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Abstract
Recent advances in large-margin learning
have shown that better generalization can
be achieved by incorporating higher order
information into the optimization, such as
the spread of the data. However, these so-
lutions are impractical in complex struc-
tured prediction problems such as statis-
tical machine translation. We present an
online gradient-based algorithm for rela-
tive margin maximization, which bounds
the spread of the projected data while max-
imizing the margin. We evaluate our op-
timizer on Chinese-English and Arabic-
English translation tasks, each with small
and large feature sets, and show that our
learner is able to achieve significant im-
provements of 1.2-2 BLEU and 1.7-4.3
TER on average over state-of-the-art opti-
mizers with the large feature set.

1 Introduction

The desire to incorporate high-dimensional sparse
feature representations into statistical machine
translation (SMT) models has driven recent re-
search away from Minimum Error Rate Training
(MERT) (Och, 2003), and toward other discrim-
inative methods that can optimize more features.
Examples include minimum risk (Smith and Eis-
ner, 2006), pairwise ranking (PRO) (Hopkins and
May, 2011), RAMPION (Gimpel and Smith, 2012),
and variations of the margin-infused relaxation al-
gorithm (MIRA) (Watanabe et al., 2007; Chiang et
al., 2008; Cherry and Foster, 2012). While the ob-
jective function and optimization method vary for
each optimizer, they can all be broadly described
as learning a linear model, or parameter vector w,
which is used to score alternative translation hy-
potheses.

In every SMT system, and in machine learn-
ing in general, the goal of learning is to find a

model that generalizes well, i.e. one that will yield
good translations for previously unseen sentences.
However, as the dimension of the feature space in-
creases, generalization becomes increasingly diffi-
cult. Since only a small portion of all (sparse) fea-
tures may be observed in a relatively small fixed
set of instances during tuning, we are prone to
overfit the training data. An alternative approach
for solving this problem is estimating discrimina-
tive feature weights directly on the training bi-
text (Tillmann and Zhang, 2006; Blunsom et al.,
2008; Simianer et al., 2012), which is usually sub-
stantially larger than the tuning set, but this is com-
plementary to our goal here of better generaliza-
tion given a fixed size tuning set.

In order to achieve that goal, we need to care-
fully choose what objective to optimize, and how
to perform parameter estimation of w for this ob-
jective. We focus on large-margin methods such
as SVM (Joachims, 1998) and passive-aggressive
algorithms such as MIRA. Intuitively these seek
a w such that the separating distance in geomet-
ric space of two hypotheses is at least as large as
the cost incurred by selecting the incorrect one.
This criterion performs well in practice at find-
ing a linear separator in high-dimensional feature
spaces (Tsochantaridis et al., 2004; Crammer et
al., 2006).

Now, recent advances in machine learning have
shown that the generalization ability of these
learners can be improved by utilizing second or-
der information, as in the Second Order Percep-
tron (Cesa-Bianchi et al., 2005), Gaussian Margin
Machines (Crammer et al., 2009b), confidence-
weighted learning (Dredze and Crammer, 2008),
AROW (Crammer et al., 2009a; Chiang, 2012)
and Relative Margin Machines (RMM) (Shiv-
aswamy and Jebara, 2009b). The latter, RMM,
was introduced as an effective and less computa-
tionally expensive way to incorporate the spread
of the data – second order information about the
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distance between hypotheses when projected onto
the line defined by the weight vector w.

Unfortunately, not all advances in machine
learning are easy to apply to structured prediction
problems such as SMT; the latter often involve la-
tent variables and surrogate references, resulting
in loss functions that have not been well explored
in machine learning (Mcallester and Keshet, 2011;
Gimpel and Smith, 2012). Although Shivaswamy
and Jebara extended RMM to handle sequen-
tial structured prediction (Shivaswamy and Jebara,
2009a), their batch approach to quadratic opti-
mization, using existing off-the-shelf QP solvers,
does not provide a practical solution: as Taskar et
al. (2006) observe, “off-the-shelf QP solvers tend
to scale poorly with problem and training sam-
ple size” for structured prediction problems.. This
motivates an online gradient-based optimization
approach—an approach that is particularly attrac-
tive because its simple update is well suited for ef-
ficiently processing structured objects with sparse
features (Crammer et al., 2012).

The contributions of this paper include (1) in-
troduction of a loss function for structured RMM
in the SMT setting, with surrogate reference trans-
lations and latent variables; (2) an online gradient-
based solver, RM, with a closed-form parameter
update to optimize the relative margin loss; and
(3) an efficient implementation that integrates well
with the open source cdec SMT system (Dyer et
al., 2010).1 In addition, (4) as our solution is not
dependent on any specific QP solver, it can be
easily incorporated into practically any gradient-
based learning algorithm.

After background discussion on learning in
SMT (§2), we introduce a novel online learning al-
gorithm for relative margin maximization suitable
for SMT (§3). First, we introduce RMM (§3.1) and
propose a latent structured relative margin objec-
tive which incorporates cost-augmented hypothe-
sis selection and latent variables. Then, we de-
rive a simple closed-form online update necessary
to create a large margin solution while simulta-
neously bounding the spread of the projection of
the data (§3.2). Chinese-English translation exper-
iments show that our algorithm, RM, significantly
outperforms strong state-of-the-art optimizers, in
both a basic feature setting and high-dimensional
(sparse) feature space (§4). Additional Arabic-
English experiments further validate these results,

1https://github.com/veidel/cdec

even where previously MERT was shown to be ad-
vantageous (§5). Finally, we discuss the spread
and other key issues of RM (§6), and conclude
with discussion of future work (§7).

2 Learning in SMT

Given an input sentence in the source language
x ∈ X , we want to produce a translation y ∈ Y(x)
using a linear model parameterized by a weight
vector w:

(y∗, d∗) = arg max
(y,d)∈Y(x),D(x)

w>f(x, y, d)

where w>f(x, y, d) is the weighted feature scor-
ing function, hereafter s(x, y, d), and Y(x) is the
space of possible translations of x. While many
derivations d ∈ D(x) can produce a given transla-
tion, we are only able to observe y; thus we model
d as a latent variable. Although our models are
actually defined over derivations, they are always
paired with translations, so our feature function
f(x, y, d) is defined over derivation–translation
pairs.2 The learning goal is then to estimate w.

The instability of MERT in larger feature
sets (Foster and Kuhn, 2009; Hopkins and May,
2011), has motivated many alternative tuning
methods for SMT. These include strategies based
on batch log-linear models (Tillmann and Zhang,
2006; Blunsom et al., 2008), as well as the in-
troduction of online linear models (Liang et al.,
2006a; Arun and Koehn, 2007).

Recent batch optimizers, PRO and RAMPION,
and Batch-MIRA (Cherry and Foster, 2012), have
been partly motivated by existing MT infrastruc-
tures, as they iterate between decoding the entire
tuning set and optimizing the parameters. PRO
considers tuning a classification problem and em-
ploys a binary classifier to rank pairs of outputs.
RAMPION aims to address the disconnect between
MT and machine learning by optimizing a struc-
tured ramp loss with a concave-convex procedure.

2.1 Large-Margin Learning
Online large-margin algorithms, such as MIRA,
have also gained prominence in SMT, thanks to
their ability to learn models in high-dimensional
feature spaces (Watanabe et al., 2007; Chiang et
al., 2009). The usual presentation of MIRA’s opti-
mization problem is given as a quadratic program:

2We may omit d in some equations for clarity.
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wt+1 = arg min
w

1

2
||w −wt||2 + Cξi

s.t. s(xi, yi, d)− s(xi, y′, d) ≥ ∆i(y
′)− ξi

(1)

where y′ is the single most violated constraint, the
cost ∆i(y) is computed using an external measure
of quality, such as 1-BLEU(yi, y), and a slack vari-
able ξi is introduced to allow for non-separable
instances. C acts as a regularization parameter,
trading off between margin maximization and con-
straint violations.

While solving the optimization problem relies
on computing the margin between the correct out-
put yi, and y′, in SMT our decoder is often inca-
pable of producing the reference translation, i.e.
yi /∈ Y(xi). We must instead resort to selecting a
surrogate reference, y+ ∈ Y(xi). This issue has
recently received considerable attention (Liang
et al., 2006a; Eidelman, 2012; Chiang, 2012),
with preference given to surrogate references ob-
tained through cost-diminished hypothesis selec-
tion. Thus, y+ is selected based on a combination
of model score and error metric from the k-best
list produced by our current model. A similar se-
lection is made for the cost-augmented hypothesis
y− ∈ Y(xi):
(y+, d+)← arg max

(y,d)∈Y(xi),D(xi)
s(xi, y, d)−∆i(y)

(y−, d−)← arg max
(y,d)∈Y(xi),D(xi)

s(xi, y, d) + ∆i(y)

In this setting, the optimization problem be-
comes:

wt+1 = arg min
w

1

2
||w −wt||2 + Cξi

s.t. δs(xi, y+, y−) ≥ ∆i(y
−)−∆i(y

+)− ξi

(2)

where δs(xi, y+, y−)=s(xi, y+, d+)-s(xi, y−, d−)
This leads to a variant of the structured ramp

loss to be optimized:

` =

− max
(y+,d+)∈Y(xi),D(xi)

(
s(xi, y+, d+)−∆i(y

+)
)

+ max
(y−,d−)∈Y(xi),D(xi)

(
s(xi, y−, d−) + ∆i(y

−)
)

(3)

The passive-aggressive update (Crammer et al.,
2006), which is used to solve this problem, up-
dates w on each round such that the score of the
correct hypothesis y+ is greater than the score of
the incorrect y− by a margin at least as large as the
cost incurred by predicting the incorrect hypothe-
sis, while keeping the change to w small.

 

(a)

 

(b)

Figure 1: (a) RM and large margin solution comparison and
(b) the spread of the projections given by each. RM and large
margin solutions are shown with a darker dotted line and a
darker solid line, respectively.

3 The Relative Margin Machine in SMT

3.1 Relative Margin Machine

The margin, the distance between the correct
hypothesis and incorrect one, is defined by
s(xi, y+, d+) and s(xi, y−, d−). It is maxi-
mized by minimizing the norm in SVM, or
analogously, the proximity constraint in MIRA:
arg minw

1
2 ||w −wt||2. However, theoretical re-

sults supporting large-margin learning, such as the
VC-dimension (Vapnik, 1995) or the Rademacher
bound (Bartlett and Mendelson, 2003) consider
measures of complexity, in addition to the empir-
ical performance, when describing future predic-
tive ability. The measures of complexity usually
take the form of some value on the radius of the
data, such as the ratio of the radius of the data to
the margin (Shivaswamy and Jebara, 2009a). As
radius is a way of measuring spread in any pro-
jection direction, here we will specifically be in-
terested in the the spread of the data as measured
after the projection defined by the learned model
w.

More formally, the spread is the dis-
tance between y+, and the worst candidate
(yw, dw)← arg min(y,d)∈Y(xi),D(xi) s(xi, y, d),
after projecting both onto the line defined by the
weight vector w. For each y′, this projection is
conveniently given by s(xi, y′, d), thus the spread
is calculated as δs(xi, y+, yw).

RMM was introduced as a generalization over
SVM that incorporates both the margin constraint
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and information regarding the spread of the data.
The relative margin is the ratio of the absolute,
or maximum margin, to the spread of the pro-
jected data. Thus, the RMM learns a large mar-
gin solution relative to the spread of the data, or
in other words, creates a max margin while si-
multaneously bounding the spread of the projected
data. As a concrete example, consider the plot
shown in Figure 1(a), with hypotheses represented
by two-dimensional feature vectors. The point
marked with a circle in the upper right represents
f(xi, y

+), while all other squares represent alter-
native incorrect hypotheses f(xi, y

′). The large
margin decision boundary is shown with a darker
solid line, while the relative margin solution is
shown with a darker dotted line. The lighter lines
parallel to each define the margins, with the square
at the intersection being f(xi, y

−). The bottom
portion of Figure 1(b) presents an alternative view
of each solution, showing the projections of the
hypotheses given the learned model of each. No-
tice that with a large margin solution, although the
distance between y+ and y− is greater, the points
are highly spread, extending far to the left of the
decision boundary.

In contrast, with a relative margin, although
we have a smaller absolute margin, the spread is
smaller, all points being within a smaller distance ε
of the decision boundary. The higher the spread of
the projection, the higher the variance of the pro-
jected points, and the greater the likelihood that
we will mislabel a new instance, since the high
variance projections may cross the learned deci-
sion boundary. In higher dimensions, accounting
for the spread becomes even more crucial, as will
be discussed in Section 6.3

Although RMM is theoretically well-founded
and improves practical performance over large-
margin learning in the settings where it was intro-
duced, it is unsuitable for most complex structured
prediction in NLP. Nonetheless, since structured
RMM is a generalization of Structured SVM,
which shares its underlying objective with MIRA,
our intuition is that SMT should be able to benefit
as well. But to take advantage of the second-order
information RMM utilizes for increased general-
izability in SMT, we need a computationally effi-

3The motivation of confidence-weighted estima-
tion (Dredze and Crammer, 2008) and AROW (Crammer
et al., 2009a) is related in spirit. They use second-order
information in the form of a distribution over weights to
change the maximum margin solution.

cient optimization procedure that does not require
batch training or an off-the-shelf QP solver.

3.2 RM Algorithm
We address the above-mentioned limitations by in-
troducing a novel online learning algorithm for
relative margin maximization, RM. The relative
margin solution is obtained by maximizing the
same margin as Equation (2), but now with re-
spect to the distance between y+, and the worst
candidate yw. Thus, the relative margin dictates
trading-off between a large margin as before, and
a small spread of the projection, in other words,
bounding the distance between y+ and yw. The
additional computation required, namely, obtain-
ing yw, is efficient to perform, and has likely al-
ready happened while obtaining the k-best deriva-
tions necessary for the margin update. The online
latent structured soft relative margin optimization
problem is then:

wt+1 = arg min
w

1

2
||w −wt||2 + Cξi +Dτi

s.t.: δs(xi, y+, y−) ≥ ∆i(y
−)−∆i(y

+)− ξi

−B − τi ≤ δs(xi, y+, yw) ≤ B + τi

(4)

where additional bounding constraints are added
to the usual margin constraints in order to contain
the spread by bounding the difference in projec-
tions. B is an additional parameter; it controls
the spread, trading off between margin maximiza-
tion and spread minimization. Notice that when
B → ∞, the bounding constraints disappear, and
we are left with the original problem in Equa-
tion (2). D, which plays an analogous role to C,
allows penalized violations of the bounding con-
straints.

The dual of Equation (4) can be derived as:

max
α,β,β∗ L =

∑

y∈Y(xi)

αy −B
∑

y∈Y(xi)

βy −B
∑

y∈Y(xi)

β∗
y

−1

2

〈 ∑

y∈Y(xi)

αyωi(y
+, y)−

∑

y∈Y(xi)

βyωi(y
+, y)

+
∑

y∈Y(xi)

β∗
yωi(y

+, y),

∑

y′∈Y(xj)

αy′ωj(y
+, y′)−

∑

y′∈Y(xj)

βy′ωj(y
+, y′)

+
∑

y′∈Y(xj)

β∗
y′ωj(y

+, y′)

〉

(5)

where the α Lagrange multiplier corresponds
to the standard margin constraint, while β and
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β∗ each correspond to a bounding constraint,
and ωi(y

+, y′) corresponds to the difference of
f(xi, y

+, d+) and f(xi, y
′, d′). The weight up-

date can then be obtained from the dual variables:

∑
αyωi(y

+, y)−
∑

βyωi(y
+, y) +

∑
β∗
yωi(y

+, y)

(6)

The dual in Equation (5) can be optimized us-
ing a cutting plane algorithm, an effective method
for solving a relaxed optimization problem in
the dual, used in Structured SVM, MIRA, and
RMM (Tsochantaridis et al., 2004; Chiang, 2012;
Shivaswamy and Jebara, 2009a). The cutting
plane presented in Alg. 1 decomposes the overall
problem into subproblems which are solved inde-
pendently by creating working sets Sj

i , which cor-
respond to the largest violations of either the mar-
gin constraint, or bounding constraints, and itera-
tively satisfying the constraints in each set.

The cutting plane in Alg. 1 makes use of the
the closed-form gradient-based updates we de-
rived for RM presented in Alg. 2. The updates
amount to performing a subgradient descent step
to update w in accordance with the constraints.
Since the constraint matrix of the dual program is
not strictly decomposable across constraint types,
we are in effect solving an approximation of the
original problem.

Algorithm 1 RM Cutting Plane Algorithm
(adapted from (Shivaswamy and Jebara, 2009a))
Require: ith training example (xi, yi), weight w, margin

reg. C, bound B, bound reg. D, ε, εB
1: S1

i ←
{
y+

}
, S2

i ←
{
y+

}
, S3

i ←
{
y+

}
2: repeat
3: H(y) := ∆i(y)−∆i(y

+)− δs(xi, y
+, y)

4: y1 ← arg maxy∈Y(xi)
H(y)

5: y2 ← arg maxy∈Y(xi)
G(y) := δs(xi, y

+, y)

6: y3 ← arg miny∈Y(xi)
−G(y)

7: ξ ← max {0,maxy∈Si H(y)}
8: V1 ← H(y1)− ξ − ε
9: V2 ← G(y2)−B − εB

10: V3 ← −G(y3)−B − εB
11: j ← argmaxj′∈{1,2,3} Vj′

12: if Vj > 0 then
13: Sj

i ← Sj
i ∪ {yj}

14: OPTIMIZE(w, S1
i , S

2
i , S

3
i , C,B) . see Alg. 2

15: end if
16: until S1

i , S
2
i , S

3
i do not change

Alternatively, we could utilize a passive-
aggressive updating strategy (Crammer et al.,
2006), which would simply bypass the cutting
plane and select the most violated constraint for

Algorithm 2 RM update with α, β, β∗

1: procedure OPTIMIZE(w, S1
i , S

2
i , S

3
i , C,B)

2: while w changes do
3: if

∣∣S1
i

∣∣ > 1 then
4: UPDATEMARGIN(w, S1

i , C)
5: end if
6: if

∣∣S2
i

∣∣ > 1 then
7: UPDATEUPPERBOUND(w, S2

i , B)
8: end if
9: if

∣∣S3
i

∣∣ > 1 then
10: UPDATELOWERBOUND(w, S3

i , B)
11: end if
12: end while
13: end procedure
14: procedure UPDATEMARGIN(w, S1

i , C)
15: αy ← 0 for all y ∈ S1

i

16: α
y+
i
← C

17: for n← 1...MaxIter do
18: Select two constraints y, y′ from S1

i

19: γα ← ∆i(y
′)−∆i(y)−δs(xi, y, y

′)
||ω(y,y′)||2

20: γα ← max(−αy,min(αy′ , γα))
21: αy ← αy + γα ; α′

y ← α′
y − γα

22: w← w + γα(ω(y, y
′))

23: end for
24: end procedure
25: procedure UPDATEUPPERBOUND(w, S2

i , B)
26: βy ← 0 for all y ∈ S2

i

27: for n← 1...MaxIter do
28: Select one constraint y from S2

i

29: γβ ← max(0, B−δs(xi ,y+ ,y)
||ω(y+,y)||2 )

30: βy ← βy + γβ
31: w← w − γβ(ω(y

+, y))
32: end for
33: end procedure
34: procedure UPDATELOWERBOUND(w, S3

i , B)
35: β∗

y ← 0 for all y ∈ S3
i

36: for n← 1...MaxIter do
37: Select one constraint y from S3

i

38: γβ∗ ← max(0, −B−δs(xi ,y+ ,y)
||ω(y+,y)||2 )

39: β∗
y ← β∗

y + γβ∗

40: w← w + γβ∗(ω(y+, y))
41: end for
42: end procedure

each set, if there is one, and perform the corre-
sponding parameter updates in Alg. 2. We re-
fer to the resulting passive-aggressive algorithm as
RM-PA, and the cutting plane version as RM-CP.
Preliminary experiments showed that RM-PA per-
forms on par with RM-CP, thus RM-PA is the one
used in the empirical evaluation below.

A graphical depiction of the passive-aggressive
RM update is presented in Figure 2. The upper
right circle represents y+, while all other squares
represent alternative hypotheses y′. As in the stan-
dard MIRA solution, we select the maximum mar-
gin constraint violator, y−, shown as the triangle,
and update such that the margin is greater than the
cost. Additionally, we select the maximum bound-
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Figure 2: RM update with margin and bounding con-
straints. The diagonal dotted line depicts cost–margin equi-
librium. The vertical gray dotted line depicts the bound B.
White arrows indicate updates triggered by constraint viola-
tions. Squares are data points in the k-best list not selected
for update in this round.

task Corpus Sentences Tokens
En Zh/Ar

Zh-En

training 1.6M 44.4M 40.4M
tune (MT06) 1664 48k 39k
MT03 919 28k 24k
MT05 1082 35k 33k

Ar-En

training 1M 23.7M 22.8M
tune (MT06) 1797 55k 49k
MT05 1056 36k 33k
MT08 1360 51k 45k
4-gram LM 24M 600M –

Table 1: Corpus statistics

ing constraint violator, yw, shown as the upside-
down triangle, and update so the distance from y+

is no greater than B.

4 Experiments

4.1 Setup

To evaluate the advantage of explicitly accounting
for the spread of the data, we conducted several
experiments on two Chinese-English translation
test sets, using two different feature sets in each.
For training we used the non-UN and non-HK
Hansards portions of the NIST training corpora,
which was segmented using the Stanford seg-
menter (Tseng et al., 2005). The data statistics are
summarized in the top half of Table 1. The English
data was lowercased, tokenized and aligned using
GIZA++ (Och and Ney, 2003) to obtain bidirec-
tional alignments, which were symmetrized using
the grow-diag-final-and method (Koehn
et al., 2003). We trained a 4-gram LM on the

English side of the corpus with additional words
from non-NYT and non-LAT, randomly selected
portions of the Gigaword v4 corpus, using modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1996). We used cdec (Dyer et al., 2010) as our
hierarchical phrase-based decoder, and tuned the
parameters of the system to optimize BLEU (Pap-
ineni et al., 2002) on the NIST MT06 corpus.

We applied several competitive optimizers as
baselines: hypergraph-based MERT (Kumar et al.,
2009), k-best variants of MIRA (Crammer et al.,
2006; Chiang et al., 2009), PRO (Hopkins and
May, 2011), and RAMPION (Gimpel and Smith,
2012). The size of the k-best list was set to 500
for RAMPION, MIRA and RM, and 1500 for PRO,
with both PRO and RAMPION utilizing k-best ag-
gregation across iterations. RAMPION settings
were as described in (Gimpel and Smith, 2012),
and PRO settings as described in (Hopkins and
May, 2011), with PRO requiring regularization
tuning in order to be competitive with the other op-
timizers. MIRA and RM were run with 15 paral-
lel learners using iterative parameter mixing (Mc-
Donald et al., 2010). All optimizers were imple-
mented in cdec and use the same system config-
uration, thus the only independent variable is the
optimizer itself. We set C to 0.01, and MaxIter
to 100. We selected the bound step size D, based
on performance on a held-out dev set, to be 0.01
for the basic feature set and 0.1 for the sparse fea-
ture set. The bound constraint B was set to 1.4 The
approximate sentence-level BLEU cost ∆i is com-
puted in a manner similar to (Chiang et al., 2009),
namely, in the context of previous 1-best transla-
tions of the tuning set. All results are averaged
over 3 runs.

4.2 Feature Sets

We experimented with a small (basic) feature set,
and a large (sparse) feature set. For the small
feature set, we use 14 features, including a lan-
guage model, 5 translation model features, penal-
ties for unknown words, the glue rule, and rule
arity. For experiments with a larger feature set,
we introduced additional lexical and non-lexical
sparse Boolean features of the form commonly
found in the literature (Chiang et al., 2009; Watan-

4We also conducted an investigation into the setting of the
B parameter. We explored alternative values for B, as well
as scaling it by the current candidate’s cost, and found that
the optimizer is fairly insensitive to these changes, resulting
in only minor differences in BLEU.
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Optimizer Zh Ar
MIRA 35k 37k
PRO 95k 115k
RAMPION 22k 24k
RM 30k 32k
Active+Inactive 3.4M 4.9M

Table 2: Active sparse feature templates

abe et al., 2007; Simianer et al., 2012).
Non-lexical features include structural distor-

tion, which captures the dependence between re-
ordering and the size of a filler, and rule shape,
which bins grammar rules by their sequence of
terminals and nonterminals (Chiang et al., 2008).
Lexical features on rules include rule ID, which
fires on a specific grammar rule. We also in-
troduce context-dependent lexical features for the
300 most frequent aligned word pairs (f ,e) in the
training corpus, which fire on triples (f ,e,f+1) and
(f ,e,f−1), capturing when we see f aligned to e,
with f+1 and f−1 occurring to the right or left of f ,
respectively. All other words fall into the default
〈unk〉 feature bin. In addition, we have insertion
and deletion features for the 150 most frequently
unaligned target and source words. These feature
templates resulted in a total of 3.4 million possible
features, of which only a fraction were active for
the respective tuning set and optimizer, as shown
in Table 2.

4.3 Results

As can be seen from the results in Table 3, our
RM method was the best performer in all Chinese-
English tests according to all measures – up to 1.9
BLEU and 6.6 TER over MIRA – even though we
only optimized for BLEU.5 Surprisingly, it seems
that MIRA did not benefit as much from the sparse
features as RM. The results are especially notable
for the basic feature setting – up to 1.2 BLEU and
4.6 TER improvement over MERT – since MERT
has been shown to be competitive with small num-
bers of features compared to high-dimensional op-
timizers such as MIRA (Chiang et al., 2008).

For the tuning set, the decoder performance was
consistently the lowest with RM, compared to the

5In the small feature set RAMPION yielded similar best
BLEU scores, but worse TER. In preliminary experiments
with a smaller trigram LM, our RM method consistently
yielded the highest scores in all Chinese-English tests – up
to 1.6 BLEU and 6.4 TER from MIRA, the second best per-
former.

other optimizers. We believe this is due to the
RM bounding constraint being more resistant to
overfitting the training data, and thus allowing for
improved generalization. Conversely, while PRO
had the second lowest tuning scores, it seemed to
display signs of underfitting in the basic and large
feature settings.

5 Additional Experiments

In order to explore the applicability of our ap-
proach to a wider range of languages, we also eval-
uated its performance on Arabic-English transla-
tion. All experimental details were the same as
above, except those noted below.

For training, we used the non-UN portion of the
NIST training corpora, which was segmented us-
ing an HMM segmenter (Lee et al., 2003). Dataset
statistics are given in the bottom part of Table 1.
The sparse feature templates resulted here in a to-
tal of 4.9 million possible features, of which again
only a fraction were active, as shown in Table 2.

As can be seen in Table 4, in the smaller feature
set, RM and MERT were the best performers, with
the exception that on MT08, MIRA yielded some-
what better (+0.7) BLEU but a somewhat worse
(-0.9) TER score than RM.

On the large feature set, RM is again the best
performer, except, perhaps, a tied BLEU score
with MIRA on MT08, but with a clear 1.8 TER

gain. In both Arabic-English feature sets, MIRA
seems to take the second place, while RAMPION

lags behind, unlike in Chinese-English (§4).6

Interestingly, RM achieved substantially higher
BLEU precision scores in all tests for both lan-
guage pairs. However, this was also usually cou-
pled had a higher brevity penalty (BP) than MIRA,
with the BP increasing slightly when moving to
the sparse setting.

6 Discussion

The trend of the results, summarized as RM gain
over other optimizers averaged over all test sets, is
presented in Table 5. RM shows clear advantage
in both basic and sparse feature sets, over all other
state-of-the-art optimizers. The RM gains are no-
tably higher in the large feature set, which we take

6In our preliminary experiments with the smaller trigram
LM, MERT did better on MT05 in the smaller feature set, and
MIRA had a small advantage in two cases. RAMPION per-
formed similarly to RM on the smaller feature set. RM’s loss
was only up to 0.8 BLEU (0.7 TER) from MERT or MIRA,
while its gains were up to 1.7 BLEU and 2.1 TER over MIRA.
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Small (basic) feature set Large (sparse) feature set
Optimizer Tune MT03 MT05 Tune MT03 MT05

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

MERT 35.4 35.8 60.8 32.4 63.9 - - - - -
MIRA 35.5 35.8 61.1 32.1 64.6 36.6 35.9 60.6 32.1 64.1
PRO 34.1 36.0 60.2 31.7 63.4 35.7 34.8 56.1 31.4 59.1

RAMPION 35.1 36.5 58.6 33.0 61.3 36.7 36.9 57.7 33.3 60.6
RM 31.3 36.5 56.4 33.6 59.3 33.2 37.5 54.6 34.0 57.5

Table 3: Performance on Zh-En with basic (left) and sparse (right) feature sets on MT03 and MT05.

Small (basic) feature set Large (sparse) feature set
Optimizer Tune MT05 MT08 Tune MT05 MT08

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

MERT 43.8 53.3 40.2 41.0 50.7 - - - - -
MIRA 43.0 52.8 40.8 41.3 50.6 44.4 53.4 40.1 41.8 50.2
PRO 41.5 51.3 41.5 39.4 51.5 46.8 53.2 40.0 41.4 49.7

RAMPION 42.4 52.0 40.8 40.0 50.8 44.6 52.9 40.4 41.0 50.4
RM 38.5 53.3 39.8 40.6 49.7 43.0 55.3 37.5 41.8 48.4

Table 4: Performance on Ar-En with basic (left) and sparse (right) feature sets on MT05 and MT08.

Small set Large set
Optimizer BLEU TER BLEU TER

MERT 0.4 2.6 - -
MIRA 0.5 3.0 1.4 4.3
PRO 1.4 2.9 2.0 1.7

RAMPION 0.6 1.6 1.2 2.8

Table 5: RM gain over other optimizers averaged
over all test sets.

as an indication for the importance of bounding
the spread.

Spread analysis: For RM, the average spread
of the projected data in the Chinese-English small
feature set was 0.9±3.6 for all tuning iterations,
and 0.7±2.9 for the iteration with the highest de-
coder performance. In comparison, the spread of
the data for MIRA was 5.9±20.5 for the best it-
eration. In the sparse setting, RM had an aver-
age spread of 0.9±2.4 for the best iteration, while
MIRA had a spread of 14.0±31.1. Similarly,
on Arabic-English, RM had a spread of 0.7±2.4
in the small setting, and 0.82±1.4 in the sparse
setting, while MIRA’s spread was 9.4±26.8 and
11.4±22.1, for the small and sparse settings, re-
spectively. Notice that the average spread for RM
stays about the same when moving to higher di-
mensions, with the variance decreasing in both
cases. For MIRA, however, the average spread

increases in both cases, with the variance being
much higher than RM. For instance, observe that
the spread of MIRA on Chinese grows from 5.9 to
14.0 in the sparse feature setting. While bounding
the spread is useful in the low-dimensional setting
(0.7-1.5 BLEU gain with RM over MIRA as shown
in Table 3), accounting for the spread is even more
crucial with sparse features, where MIRA gains
only up to 0.1 BLEU, while RM gains 1 BLEU.
These results support the claim that our imposed
bound B indeed helps decrease the spread, and
that, in turn, lower spread yields better general-
ization performance.

Error Analysis: The inconclusive advantage
of RM over MIRA (in BLEU vs. TER scores)
on Arabic-English MT08 calls for a closer look.
Therefore we conducted a coarse error analysis
on 15 randomly selected sentences from MERT,
RMM and MIRA, with basic and sparse feature
settings for the latter two. This sample yielded
450 data points for analysis: output of the 5 con-
ditions on 15 sentences scored in 6 violation cate-
gories. The categories were: function word drop,
content word drop, syntactic error (with a reason-
able meaning), semantic error (regardless of syn-
tax), word order issues, and function word mis-
translation and “hallucination”. The purpose of
this analysis was to get a qualitative feel for the
output of each model, and a better idea as to why
we obtained performance improvements. RM no-
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ticeably had more word order and excess/wrong
function word issues in the basic feature setting
than any optimizer. However, RM seemed to ben-
efit the most from the sparse features, as its bad
word order rate dropped close to MIRA, and its ex-
cess/wrong function word rate dropped below that
of MIRA with sparse features (MIRA’s rate actu-
ally doubled from its basic feature set). We con-
jecture both these issues will be ameliorated with
syntactic features such as those in Chiang et al.
(2008). This correlates with our observation that
RM’s overall BLEU score is negatively impacted
by the BP, as the BLEU precision scores are no-
ticeably higher.

K-best: RM is potentially more sensitive to the
size and order of the k-best list. While MIRA is
only concerned with the margin between y+ and
y−, RM also accounts for the distance between y+

and yw. It might be the case that a larger k-best, or
revisiting previous strategies for y+ and y− selec-
tion, such as bold updating, local updating (Liang
et al., 2006b), or max-BLEU updating (Tillmann
and Zhang, 2006) might have a greater impact.
Also, we only explored several settings of B, and
there remains a continuum of RM solutions that
trade off between margin and spread in different
ways.

Active features: Perhaps contrary to expecta-
tion, we did not see evidence of a correlation be-
tween the number of active features and optimizer
performance. RAMPION, with the fewest features,
is the closest performer to RM in Chinese, while
MIRA, with a greater number, is the closest on
Arabic. We also notice that while PRO had the
lowest BLEU scores in Chinese, it was competi-
tive in Arabic with the highest number of features.

7 Conclusions and Future Work

We have introduced RM, a novel online margin-
based algorithm designed for optimizing high-
dimensional feature spaces, which introduces con-
straints into a large-margin optimizer that bound
the spread of the projection of the data while max-
imizing the margin. The closed-form online up-
date for our relative margin solution accounts for
surrogate references and latent variables.

Experimentation in statistical MT yielded sig-
nificant improvements over several other state-
of-the-art optimizers, especially in a high-
dimensional feature space (up to 2 BLEU and 4.3
TER on average). Overall, RM achieves the best or

comparable performance according to two scoring
methods in two language pairs, with two test sets
each, in small and large feature settings. More-
over, across conditions, RM always yielded the
best combined TER-BLEU score.7

These improvements are achieved using stan-
dard, relatively small tuning sets, contrasted with
improvements involving sparse features obtained
using much larger tuning sets, on the order of
hundreds of thousands of sentences (Liang et al.,
2006a; Tillmann and Zhang, 2006; Blunsom et al.,
2008; Simianer et al., 2012). Since our approach
is complementary to scaling up the tuning data, in
future work we intend to combine these two meth-
ods. In future work we also intend to explore using
additional sparse features that are known to be use-
ful in translation, e.g. syntactic features explored
by Chiang et al. (2008).

Finally, although motivated by statistical ma-
chine translation, RM is a gradient-based method
that can easily be applied to other problems. We
plan to investigate its utility elsewhere in NLP
(e.g. for parsing) as well as in other domains in-
volving high-dimensional structured prediction.
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