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Abstract

We propose a Name-aware Machine
Translation (MT) approach which can
tightly integrate name processing into MT
model, by jointly annotating parallel cor-
pora, extracting name-aware translation
grammar and rules, adding name phrase
table and name translation driven decod-
ing. Additionally, we also propose a new
MT metric to appropriately evaluate the
translation quality of informative words,
by assigning different weights to differ-
ent words according to their importance
values in a document. Experiments on
Chinese-English translation demonstrated
the effectiveness of our approach on en-
hancing the quality of overall translation,
name translation and word alignment over
a high-quality MT baseline1.

1 Introduction

A shrinking fraction of the world’s Web pages are
written in English, therefore the ability to access
pages across a range of languages is becoming in-
creasingly important. This need can be addressed
in part by cross-lingual information access tasks
such as entity linking (McNamee et al., 2011; Cas-
sidy et al., 2012), event extraction (Hakkani-Tur
et al., 2007), slot filling (Snover et al., 2011) and
question answering (Parton et al., 2009; Parton
and McKeown, 2010). A key bottleneck of high-
quality cross-lingual information access lies in the
performance of Machine Translation (MT). Tradi-
tional MT approaches focus on the fluency and
accuracy of the overall translation but fall short
in their ability to translate certain content word-
s including critical information, especially names.

1Some of the resources and open source programs devel-
oped in this work are made freely available for research pur-
pose at http://nlp.cs.qc.cuny.edu/NAMT.tgz

A typical statistical MT system can only trans-
late 60% person names correctly (Ji et al., 2009).
Incorrect segmentation and translation of names
which often carry central meanings of a sentence
can also yield incorrect translation of long con-
texts. Names have been largely neglected in the
prior MT research due to the following reasons:

• The current dominant automatic MT scoring
metrics (such as Bilingual Evaluation Under-
study (BLEU) (Papineni et al., 2002)) treat
all words equally, but names have relative low
frequency in text (about 6% in newswire and
only 3% in web documents) and thus are vast-
ly outnumbered by function words and com-
mon nouns, etc..
• Name translations pose a greater complexity

because the set of names is open and highly
dynamic. It is also important to acknowledge
that there are many fundamental differences
between the translation of names and other
tokens, depending on whether a name is ren-
dered phonetically, semantically, or a mixture
of both (Ji et al., 2009).
• The artificial settings of assigning low

weights to information translation (compared
to overall word translation) in some large-
scale government evaluations have discour-
aged MT developers to spend time and ex-
plore resources to tackle this problem.

We propose a novel Name-aware MT (NAMT)
approach which can tightly integrate name pro-
cessing into the training and decoding processes of
an end-to-end MT pipeline, and a new name-aware
metric to evaluate MT which can assign different
weights to different tokens according to their im-
portance values in a document. Compared to pre-
vious methods, the novel contributions of our ap-
proach are:

1. Tightly integrate joint bilingual name tag-
ging into MT training by coordinating tagged
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names in parallel corpora, updating word seg-
mentation, word alignment and grammar ex-
traction (Section 3.1).

2. Tightly integrate name tagging and transla-
tion into MT decoding via name-aware gram-
mar (Section 3.2).

3. Optimize name translation and context trans-
lation simultaneously and conduct name
translation driven decoding with language
model (LM) based selection (Section 3.2).

4. Propose a new MT evaluation metric which
can discriminate names and non-informative
words (Section 4).

2 Baseline MT

As our baseline, we apply a high-performing
Chinese-English MT system (Zheng, 2008; Zheng
et al., 2009) based on hierarchical phrase-based
translation framework (Chiang, 2005). It is based
on a weighted synchronous context-free grammar
(SCFG). All SCFG rules are associated with a set
of features that are used to compute derivation
probabilities. The features include:

• Relative frequency in two directions P (γ|α)
andP (α|γ), estimating the likelihoods of one
side of the rule r: X →< γ, α > translating
into the other side, where γ and α are strings
of terminals and non-terminals in the source
side and target side. Non-terminals in γ and
α are in one-to-one correspondence.
• Lexical weights in two directions: Pw(γ|α)

andPw(α|γ), estimating likelihoods of word-
s in one side of the rule r: X →< γ, α >
translating into the other side (Koehn et al.,
2003).
• Phrase penalty: a penalty exp(1) for a rule

with no non-terminal being used in deriva-
tion.
• Rule penalty: a penalty exp(1) for a rule

with at least one non-terminal being used in
derivation.
• Glue rule penalty: a penalty exp(1) if a glue

rule used in derivation.
• Translation length: number of words in trans-

lation output.

Our previous work showed that combining mul-
tiple LMs trained from different sources can lead
to significant improvement. The LM used for de-
coding is a log-linear combination of four word
n-gram LMs which are built on different English

corpora (details described in section 5.1), with
the LM weights optimized on a development set
and determined by minimum error rate training
(MERT), to estimate the probability of a word giv-
en the preceding words. All four LMs were trained
using modified Kneser-Ney smoothing algorithm
(Chen and Goodman, 1996) and converted into
Bloom filter LMs (Talbot and Brants, 2008) sup-
porting memory map.

The scaling factors for all features are optimized
by minimum error rate training algorithm to max-
imize BLEU score (Och, 2003). Given an input
sentence in the source language, translation into
the target language is cast as a search problem,
where the goal is to find the highest-probability
derivation that generates the source-side sentence,
using the rules in our SCFG. The source-side
derivation corresponds to a synchronous target-
side derivation and the terminal yield of this target-
side derivation is the output of the system. We em-
ploy our CKY-style chart decoder, named SRInter-
p, to solve the search problem.

3 Name-aware MT

We tightly integrate name processing into the
above baseline to construct a NAMT model. Fig-
ure 1 depicts the general procedure.

3.1 Training

This basic training process of NAMT requires us
to apply a bilingual name tagger to annotate par-
allel training corpora. Traditional name tagging
approaches for single languages cannot address
this requirement because they were all built on da-
ta and resources which are specific to each lan-
guage without using any cross-lingual features.
In addition, due to separate decoding processes
the results on parallel data may not be consistent
across languages. We developed a bilingual joint
name tagger (Li et al., 2012) based on condition-
al random fields that incorporates both monolin-
gual and cross-lingual features and conducts join-
t inference, so that name tagging from two lan-
guages can mutually enhance each other and there-
fore inconsistent results can be corrected simulta-
neously. This joint name tagger achieved 86.3%
bilingual pair F-measure with manual alignment
and 84.4% bilingual pair F-measure with automat-
ic alignment as reported in (Li et al., 2012). Given
a parallel sentence pair we first apply Giza++ (Och
and Ney, 2003) to align words, and apply this join-
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Figure 1: Architecture of Name-aware Machine Translation System.

t bilingual name tagger to extract three types of
names: (Person (PER), Organization (ORG) and
Geo-political entities (GPE)) from both the source
side and the target side. We pair two entities from
two languages, if they have the same entity type
and are mapped together by word alignment. We
ignore two kinds of names: multi-word names
with conflicting boundaries in two languages and
names only identified in one side of a parallel sen-
tence.

We built a NAMT system from such name-
tagged parallel corpora. First, we replace tagged
name pairs with their entity types, and then
use Giza++ and symmetrization heuristics to re-
generate word alignment. Since the name tags ap-
pear very frequently, the existence of such tags
yields improvement in word alignment quality.
The re-aligned parallel corpora are used to train
our NAMT system based on SCFG. Since the joint
name tagger ensures that each tagged source name
has a corresponding translation on the target side
(and vice versa), we can extract SCFG rules by
treating the tagged names as non-terminals.

However, the original parallel corpora contain
many high-frequency names, which can already be
handled well by the baseline MT. Some of these
names carry special meanings that may influence
translations of the neighboring words, and thus re-
placing them with non-terminals can lead to infor-
mation loss and weaken the translation model. To
address this issue, we merged the name-replaced
parallel data with the original parallel data and ex-
tract grammars from the combined corpus. For ex-
ample, given the following sentence pair:

• -ýÍù�e¿�Ëe�åÉ²� .
• China appeals to world for non involvement

in Angola conflict .

after name tagging it becomes

• GPEÍù�e¿�Ëe GPE²� .
• GPE appeals to world for non involvement in

GPE conflict .

Both sentence pairs are kept in the combined data
to build the translation model.

3.2 Decoding
During decoding phase, we extract names with
the baseline monolingual name tagger described
in (Li et al., 2012) from a source document. It-
s performance is comparable to the best report-
ed results on Chinese name tagging on Automat-
ic Content Extraction (ACE) data (Ji and Grish-
man, 2006; Florian et al., 2006; Zitouni and Flo-
rian, 2008; Nguyen et al., 2010). Then we ap-
ply a state-of-the-art name translation system (Ji
et al., 2009) to translate names into the target lan-
guage. The name translation system is composed
of the following steps: (1) Dictionary matching
based on 150,041 name translation pairs; (2) Sta-
tistical name transliteration based on a structured
perceptron model and a character based MT mod-
el (Dayne and Shahram, 2007); (3) Context infor-
mation extraction based re-ranking.

In our NAMT framework, we add the following
extensions to name translation.

We developed a name origin classifier based on
Chinese last name list (446 name characters) and
name structure parsing features to distinguish Chi-
nese person names and foreign person names (Ji,
2009), so that pinyin conversion is applied for Chi-
nese names while name transliteration is applied
only for foreign names. This classifier works rea-
sonably well in most cases (about 92% classifica-
tion accuracy), except when a common Chinese
last name appears as the first character of a foreign

606



name, such as “1�” which can be translated ei-
ther as “Jolie” or “Zhu Li”.

For those names with fewer than five instances
in the training data, we use the name translation
system to provide translations; for the rest of the
names, we leave them to the baseline MT mod-
el to handle. The joint bilingual name tagger was
also exploited to mine bilingual name translation
pairs from parallel training corpora. The mapping
score between a Chinese name and an English
name was computed by the number of aligned to-
kens. A name pair is extracted if the mapping
score is the highest among all combinations and
the name types on both sides are identical. It is
necessary to incorporate word alignment as addi-
tional constraints because the order of names is of-
ten changed after translation. Finally, the extract-
ed 9,963 unique name translation pairs were also
used to create an additional name phrase table for
NAMT. Manual evaluation on 2,000 name pairs
showed the accuracy is 86%.

The non-terminals in SCFG rules are rewritten
to the extracted names during decoding, therefore
allow unseen names in the test data to be trans-
lated. Finally, based on LMs, our decoder ex-
ploits the dynamically created phrase table from
name translation, competing with originally ex-
tracted rules, to find the best translation for the
input sentence.

4 Name-aware MT Evaluation

Traditional MT evaluation metrics such as
BLEU (Papineni et al., 2002) and Translation Ed-
it Rate (TER) (Snover et al., 2006) assign the
same weights to all tokens equally. For exam-
ple, incorrect translations of “the” and “Bush” will
receive the same penalty. However, for cross-
lingual information processing applications, we
should acknowledge that certain informationally
critical words are more important than other com-
mon words. In order to properly evaluate the trans-
lation quality of NAMT methods, we propose to
modify the BLEU metric so that they can dynam-
ically assign more weights to names during evalu-
ation.

BLEU considers the correspondence between a
system translation and a human translation:

BLEU = BP · exp
( N∑

n=1

wn log pn

)
(1)

where BP is brevity penalty defined as follows:

BP =

{
1 if c > r,

e(1−r/c) if c ≤ r.
(2)

where wn is a set of positive weights summing to
one and usually uniformly set as wn = 1/N , c is
the length of the system translation and r is the
length of reference translation, and pn is modified
n-gram precision defined as:

pn =

∑
C∈Candidates

∑
n-gram∈C

Countclip(n-gram)

∑
C′∈Candidates

∑
n-gram′∈C′

Countclip(n-gram′)

(3)
where C and C ′ are translation candidates in the
candidate sentence set, if a source sentence is
translated to many candidate sentences.

As in BLEU metric, we first count the maxi-
mum number of times an n-gram occurs in any s-
ingle reference translation. The total count of each
candidate n-gram is clipped at sentence level by it-
s maximum reference count. Then we add up the
weights of clipped n-grams and divide them by the
total weight of all n-grams.

Based on BLEU score, we design a name-aware
BLEU metric as follows. Depending on whether a
token t is contained in a name in reference trans-
lation, we assign a weight weightt to t as follows:

weightt ={
1− e−tf(t,d)·idf(t,D), if t never appears in names
1 + PE

Z
, if t occurs in name(s)

(4)

where PE is the sum of penalties of non-name
tokens and Z is the number of tokens within all
names:

PE =
∑

t never appears in names

e−tf(t,d)·idf(t,D) (5)

In this paper, the tf · idf score is computed at sen-
tence level, therefore, D is the sentence set and
each d ∈ D is a sentence.

The weight of an n-gram in reference translation
is the sum of weights of all tokens it contains.

weightngram =
∑

t∈ngram
weightt (6)

Next, we compute the weighted modified n-
gram precision Countweight−clip(n-gram) as fol-
lows:
Countweight−clip(n-gram) =

∑

if the ngrami is correctly translated

weightngrami
(7)

607



The Countclip(n-gram) in the equation 3 is
substituted with aboveCountweight−clip(n-gram).
When we sum up the total weight of all n-grams of
a candidate translation, some n-grams may contain
tokens which do not exist in reference translation.
We assign the lowest weight of tokens in reference
translation to these rare tokens.

We also add an item, name penalty NP , to
penalize the output sentences which contain too
many or too few names:

NP = e−(
u
v
−1)2/2σ (8)

where u is the number of name tokens in system
translation and v is the number of name tokens in
reference translation.

Finally the name-aware BLEU score is defined
as:

BLEUNA = BP ·NP · exp
( N∑

n=1

wn logwpn

)
(9)

This new metric can also be applied to evalu-
ate MT approaches which emphasize other types
of facts such as events, by simply replacing name
tokens by other fact tokens.

5 Experiments

In this section we present the experimental results
of NAMT compared to the baseline MT.

5.1 Data Set
We used a large Chinese-English MT training cor-
pus from various sources and genres (including
newswire, web text, broadcast news and broadcast
conversations) for our experiments. We also used
some translation lexicon data and Wikipedia trans-
lations. The majority of the data sets were col-
lected or made available by LDC for U.S. DARPA
Translingual Information Detection, Extraction
and Summarization (TIDES) program, Global Au-
tonomous Language Exploitation (GALE) pro-
gram, Broad Operational Language Translation
(BOLT) program and National Institute of Stan-
dards and Technology (NIST) MT evaluations.
The training corpus includes 1,686,458 sentence
pairs. The joint name tagger extracted 1,890,335
name pairs (295,087 Persons, 1,269,056 Geo-
political entities and 326,192 Organizations).

Four LMs, denoted LM1, LM2, LM3, and
LM4, were trained from different English cor-
pora. LM1 is a 7-gram LM trained on the tar-

get side of Chinese-English and Egyptian Arabic-
English parallel text, English monolingual discus-
sion forums data R1-R4 released in BOLT Phase
1 (LDC2012E04, LDC2012E16, LDC2012E21,
LDC2012E54), and English Gigaword Fifth Edi-
tion (LDC2011T07). LM2 is a 7-gram LM trained
only on the English monolingual discussion fo-
rums data listed above. LM3 is a 4-gram LM
trained on the web genre among the target side
of all parallel text (i.e., web text from pre-BOLT
parallel text and BOLT released discussion fo-
rum parallel text). LM4 is a 4-gram LM trained
on the English broadcast news and conversation
transcripts released under the DARPA GALE pro-
gram. Note that for LM4 training data, some tran-
scripts were quick transcripts and quick rich tran-
scripts released by LDC, and some were generated
by running flexible alignment of closed captions or
speech recognition output from LDC on the audio
data (Venkataraman et al., 2004).

In order to demonstrate the effectiveness and
generality of our approach, we evaluated our ap-
proach on seven test sets from multiple genres and
domains. We asked four annotators to annotate
names in four reference translations of each sen-
tence and an expert annotator to adjudicate result-
s. The detailed statistics and name distribution of
each test data set is shown in Table 1. The per-
centage of names occurred fewer than 5 times in
training data are listed in the brackets in the last
column of the table.

5.2 Overall Performance
Besides the new name-aware MT metric, we also
adopt two traditional metrics, TER to evaluate the
overall translation performance and Named Entity
Weak Accuracy (NEWA) (Hermjakob et al., 2008)
to evaluate the name translation performance.

TER measures the amount of edits required to
change a system output into one of the reference
translations. Specifically:

TER =
# of edits

average # of reference words
(10)

Possible edits include insertion, substitution dele-
tion and shifts of words.

The NEWA metric is defined as follows. Us-
ing a manually assembled name variant table, we
also support the matching of name variants (e.g.,
“World Health Organization” and “WHO”).

NEWA =
Count # of correctly translated names

Count # of names in references
(11)
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Corpus Genre Sentence # Word # Token # GPE(%) PER(%) ORG(%) All names
in source in reference (% occurred < 5)

BOLT 1 forum 1,200 20,968 24,193 875(82.9) 90(8.5) 91(8.6) 1,056 (51.4)
BOLT 2 forum 1,283 23,707 25,759 815(73.7) 141(12.8) 149(13.5) 1,105 (65.9)
BOLT 3 forum 2,000 38,595 42,519 1,664(80.4) 204(9.8) 204(9.8) 2,072 (47.4)
BOLT 4 forum 1,918 41,759 47,755 1,852(80.0) 348(25.0) 113(5.0) 2,313 (53.3)
BOLT 5 blog 950 23,930 26,875 352(42.5) 235(28.3) 242(29.2) 829 (55.3)

NIST2006 news&blog 1,664 38,442 45,914 1,660(58.2) 568(19.9) 625(21.9) 2,853 (73.1)
NIST2008 news&blog 1,357 32,646 37,315 700(47.9) 367(25.1) 395(27.0) 1,462 (72.0)

Table 1: Statistics and Name Distribution of Test Data Sets.

Metric System BOLT 1 BOLT 2 BOLT 3 BOLT 4 BOLT 5 NIST2006 NIST2008

BLEU
Baseline 14.2 14.0 17.3 15.6 15.3 35.5 29.3
NPhrase 14.1 14.4 17.1 15.4 15.3 35.4 29.3
NAMT 14.2 14.6 16.9 15.7 15.5 36.3 30.0

Name-aware BLEU
Baseline 18.2 17.9 18.6 17.6 18.3 36.1 31.7
NPhrase 18.1 18.8 18.5 18.1 18.0 35.8 31.8
NAMT 18.4 19.5 19.7 18.2 18.9 39.4 33.1

TER
Baseline 70.6 71.0 69.4 70.3 67.1 58.7 61.0
NPhrase 70.6 70.4 69.4 70.4 67.1 58.7 60.9
NAMT 70.3 70.2 69.2 70.1 66.6 57.7 60.5

NEWA

All
Baseline 69.7 70.1 73.9 72.3 60.6 66.5 60.4
NPhrase 69.8 71.1 73.8 72.5 60.6 68.3 61.9
NAMT 71.4 72.0 77.7 75.1 62.7 72.9 63.2

GPE
Baseline 72.8 78.4 80.0 78.7 81.3 79.2 76.0
NPhrase 73.6 79.3 79.2 78.9 82.3 82.6 79.5
NAMT 74.2 80.2 82.8 80.4 79.3 85.5 79.3

PER
Baseline 53.3 44.7 45.1 49.4 48.9 54.2 51.2
NPhrase 52.2 45.4 48.9 48.5 47.6 55.1 50.9
NAMT 55.6 45.4 58.8 55.2 56.2 60.0 52.3

ORG
Baseline 56.0 49.0 52.9 38.1 41.7 44.0 41.3
NPhrase 50.5 50.3 54.4 40.7 41.3 42.2 40.7
NAMT 60.4 52.3 55.4 41.6 45.0 51.0 44.8

Table 2: Translation Performance (%).

For better comparison with NAMT, besides the
original baseline, we develop the other baseline
system by adding name translation table into the
phrase table (NPhrase).

Table 2 presents the performance of overal-
l translation and name translation. We can see
that except for the BOLT3 data set with BLEU
metric, our NAMT approach consistently outper-
formed the baseline system for all data sets with
all metrics, and provided up to 23.6% relative er-
ror reduction on name translation. According to
Wilcoxon Matched-Pairs Signed-Ranks Test, the
improvement is not significant with BLEU metric,
but is significant at 98% confidence level with all
of the other metrics. The gains are more signifi-
cant for formal genres than informal genres main-
ly because most of the training data for name tag-
ging and name translation were from newswire.
Furthermore, using external name translation table
only did not improve translation quality in most
test sets except for BOLT2. Therefore, it is im-
portant to use name-replaced corpora for rule ex-
traction to fully take advantage of improved word
alignment.

Many errors from the baseline MT approach oc-

curred because some parts of out-of-vocabulary
names were mistakenly segmented into common
words. For example, the baseline MT system mis-
takenly translated a person name “Y¢÷ (Sun
Honglei)” into “Sun red thunder”. In informal
genres such as discussion forums and web blogs,
even common names often appear in rare form-
s due to misspelling or morphing. For example,
“e8l (Obama)” was mistakenly translated into
“Ma Olympic”. Such errors can be compounded
when word re-ordering was applied. For example,
the following sentence: “í����ÏØ�/:
'J��/iy (Guo Meimei’s strength real-
ly is formidable, I really admire her)” was mis-
takenly translated into “Guo the strength of the
America and the America also really strong , ah
, really admire her” by the baseline MT system
because the person name “í�� (Guomeimei)”
was mistakenly segmented into three words “í
(Guo)”, “� (the America)” and “� (the Ameri-
ca)”. But our NAMT approach successfully iden-
tified and translated this name and also generated
better overall translation: “Guo Meimei ’s power
is also really strong , ah , really admire her”.
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Figure 2: Scores based on Automatic Metrics and Human
Evaluation.

5.3 Name-aware BLEU vs The Human
Evaluation

In order to investigate the correlation between
name-aware BLEU scores and human judgment
results, we asked three bi-lingual speakers to judge
our translation output from the baseline system
and the NAMT system, on a Chinese subset of 250
sentences (each sentence has two corresponding
translations from baseline and NAMT) extracted
randomly from 7 test corpora. The annotators rat-
ed each translation from 1 (very bad) to 5 (very
good) and made their judgments based on whether
the translation is understandable and conveys the
same meaning.

We computed the name-aware BLEU scores on
the subset and also the aggregated average scores
from human judgments. Figure 2 shows that
NAMT consistently achieved higher scores with
both name-aware BLEU metric and human judge-
ment. Furthermore, we calculated three Pearson
product-moment correlation coefficients between
human judgment scores and name-aware BLEU s-
cores of these two MT systems. Give the sample
size and the correlation coefficient value, the high
significance value of 0.99 indicates that name-
aware BLEU tracks human judgment well.

5.4 Word Alignment
It is also important to investigate the impact of our
NAMT approach on improving word alignmen-
t. We conducted the experiment on the Chinese-
English Parallel Treebank (Li et al., 2010) with
ground-truth word alignment. The detailed pro-
cedure following NAMT framework is as follows:
(1) Ran the joint bilingual name tagger; (2) Re-
placed each name string with its name type (PER,
ORG or GPE), and ran Giza++ on the replaced
sentences; (3) Ran Giza++ on the words within

Words Method P R F 
Baseline Giza++ 69.8 47.8 56.7 
Joint Name 
Tagging 

70.4 48.1 57.1 
 
Overall 
Words 

Ground-truth 
Name Tagging 
(Upper-bound) 

71.3 48.9 58.0 

Baseline Giza++ 86.0 31.4 46.0 Words 
Within 
Names 

Joint Name 
Tagging 

77.6 37.2 50.3 

 

 
 
 
 
 
 
 
 

 

Table 3: Impact of Joint Bilingual Name Tagging on Word
Alignment (%).

each name pair. (4) Merged (2) and (3) to pro-
duce the final word alignment results. In order to
compare with the upper-bound gains, we also mea-
sured the performance of applying ground-truth
name tagging with the above procedures.

The experiment results are shown in Table 3.
For the words within names, our approach provid-
ed significant gains by enhancing F-measure from
46.0% to 50.3%. Only 10.6% words are within
names, therefore the upper-bound gains on over-
all word alignment is only 1.3%. Our joint name
tagging approach achieved 0.4% (statistically sig-
nificant) improvement over the baseline. In Fig-
ure 3 we categorized the sentences according to
the percentage of name words in each sentence and
measured the improvement for each category. We
can clearly see that as the sentences include more
names, the gains achieved by our approach tend to
be greater.

5.5 Remaining Error Analysis

Although the proposed model has significantly en-
hanced translation quality, some challenges re-
main. We analyze some major sources of the re-
maining errors as follows.

1. Name Structure Parsing.
We found that the gains of our NAMT approach

were mainly achieved for names with one or two
components. When the name structure becomes
too complicated to parse, name tagging and name
translation are likely to produce errors, especially
for long nested organizations. For example, “ä0
¿ÀßbÍ�@” (Anti-malfeasance Bureau of
Gutian County Procuratorate) consists of a nested
organization name with a GPE as modifier: “ä
0¿Àßb” (Gutian County Procuratorate) and
an ORG name: “Í�@” (Anti-malfeasance Bu-
reau).

2. Name abbreviation tagging and translation.
Some organization abbreviations are also dif-

ficult to extract because our name taggers have
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Figure 3: Word alignment gains according to the percentage
of name words in each sentence.

not incorporated any coreference resolution tech-
niques. For example, without knowing that “FAW”
refers to “First Automotive Works” in “FAW has
also utilized the capital market to directly fi-
nance, and now owns three domestic listed compa-
nies”, our system mistakenly labeled it as a GPE.
The same challenge exists in name alignment and
translation (for example, “�i (Min Ge)” refer-
s to “ -ýý�Zi}ÔX�” (Revolutionary
Committee of the Chinese Kuomintang).

3. Cross-lingual information transfer
English monolingual features normally gener-

ate higher confidence than Chinese features for
ORG names. On the other hand, some good prop-
agated Chinese features were not able to correct
English results. For example, in the following sen-
tence pair: “9n-ý����T�ý¾�r	
¹¾��... (in accordance with the tripartite a-
greement reached by China, Laos and the UNHCR
on)...”, even though the tagger can successfully la-
bel “T�ý¾�r/UNHCR” as an organization
because it is a common Chinese name, English
features based on previous GPE contexts still in-
correctly predicted “UNHCR” as a GPE name.

6 Related Work

Two types of humble strategies were previously
attempted to build name translation components
which operate in tandem and loosely integrate into
conventional statistical MT systems:

1. Pre-processing: identify names in the source
texts and propose name translations to the
MT system; the name translation results can
be simply but aggressively transferred from
the source to the target side using word align-
ment, or added into phrase table in order to

enable the LM to decide which translations to
choose when encountering the names in the
texts (Ji et al., 2009). Heuristic rules or su-
pervised models can be developed to create
“do-not-translate” list (Babych and Hartley,
2003) or learn “when-to-transliterate” (Her-
mjakob et al., 2008).

2. Post-processing: in a cross-lingual informa-
tion retrieval or question answering frame-
work, online query names can be utilized
to obtain translation and post-edit MT out-
put (Parton et al., 2009; Ma and McKeown,
2009; Parton and McKeown, 2010; Parton et
al., 2012).

It is challenging to decide when to use name
translation results. The simple transfer method en-
sures all name translations appear in the MT out-
put, but it heavily relies on word alignment and
does not take into account word re-ordering or
the words found in a name’s context; therefore it
could mistakenly break some context phrase struc-
tures due to name translation or alignment errors.
The LM selection method often assigns an inap-
propriate weight to the additional name transla-
tion table because it is constructed independent-
ly from translation of context words; therefore af-
ter weighted voting most correct name translations
are not used in the final translation output. Our
experimental results 2 confirmed this weakness.
More importantly, in these approaches the MT
model was still mostly treated as a “black-box”
because neither the translation model nor the LM
was updated or adapted specifically for names.

Recently the wider idea of incorporating seman-
tics into MT has received increased interests. Most
of them designed some certain semantic represen-
tations, such as predicate-argument structure or
semantic role labeling (Wu and Fung, 2009; Liu
and Gildea, 2009; Meyer et al., 2011; Bojar and
Wu, 2012), word sense disambiguation (Carpu-
at and Wu, 2007b; Carpuat and Wu, 2007a) and
graph-structured grammar representation (Jones et
al., 2012). Lo et al. (2012) proposed a semantic
role driven MT metric. However, none of these
work declaratively exploited results from informa-
tion extraction for MT.

Some statistical MT systems (e.g. (Zens et al.,
2005), (Aswani and Gaizauskas, 2005)) have at-
tempted to use text normalization to improve word
alignment for dates, numbers and job titles. But
little reported work has shown the impact of joint
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name tagging on overall word alignment.
Most of the previous name translation work

combined supervised transliteration approaches
with LM based re-scoring (Knight and Graehl,
1998; Al-Onaizan and Knight, 2002; Huang et
al., 2004). Some recent research used compara-
ble corpora to mine name translation pairs (Feng
et al., 2004; Kutsumi et al., 2004; Udupa et al.,
2009; Ji, 2009; Fung and Yee, 1998; Rapp, 1999;
Shao and Ng, 2004; Lu and Zhao, 2006; Hassan
et al., 2007). However, most of these approaches
required large amount of seeds, suffered from In-
formation Extraction errors, and relied on phonet-
ic similarity, context co-occurrence and documen-
t similarity for re-scoring. In contrast, our name
pair mining approach described in this paper does
not require any machine translation or translitera-
tion features.

7 Conclusions and Future Work

We developed a name-aware MT framework
which tightly integrates name tagging and name
translation into training and decoding of MT. Ex-
periments on Chinese-English translation demon-
strated the effectiveness of our approach over a
high-quality MT baseline in both overall transla-
tion and name translation, especially for formal
genres. We also proposed a new name-aware eval-
uation metric. In the future we intend to improve
the framework by training a discriminative model
to automatically assign weights to combine name
translation and baseline translation with additional
features including name confidence values, name
types and global validation evidence, as well as
conducting LM adaptation through bilingual top-
ic modeling and clustering based on name anno-
tations. We also plan to jointly optimize MT and
name tagging by propagating multiple word seg-
mentation and name annotation hypotheses in lat-
tice structure to statistical MT and conduct lattice-
based decoding (Dyer et al., 2008). Furthermore,
we are interested in extending this framework to
translate other out-of-vocabulary terms.
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