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Abstract

What do we want to learn from a trans-
lation competition and how do we learn
it with confidence? We argue that a dis-
proportionate focus on ranking competi-
tion participants has led to lots of differ-
ent rankings, but little insight about which
rankings we should trust. In response, we
provide the first framework that allows an
empirical comparison of different analy-
ses of competition results. We then use
this framework to compare several analyt-
ical models on data from the Workshop on
Machine Translation (WMT).

1 The WMT Translation Competition

Every year, the Workshop on Machine Transla-
tion (WMT) conducts a competition between ma-
chine translation systems. The WMT organizers
invite research groups to submit translation sys-
tems in eight different tracks: Czech to/from En-
glish, French to/from English, German to/from
English, and Spanish to/from English.

For each track, the organizers also assemble a
panel of judges, typically machine translation spe-
cialists.1 The role of a judge is to repeatedly rank
five different translations of the same source text.
Ties are permitted. In Table 1, we show an ex-
ample2 where a judge (we’ll call him “jdoe”) has
ranked five translations of the French sentence “Il
ne va pas.”

Each such elicitation encodes ten pairwise com-
parisons, as shown in Table 2. For each compe-
tition track, WMT typically elicits between 5000
and 20000 comparisons. Once the elicitation pro-
cess is complete, WMT faces a large database
of comparisons and a question that must be an-
swered: whose system is the best?

1Although in recent competitions, some of the judging has
also been crowdsourced (Callison-Burch et al., 2010).

2The example does not use actual system output.

rank system translation
1 bbn “He does not go.”

2 (tie) uedin “He goes not.”
2 (tie) jhu “He did not go.”

4 cmu “He go not.”
5 kit “He not go.”

Table 1: WMT elicits preferences by asking
judges to simultaneously rank five translations,
with ties permitted. In this (fictional) example, the
source sentence is the French “Il ne va pas.”

source text sys1 sys2 judge preference
“Il ne va pas.” bbn cmu jdoe 1
“Il ne va pas.” bbn jhu jdoe 1
“Il ne va pas.” bbn kit jdoe 1
“Il ne va pas.” bbn uedin jdoe 1
“Il ne va pas.” cmu jhu jdoe 2
“Il ne va pas.” cmu kit jdoe 1
“Il ne va pas.” cmu uedin jdoe 2
“Il ne va pas.” jhu kit jdoe 1
“Il ne va pas.” jhu uedin jdoe 0
“Il ne va pas.” kit uedin jdoe 2

Table 2: Pairwise comparisons encoded by Ta-
ble 1. A preference of 0 means neither translation
was preferred. Otherwise the preference specifies
the preferred system.

2 A Ranking Problem

For several years, WMT used the following heuris-
tic for ranking the translation systems:

ORIGWMT(s) =
win(s) + tie(s)

win(s) + tie(s) + loss(s)

For system s, win(s) is the number of pairwise
comparisons in which s was preferred, loss(s) is
the number of comparisons in which s was dispre-
ferred, and tie(s) is the number of comparisons in
which s participated but neither system was pre-
ferred.

Recently, (Bojar et al., 2011) questioned the ad-
equacy of this heuristic through the following ar-
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gument. Consider a competition with systems A
and B. Suppose that the systems are different but
equally good, such that one third of the time A
is judged better than B, one third of the time B
is judged better than A, and one third of the time
they are judged to be equal. The expected values
of ORIGWMT(A) and ORIGWMT(B) are both
2/3, so the heuristic accurately judges the systems
to be equivalently good. Suppose however that
we had duplicated B and had submitted it to the
competition a second time as system C. Since B
and C produce identical translations, they should
always tie with one another. The expected value
of ORIGWMT(A) would not change, but the ex-
pected value of ORIGWMT(B) would increase to
5/6, buoyed by its ties with system C.

This vulnerability prompted (Bojar et al., 2011)
to offer the following revision:

BOJAR(s) =
win(s)

win(s) + loss(s)

The following year, it was BOJAR’s turn to be crit-
icized, this time by (Lopez, 2012):

Superficially, this appears to be an im-
provement....couldn’t a system still be
penalized simply by being compared
to [good systems] more frequently than
its competitors? On the other hand,
couldn’t a system be rewarded simply
by being compared against a bad system
more frequently than its competitors?

Lopez’s concern, while reasonable, is less obvi-
ously damning than (Bojar et al., 2011)’s criti-
cism of ORIGWMT. It depends on whether the
collected set of comparisons is small enough or
biased enough to make the variance in competi-
tion significant. While this hypothesis is plausi-
ble, Lopez makes no attempt to verify it. Instead,
he offers a ranking heuristic of his own, based on
a Minimum Feedback Arc solver.

The proliferation of ranking heuristics contin-
ued from there. The WMT 2012 organizers
(Callison-Burch et al., 2012) took Lopez’s ranking
scheme and provided a variant called Most Proba-
ble Ranking. Then, noting some potential pitfalls
with that, they created two more, called Monte
Carlo Playoffs and Expected Wins. While one
could raise philosophical objections about each of
these, where would it end? Ultimately, the WMT
2012 findings presented five different rankings for

the English-German competition track, with no
guidance about which ranking we should pay at-
tention to. How can we know whether one rank-
ing is better than other? Or is this even the right
question to ask?

3 A Problem with Rankings

Suppose four systems participate in a translation
competition. Three of these systems are extremely
close in quality. We’ll call these close1, close2,
and close3. Nevertheless, close1 is very slightly
better3 than close2, and close2 is very slightly bet-
ter than close3. The fourth system, called terrific,
is a really terrific system that far exceeds the other
three.

Now which is the better ranking?

terrific, close3, close1, close2 (1)

close1, terrific, close2, close3 (2)

Spearman’s rho4 would favor the second ranking,
since it is a less disruptive permutation of the gold
ranking. But intuition favors the first. While its
mistakes are minor, the second ranking makes the
hard-to-forgive mistake of placing close1 ahead of
the terrific system.

The problem is not with Spearman’s rho. The
problem is the disconnnect between the knowl-
edge that we want a ranking to reflect and the
knowledge that a ranking actually contains. With-
out this additional knowledge, we cannot deter-
mine whether one ranking is better than another,
even if we know the gold ranking. We need to
determine what information they lack, and define
more rigorously what we hope to learn from a
translation competition.

4 From Rankings to Relative Ability

Ostensibly the purpose of a translation competi-
tion is to determine the relative ability of a set
of translation systems. Let S be the space of all
translation systems. Hereafter, we will refer to S
as the space of students. We choose this term to
evoke the metaphor of a translation competition as
a standardized test, which shares the same goal: to
assess the relative abilities of a set of participants.

But what exactly do we mean by “ability”? Be-
fore formally defining this term, first recognize
that it means little without context, namely:

3What does “better” mean? We’ll return to this question.
4Or Pearson’s correlation coefficient.
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1. What kind of source text do we want the
systems to translate well? Say system A is
great at translating travel-related documents,
but terrible at translating newswire. Mean-
while, system B is pretty good at both. The
question “which system is better?” requires
us to state how much we care about travel
versus newswire documents – otherwise the
question is underspecified.

2. Who are we trying to impress? While it’s
tempting to think that translation quality is
a universal notion, the 50-60% interannota-
tor agreement in WMT evaluations (Callison-
Burch et al., 2012) suggests otherwise. It’s
also easy to imagine reasons why one group
of judges might have different priorities than
another. Think a Fortune 500 company ver-
sus web forum users. Lawyers versus lay-
men. Non-native versus native speakers.
Posteditors versus Google Translate users.
Different groups have different uses for trans-
lation, and therefore different definitions of
what “better” means.

With this in mind, let’s define some additional el-
ements of a translation competition. Let X be the
space of all possible segments of source text, J be
the space of all possible judges, and Π = {0, 1, 2}
be the space of pairwise preferences.5 We as-
sume all spaces are countable. Unless stated oth-
erwise, variables s1 and s2 represent students from
S, variable x represents a segment from X , vari-
able j represents a judge from J , and variable π
represents a preference from Π. Moreover, define
the negation π̂ of preference π such that π̂ = 2 (if
π = 1), π̂ = 1 (if π = 2), and π̂ = 0 (if π = 0).

Now assume a joint distribution
P (s1, s2, x, j, π) specifying the probability
that we ask judge j to evaluate students s1 and
s2’s respective translations of source text x, and
that judge j’s preference is π. We will further
assume that the choice of student pair, source
text, and judge are marginally independent of one
another. In other words:

P (s1, s2, x, j, π)

=
P (π|s1, s2, x, j) · P (x|s1, s2, j)

·P (j|s1, s2) · P (s1, s2)

= P (π|s1, s2, x, j) · P (x) · P (j) · P (s1, s2)

= PX (x) · PJ (j) · P (s1, s2) · P (π|s1, s2, x, j)
5As a reminder, 0 indicates no preference.

It will be useful to reserve notation PX and PJ
for the marginal distributions over source text and
judges. We can marginalize over the source seg-
ments and judges to obtain a useful quantity:

P (π|s1, s2)
=

∑

x∈X

∑

j∈J
PX (x) · PJ (j) · P (π|s1, s2, x, j)

We refer to this as the 〈PX , PJ 〉-relative ability of
students s1 and s2. By using different marginal
distributions PX , we can specify what kinds of
source text interest us (for instance, PX could
focus most of its probability mass on German
tweets). Similarly, by using different marginal
distributions PJ , we can specify what judges we
want to impress (for instance, PJ could focus all
of its mass on one important corporate customer
or evenly among all fluent bilingual speakers of a
language pair).

With this machinery, we can express the pur-
pose of a translation competition more clearly:
to estimate the 〈PX , PJ 〉-relative ability of a set
of students. In the case of WMT, PJ presum-
ably6 defines a space of competent source-to-
target bilingual speakers, while PX defines a space
of newswire documents.

We’ll refer to an estimate of P (π|s1, s2) as
a preference model. In other words, a prefer-
ence model is a distribution Q(π|s1, s2). Given
a set of pairwise comparisons (e.g., Table 2),
the challenge is to estimate a preference model
Q(π|s1, s2) such that Q is “close” to P . For mea-
suring distributional proximity, a natural choice is
KL-divergence (Kullback and Leibler, 1951), but
we cannot use it here because P is unknown.

Fortunately, if we have i.i.d. data drawn from P ,
then we can do the next best thing and compute the
perplexity of preference model Q on this heldout
test data. LetD be a sequence of triples 〈s1, s2, π〉
where the preferences π are i.i.d. samples from
P (π|s1, s2). The perplexity of preference model
Q on test data D is:

perplexity(Q|D) = 2
−∑

〈s1,s2,π〉∈D
1

|D| log2Q(π|s1,s2)

How do we obtain such a test set from competi-
tion data? Recall that a WMT competition pro-
duces pairwise comparisons like those in Table 2.

6One could argue that it specifies a space of machine
translation specialists, but likely these individuals are thought
to be a representative sample of a broader community.
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Let C be the set of comparisons 〈s1, s2, x, j, π〉
obtained from a translation competition. Com-
petition data C is not necessarily7 sampled i.i.d.
from P (s1, s2, x, j, π) because we may intention-
ally8 bias data collection towards certain students,
judges or source text. Also, because WMT elicits
its data in batches (see Table 1), every segment x
of source text appears in at least ten comparisons.

To create an appropriately-sized test set that
closely resembles i.i.d. data, we isolate the sub-
set C′ of comparisons whose source text appears
in at most k comparisons, where k is the smallest
positive integer such that |C′| >= 2000. We then
create the test set D from C′:

D = {〈s1, s2, π〉|〈s1, s2, x, j, π〉 ∈ C′}

We reserve the remaining comparisons for training
preference models. Table 3 shows the resulting
dataset sizes for each competition track.

Unlike with raw rankings, the claim that
one preference model is better than another has
testable implications. Given two competing mod-
els, we can train them on the same comparisons,
and compare their perplexities on the test set. This
gives us a quantitative9 answer to the question of
which is the better model. We can then publish
a system ranking based on the most trustworthy
preference model.

5 Baselines

Let’s begin then, and create some simple prefer-
ence models to serve as baselines.

5.1 Uniform

The simplest preference model is a uniform distri-
bution over preferences, for any choice of students
s1, s2:

Q(π|s1, s2) =
1

3
∀π ∈ Π

This will be our only model that does not require
training data, and its perplexity on any test set will
be 3 (i.e. equal to number of possible preferences).

5.2 Adjusted Uniform

Now suppose we have a set C of comparisons
available for training. Let Cπ ⊆ C denote the
subset of comparisons with preference π, and let

7In WMT, it certainly is not.
8To collect judge agreement statistics, for instance.
9As opposed to philosophical.

C(s1, s2) denote the subset comparing students s1
and s2.

Perhaps the simplest thing we can do with the
training data is to estimate the probability of ties
(i.e. preference 0). We can then distribute the
remaining probability mass uniformly among the
other two preferences:

Q(π|s1, s2) =





|C0|
|C| if π = 0

1− |C0||C|
2

otherwise

6 Simple Bayesian Models

6.1 Independent Pairs
Another simple model is the direct estimation of
each relative ability P (π|s1, s2) independently. In
other words, for each pair of students s1 and s2, we
estimate a separate preference distribution. The
maximum likelihood estimate of each distribution
would be:

Q(π|s1, s2) =
|Cπ(s1, s2)|+ |Cπ̂(s2, s1)|
|C(s1, s2)|+ |C(s2, s1)|

However the maximum likelihood estimate would
test poorly, since any zero probability estimates
for test set preferences would result in infinite per-
plexity. To make this model practical, we assume a
symmetric Dirichlet prior with strength α for each
preference distribution. This gives us the follow-
ing Bayesian estimate:

Q(π|s1, s2) =
α+ |Cπ(s1, s2)|+ |Cπ̂(s2, s1)|
3α+ |C(s1, s2)|+ |C(s2, s1)|

We call this the Independent Pairs preference
model.

6.2 Independent Students
The Independent Pairs model makes a strong inde-
pendence assumption. It assumes that even if we
know that student A is much better than student B,
and that student B is much better than student C,
we can infer nothing about how student A will fare
versus student C. Instead of directly estimating the
relative ability P (π|s1, s2) of students s1 and s2,
we could instead try to estimate the universal abil-
ity P (π|s1) =

∑
s2∈S P (π|s1, s2) · P (s2|s1) of

each individual student s1 and then try to recon-
struct the relative abilities from these estimates.

For the same reasons as before, we assume a
symmetric Dirichlet prior with strength α for each
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preference distribution, which gives us the follow-
ing Bayesian estimate:

Q(π|s1) =
α+

∑
s2∈S |Cπ(s1, s2)|+ |Cπ̂(s2, s1)|

3α+
∑

s2∈S |C(s1, s2)|+ |C(s2, s1)|

The estimatesQ(π|s1) do not yet constitute a pref-
erence model. A downside of this approach is that
there is no principled way to reconstruct a pref-
erence model from the universal ability estimates.
We experiment with three ad-hoc reconstructions.
The asymmetric reconstruction simply ignores any
information we have about student s2:

Q(π|s1, s2) = Q(π|s1)

The arithmetic and geometric reconstructions
compute an arithmetic/geometric average of the
two universal abilities:

Q(π|s1, s2) =
Q(π|s1) +Q(π̂|s2)

2

Q(π|s1, s2) = [Q(π|s1) ∗Q(π̂|s2)]
1
2

We respectively call these the (Asymmet-
ric/Arithmetic/Geometric) Independent Students
preference models. Notice the similarities be-
tween the universal ability estimates Q(π|s1) and
the BOJAR ranking heuristic. These three models
are our attempt to render the BOJAR heuristic as
preference models.

7 Item-Response Theoretic (IRT) Models

Let’s revisit (Lopez, 2012)’s objection to the BO-
JAR ranking heuristic: “...couldn’t a system still be
penalized simply by being compared to [good sys-
tems] more frequently than its competitors?” The
official WMT 2012 findings (Callison-Burch et al.,
2012) echoes this concern in justifying the exclu-
sion of reference translations from the 2012 com-
petition:

[W]orkers have a very clear preference
for reference translations, so includ-
ing them unduly penalized systems that,
through (un)luck of the draw, were pit-
ted against the references more often.

Presuming the students are paired uniformly at
random, this issue diminishes as more compar-
isons are elicited. But preference elicitation is ex-
pensive, so it makes sense to assess the relative
ability of the students with as few elicitations as
possible. Still, WMT 2012’s decision to eliminate

references entirely is a bit of a draconian mea-
sure, a treatment of the symptom rather than the
(perceived) disease. If our models cannot function
in the presence of training data variation, then we
should change the models, not the data. A model
that only works when the students are all about the
same level is not one we should rely on.

We experiment with a simple model that relaxes
some independence assumptions made by previ-
ous models, in order to allow training data vari-
ation (e.g. who a student has been paired with)
to influence the estimation of the student abili-
ties. Figure 1(left) shows plate notation (Koller
and Friedman, 2009) for the model’s indepen-
dence structure. First, each student’s ability dis-
tribution is drawn from a common prior distribu-
tion. Then a number of translation items are gen-
erated. Each item is authored by a student and has
a quality drawn from the student’s ability distri-
bution. Then a number of pairwise comparisons
are generated. Each comparison has two options,
each a translation item. The quality of each item
is observed by a judge (possibly noisily) and then
the judge states a preference by comparing the two
observations.

We investigate two parameterizations of this
model: Gaussian and categorical. Figure 1(right)
shows an example of the Gaussian parameteriza-
tion. The student ability distributions are Gaus-
sians with a known standard deviation σa, drawn
from a zero-mean Gaussian prior with known stan-
dard deviation σ0. In the example, we show
the ability distributions for students 6 (an above-
average student, whose mean is 0.4) and 14 (a
poor student, whose mean is -0.6). We also show
an item authored by each student. Item 43 has
a somewhat low quality of -0.3 (drawn from stu-
dent 14’s ability distribution), while item 205 is
not student 6’s best work (he produces a mean
quality of 0.4), but still has a decent quality at 0.2.
Comparison 1 pits these items against one another.
A judge draws noise from a zero-mean Gaussian
with known standard deviation σobs, then adds this
to the item’s actual quality to get an observed qual-
ity. For the first option (item 43), the judge draws a
noise of -0.12 to observe a quality of -0.42 (worse
than it actually is). For the second option (item
205), the judge draws a noise of 0.15 to observe a
quality of 0.35 (better than it actually is). Finally,
the judge compares the two observed qualities. If
the absolute difference is lower than his decision
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student.6.ability 
Gauss(0.4, σa) 

item.43.author 

14 

item.43.quality 

-0.3 

comp.1.opt1 

43 

comp.1.opt1.obs 

-0.42 

comp.1.pref 

2 

comp.1.opt2 

205 

comp.1.opt2.obs 

0.35 

student.prior 
Gauss(0.0, σ0)  

decision.radius 

0.5 

obs.parameters 
Gauss(0.0, σobs) 

item.205.author 

6 

item.205.quality 

0.2 

student.14.ability 
Gauss(-0.6, σa) 

student.s.ability item.i.author 

item.i.quality 

comp.c.opt1 

comp.c.opt1.obs 

comp.c.pref 

comp.c.opt2 

comp.c.opt2.obs 

S 

I 

C 

student.prior 

decision.radius 

obs.parameters 

Figure 1: Plate notation (left) showing the independence structure of the IRT Models. Example instan-
tiated subnetwork (right) for the Gaussian parameterization. Shaded rectangles are hyperparameters.
Shaded ellipses are variables observable from a set of comparisons.

radius (which here is 0.5), then he states no prefer-
ence (i.e. a preference of 0). Otherwise he prefers
the item with the higher observed quality.

The categorical parameterization is similar to
the Gaussian parameterization, with the following
differences. Item quality is not continuous, but
rather a member of the discrete set {1, 2, ...,Λ}.
The student ability distributions are categorical
distributions over {1, 2, ...,Λ}, and the student
ability prior is a symmetric Dirichlet with strength
αa. Finally, the observed quality is the item qual-
ity λ plus an integer-valued noise ν ∈ {1 −
λ, ...,Λ− λ}. Noise ν is drawn from a discretized
zero-mean Gaussian with standard deviation σobs.
Specifically, Pr(ν) is proportional to the value of
the probability density function of the zero-mean
Gaussian N (0, σobs).

We estimated the model parameters with Gibbs
sampling (Geman and Geman, 1984). We found
that Gibbs sampling converged quickly and con-
sistently10 for both parameterizations. Given the
parameter estimates, we obtain a preference model
Q(π|s1, s2) through the inference query:

Pr(comp.c′.pref = π | item.i′.author = s1,

item.i′′.author = s2,

comp.c′.opt1 = i′,

comp.c′.opt2 = i′′)
10We ran 200 iterations with a burn-in of 50.

where c′, i′, i′′ are new comparison and item ids
that do not appear in the training data.

We call these models Item-Response Theo-
retic (IRT) models, to acknowledge their roots
in the psychometrics (Thurstone, 1927; Bradley
and Terry, 1952; Luce, 1959) and item-response
theory (Hambleton, 1991; van der Linden and
Hambleton, 1996; Baker, 2001) literature. Item-
response theory is the basis of modern testing
theory and drives adaptive standardized tests like
the Graduate Record Exam (GRE). In particular,
the Gaussian parameterization of our IRT models
strongly resembles11 the Thurstone (Thurstone,
1927) and Bradley-Terry-Luce (Bradley and Terry,
1952; Luce, 1959) models of paired compari-
son and the 1PL normal-ogive and Rasch (Rasch,
1960) models of student testing. From the test-
ing perspective, we can view each comparison as
two students simultaneously posing a test question
to the other: “Give me a translation of the source
text which is better than mine.” The students can
answer the question correctly, incorrectly, or they
can provide a translation of analogous quality. An
extra dimension of our models is judge noise, not
a factor when modeling multiple-choice tests, for
which the right answer is not subject to opinion.

11These models are not traditionally expressed using
graphical models, although it is not unprecedented (Mislevy
and Almond, 1997; Mislevy et al., 1999).
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wmt10 wmt11 wmt12
lp train test train test train test
ce 3166 2209 1706 3216 5969 6806
fe 5918 2376 2556 4430 7982 5840
ge 7422 3002 3708 5371 8106 6032
se 8411 2896 1968 3684 3910 7376
ec 10490 3048 8859 9016 13770 9112
ef 5720 2242 3328 5758 7841 7508
eg 10852 2842 5964 7032 10210 7191
es 2962 2212 4768 6362 5664 8928

Table 3: Dataset sizes for each competition track
(number of comparisons).

Figure 2: WMT10 model perplexities. The per-
plexity of the uniform preference model is 3.0 for
all training sizes.

8 Experiments

We organized the competition data as described at
the end of Section 4. To compare the preference
models, we did the following:

• Randomly chose a subset of k compar-
isons from the training set, for k ∈
{100, 200, 400, 800, 1600, 3200}.12

• Trained the preference model on these com-
parisons.

• Evaluated the perplexity of the trained model
on the test preferences, as described in Sec-
tion 4.

For each model and training size, we averaged
the perplexities from 5 trials of each competition
track. We then plotted average perplexity as a
function of training size. These graphs are shown

12If k was greater than the total number of training com-
parisons, then we took the entire set.

Figure 3: WMT11 model perplexities.

Figure 4: WMT12 model perplexities.

in Figure 2 (WMT10)13, and Figure 4 (WMT12).
For WMT10 and WMT11, the best models were
the IRT models, with the Gaussian parameteriza-
tion converging the most rapidly and reaching the
lowest perplexity. For WMT12, in which refer-
ence translations were excluded from the compe-
tition, four models were nearly indistinguishable:
the two IRT models and the two averaged Indepen-
dent Student models. This somewhat validates the
organizers’ decision to exclude the references, par-
ticularly given WMT’s use of the BOJAR ranking
heuristic (the nucleus of the Independent Student
models) for its official rankings.

13Results for WMT10 exclude the German-English and
English-German tracks, since we used these to tune our
model hyperparameters. These were set as follows. The
Dirichlet strength for each baseline was 1. For IRT-Gaussian:
σ0 = 1.0, σobs = 1.0, σa = 0.5, and the decision radius was
0.4. For IRT-Categorical: Λ = 8, σobs = 1.0, αa = 0.5, and
the decision radius was 0.
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Figure 6: English-Czech WMT11 results (average of 5 trainings on 1600 comparisons). Error bars
(left) indicate one stddev of the estimated ability means. In the heatmap (right), cell (s1, s2) is darker if
preference model Q(π|s1, s2) skews in favor of student s1, lighter if it skews in favor of student s2.

Figure 5: WMT10 model perplexities (crowd-
sourced versus expert training).

The IRT models proved the most robust at han-
dling judge noise. We repeated the WMT10 ex-
periment using the same test sets, but using the
unfiltered crowdsourced comparisons (rather than
“expert”14 comparisons) for training. Figure 5
shows the results. Whereas the crowdsourced
noise considerably degraded the Geometric Inde-
pendent Students model, the IRT models were re-
markably robust. IRT-Gaussian in particular came
close to replicating the performance of Geometric
Independent Students trained on the much cleaner
expert data. This is rather impressive, since the
crowdsourced judges agree only 46.6% of the
time, compared to a 65.8% agreement rate among

14I.e., machine translation specialists.

expert judges (Callison-Burch et al., 2010).
Another nice property of the IRT models is

that they explicitly model student ability, so they
yield a natural ranking. For training size 1600 of
the WMT11 English-Czech track, Figure 6 (left)
shows the mean student abilities learned by the
IRT-Gaussian model. The error bars show one
standard deviation of the ability means (recall that
we performed 5 trials, each with a random training
subset of size 1600). These results provide fur-
ther insight into a case analyzed by (Lopez, 2012),
which raised concern about the relative ordering
of online-B, cu-bojar, and cu-marecek. Accord-
ing to IRT-Gaussian’s analysis of the data, these
three students are so close in ability that any order-
ing is essentially arbitrary. Short of a full ranking,
the analysis does suggest four strata. Viewing one
of IRT-Gaussian’s induced preference models as
a heatmap15 (Figure 6, right), four bands are dis-
cernable. First, the reference sentences are clearly
the darkest (best). Next come students 2-7, fol-
lowed by the slightly lighter (weaker) students 8-
10, followed by the lightest (weakest) student 11.

9 Conclusion

WMT has faced a crisis of confidence lately, with
researchers raising (real and conjectured) issues
with its analytical methodology. In this paper,
we showed how WMT can restore confidence in

15In the heatmap, cell (s1, s2) is darker if preference model
Q(π|s1, s2) skews in favor of student s1, lighter if it skews
in favor of student s2.
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its conclusions – by shifting the focus from rank-
ings to relative ability. Estimates of relative ability
(the expected head-to-head performance of system
pairs over a probability space of judges and source
text) can be empirically compared, granting sub-
stance to previously nebulous questions like:

1. Is my analysis better than your analysis?
Rather than the current anecdotal approach
to comparing competition analyses (e.g. pre-
senting example rankings that seem some-
how wrong), we can empirically compare the
predictive power of the models on test data.

2. How much of an impact does judge noise
have on my conclusions? We showed
that judge noise can have a significant im-
pact on the quality of our conclusions, if we
use the wrong models. However, the IRT-
Gaussian appears to be quite noise-tolerant,
giving similar-quality conclusions on both
expert and crowdsourced comparisons.

3. How many comparisons should I elicit?
Many of our preference models (including
IRT-Gaussian and Geometric Independent
Students) are close to convergence at around
1000 comparisons. This suggests that we can
elicit far fewer comparisons and still derive
confident conclusions. This is the first time
a concrete answer to this question has been
provided.
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