3 BLEU and with
a whole segment LM, they achieve 19.3 BLEU. In
comparison to this baseline we run our algorithm
with NC = 50 candidates per source word for both,
a 2-gram and a 3-gram LM. We use 30 EM iterations

between each context vector step. For both cases we
run 7 EM+Context cycles.

6.1.2 Results
Figure 3 and Figure 4 show the evolution of BLEU

and TER scores for applying our method using a 2-
gram and a 3-gram LM.

In case of the 2-gram LM (Figure 3) the transla-
tion quality increases until it reaches a plateau after
5 EM+Context cycles. In case of the 3-gram LM
(Figure 4) the statement only holds with respect to
TER. It is notable that during the first iterations TER

only improves very little until a large chunk of the
language unravels after the third iteration. This be-
havior may be caused by the fact that the corpus only
provides a relatively small amount of context infor-
mation for each word, since sentence lengths are 3-4
words on average.

0 1 2 3 4 5 6 7 8
8

10

12

14

16
Full EM best (BLEU)

Iteration

B
L

E
U

66

68

70

72

74

76

78

80

T
E

R

BLEU
TER

Figure 3: Results on the OPUS corpus with a 2-gram LM,
NC = 50, and 30 EM iterations between each context
vector step. The dashed line shows the best result using a
2-gram LM in (Ravi and Knight, 2011).

Table 2 summarizes these results and compares
them with (Ravi and Knight, 2011). Our 3-gram
based method performs by 1.6 BLEU better than
their best system which is a statistically significant
improvement at 95% confidence level. Furthermore,
Table 2 compares the CPU time needed for training.
Our 3-gram based method is 15-20 times faster than
running the EM based training procedure presented
in (Ravi and Knight, 2011) with a 3-gram LM5.

5(Ravi and Knight, 2011) only report results using a 2-gram
LM and a whole-segment LM.
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Figure 4: Results on the OPUS corpus with a 3-gram LM,
NC = 50, and 30 EM iterations between each context
vector step. The dashed line shows the best result using a
whole-segment LM in (Ravi and Knight, 2011)

Method CPU BLEU TER

EM, 2-gram LM
411 cand. p. source word
(Ravi and Knight, 2011)

≈850h6 15.3 −

EM, Whole-segment LM
411 cand. p. source word
(Ravi and Knight, 2011)

−7 19.3 −

EM+Context, 2-gram LM
50 cand. p. source word
(this work)

50h8 15.2 66.6

EM+Context, 3-gram LM
50 cand. p. source word
(this work)

200h8 20.9 64.5

Table 2: Results obtained on the OPUS corpus.

To summarize: Our method is significantly faster
than n-gram LM based approaches and obtains bet-
ter results than any previously published method.

6Estimated by running full EM using the 2-gram LM using
our implementation for 90 Iterations yielding 15.2 BLEU.

7≈4,000h when running full EM using a 3-gram LM, using
our implementation. Estimated by running only the first itera-
tion and by assuming that the final result will be obtained after
90 iterations. However, (Ravi and Knight, 2011) report results
using a whole segment LM, assigning P (e) > 0 only to se-
quences seen in training. This seems to work for the given task
but we believe that it can not be a general replacement for higher
order n-gram LMs.

8Estimated by running our method for 5× 30 iterations.

6.2 VERBMOBIL Corpus

6.2.1 Experimental Setup

The VERBMOBIL corpus is a German/English
corpus dealing with short sentences for making ap-
pointments. We prepared a non-parallel subset of
the original VERBMOBIL (Wahlster, 2000) by split-
ting the corpus into two parts and then selecting only
the German side from the first half, and the English
side from the second half such that the target side
is not the translation of the source side. The source
and target vocabularies of the resulting non-parallel
corpus are both more than 9 times bigger compared
to the OPUS vocabularies. Also the total amount of
word tokens is more than 5 times larger compared
to the OPUS corpus. Table 6 shows the statistics of
this corpus. We run our method for 5 EM+Context
cycles (30 EM iterations each) using a 2-gram LM.
After that we run another five EM+Context cycles
using a 3-gram LM.

6.2.2 Results

Our results on the VERBMOBIL corpus are sum-
marized in Table 3. Even on this more complex
task our method achieves encouraging results: The

Method BLEU TER

5× 30 Iterations EM+Context
50 cand. p. source word, 2-gram LM

11.7 67.4

+ 5× 30 Iterations EM+Context
50 cand. p. source word, 3-gram LM

15.5 63.2

Table 3: Results obtained on the VERBMOBIL corpus.

translation quality increases from iteration to itera-
tion until the algorithm finally reaches 11.7 BLEU

using only the 2-gram LM. Running further five
cycles using a 3-gram LM achieves a final perfor-
mance of 15.5 BLEU. Och (2002) reports results of
48.2 BLEU for a single-word based translation sys-
tem and 56.1 BLEU using the alignment template
approach, both trained on parallel data. However, it
should be noted that our experiment only uses 50%
of the original VERBMOBIL training data to simulate
a truly non-parallel setup.
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Iter. e p(f1|e) f1 p(f2|e) f2 p(f3|e) f3 p(f4|e) f4 p(f5|e) f5

1. the 0.43 la 0.31 l’ 0.11 une 0.04 le 0.04 les

2. several 0.57 plusieurs 0.21 les 0.09 des 0.03 nombreuses 0.02 deux

3. where 0.63 où 0.17 mais 0.06 indique 0.04 précise 0.02 appelle

4. see 0.49 éviter 0.09 effet 0.09 voir 0.05 envisager 0.04 dire

5. January 0.25 octobre 0.22 mars 0.09 juillet 0.07 août 0.07 janvier

− Germany 0.24 Italie 0.12 Espagne 0.06 Japon 0.05 retour 0.05 Suisse

Table 4: Lexicon entries obtained by running our method on the non-parallel GIGAWORD corpus. The first column
shows in which iteration the algorithm found the first correct translations f (compared to a parallely trained lexicon)
among the top 5 candidates

6.3 GIGAWORD

6.3.1 Experimental Setup
This setup is based on a subset of the monolingual

GIGAWORD corpus. We selected 100,000 French
sentences from the news agency AFP and 100,000
sentences from the news agency Xinhua. To have a
more reliable set of training instances, we selected
only sentences with more than 7 tokens. Note that
these corpora form true non-parallel data which, be-
sides the length filtering, were not specifically pre-
selected or pre-processed. More details on these
non-parallel corpora are summarized in Table 6. The
vocabularies have a size of approximately 60,000
words which is more than 100 times larger than the
vocabularies of the OPUS corpus. Also it incor-
porates more than 25 times as many tokens as the
OPUS corpus.

After initialization, we run our method with
NC = 150 candidates per source word for 20 EM
iterations using a 2-gram LM. After the first context
vector step with NC = 50 we run another 4 × 20
iterations with NC = 50 with a 2-gram LM.

6.3.2 Results
Table 4 shows example lexicon entries we ob-

tained. Note that we obtained these results by us-
ing purely non-parallel data, and that we neither
used a seed lexicon, nor orthographic features to as-
sign e.g. numbers or proper names: All results are
obtained using 2-gram statistics and the context of
words only. We find the results encouraging and
think that they show the potential of large-scale un-
supervised techniques for MT in the future.

7 Conclusion

We presented a method for learning statistical ma-
chine translation models from non-parallel data. The
key to our method lies in limiting the translation
model to a limited set of translation candidates and
then using the EM algorithm to learn the probabil-
ities. Based on the translations obtained with this
model we obtain new translation candidates using
a context vector approach. This method increased
the training speed by a factor of 10-20 compared
to methods known in literature and also resulted
in a 1.6 BLEU point increase compared to previ-
ous approaches. Due to this efficiency improvement
we were able to tackle larger tasks, such as a non-
parallel version of the VERBMOBIL corpus having
a nearly 10 times larger vocabulary. We also had a
look at first results of our method on an even larger
Task, incorporating a vocabulary of 60,000 words.
We have shown that, using a limited set of trans-
lation candidates, we can significantly reduce the
computational complexity of the learning task. This
work serves as a big step towards large-scale unsu-
pervised training for statistical machine translation
systems.
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