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Abstract
In this paper we introduce Translation Dif-
ficulty Index (TDI), a measure of diffi-
culty in text translation. We first de-
fine and quantify translation difficulty in
terms of TDI. We realize that any mea-
sure of TDI based on direct input by trans-
lators is fraught with subjectivity and ad-
hocism. We, rather, rely on cognitive ev-
idences from eye tracking. TDI is mea-
sured as the sum of fixation (gaze) and
saccade (rapid eye movement) times of
the eye. We then establish that TDI is
correlated with three properties of the in-
put sentence, viz. length (L), degree of
polysemy (DP) and structural complexity
(SC). We train a Support Vector Regres-
sion (SVR) system to predict TDIs for
new sentences using these features as in-
put. The prediction done by our frame-
work is well correlated with the empiri-
cal gold standard data, which is a repos-
itory of < L,DP, SC > and TDI pairs
for a set of sentences. The primary use of
our work is a way of “binning” sentences
(to be translated) in “easy”, “medium” and
“hard” categories as per their predicted
TDI. This can decide pricing of any trans-
lation task, especially useful in a scenario
where parallel corpora for Machine Trans-
lation are built through translation crowd-
sourcing/outsourcing. This can also pro-
vide a way of monitoring progress of sec-
ond language learners.

1 Introduction

Difficulty in translation stems from the fact that
most words are polysemous and sentences can be
long and have complex structure. While length of
sentence is commonly used as a translation diffi-
culty indicator, lexical and structural properties of

a sentence also contribute to translation difficulty.
Consider the following example sentences.

1. The camera-man shot the policeman
with a gun. (length-8)

2. I was returning from my old office
yesterday. (length-8)

Clearly, sentence 1 is more difficult to process
and translate than sentence 2, since it has lexical
ambiguity (“Shoot” as an act of firing a shot or
taking a photograph?) and structural ambiguity
(Shot with a gun or policeman with a gun?). To
produce fluent and adequate translations, efforts
have to be put to analyze both the lexical and syn-
tactic properties of the sentences.

The most recent work on studying translation
difficulty is by Campbell and Hale (1999) who
identified several areas of difficulty in lexis and
grammar. “Reading” researchers have focused on
developing readability formulae, since 1970. The
Flesch-Kincaid Readability test (Kincaid et al.,
1975), the Fry Readability Formula (Fry, 1977)
and the Dale-Chall readability formula (Chall and
Dale, 1999) are popular and influential. These for-
mulae use factors such as vocabulary difficulty (or
semantic factors) and sentence length (or syntac-
tic factors). In a different setting, Malsburg et
al. (2012) correlate eye fixations and scanpaths
of readers with sentence processing. While these
approaches are successful in quantifying readabil-
ity, they may not be applicable to translation sce-
narios. The reason is that, translation is not
merely a reading activity. Translation requires
co-ordination between source text comprehension
and target text production (Dragsted, 2010). To
the best of our knowledge, our work on predicting
TDI is the first of its kind.

The motivation of the work is as follows. Cur-
rently, for domain specific Machine Translation
systems, parallel corpora are gathered through
translation crowdsourcing/outsourcing. In such
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Figure 1: Inherent sentence complexity and per-
ceived difficulty during translation

a scenario, translators are paid on the basis of
sentence length, which ignores other factors con-
tributing to translation difficulty, as stated above.
Our proposed Translation Difficulty Index (TDI)
quantifies the translation difficulty of a sentence
considering both lexical and structural proper-
ties. This measure can, in turn, be used to clus-
ter sentences according to their difficulty levels
(viz. easy, medium, hard). Different payment and
schemes can be adopted for different such clusters.

TDI can also be useful for training and evalu-
ating second language learners. For example, ap-
propriate examples at particular levels of difficulty
can be chosen for giving assignments and monitor-
ing progress.

The rest of the paper is organized in the fol-
lowing way. Section 2 describes TDI as func-
tion of translation processing time. Section 3 is
on measuring translation processing time through
eye tracking. Section 4 gives the correlation of
linguistic complexity with observed TDI. In sec-
tion 5, we describe a technique for predicting TDIs
and ranking unseen sentences using Support Vec-
tor Machines. Section 6 concludes the paper with
pointers to future work.

2 Quantifying Translation Difficulty

As a first approximation, TDI of a sentence can
be the time taken to translate the sentence, which
can be measured through simple translation exper-
iments. This is based on the assumption that more
difficult sentences will require more time to trans-
late. However, “time taken to translate” may not
be strongly related to the translation difficulty for
two reasons. First, it is difficult to know what
fraction of the total translation time is actually
spent on the translation-related-thinking. For ex-

ample, translators may spend considerable amount
of time typing/writing translations, which is ir-
relevant to the translation difficulty. Second, the
translation time is sensitive to distractions from
the environment. So, instead of the “time taken
to translate”, we are more interested in the “time
for which translation related processing is carried
out by the brain”. This can be termed as the Trans-
lation Processing Time (Tp). Mathematically,

Tp = Tp comp + Tp gen (1)

Where Tp comp and Tp gen are the processing times
for source text comprehension and target text gen-
eration respectively. The empirical TDI, is com-
puted by normalizing Tp with sentence length.

TDI =
Tp

sentencelength
(2)

Measuring Tp is a difficult task as translators of-
ten switch between thinking and writing activities.
Here comes the role of eye tracking.

3 Measuring Tp by eye-tracking

We measure Tp by analyzing the gaze behavior
of translators through eye-tracking. The rationale
behind using eye-tracking is that, humans spend
time on what they see, and this “time” is corre-
lated with the complexity of the information being
processed, as shown in Figure 1. Two fundamental
components of eye behavior are (a) Gaze-fixation
or simply, Fixation and (b) Saccade. The former
is a long stay of the visual gaze on a single loca-
tion. The latter is a very rapid movement of the
eyes between positions of rest. An intuitive feel
for these two concepts can be had by consider-
ing the example of translating the sentence The
camera-man shot the policeman with a gun men-
tioned in the introduction. It is conceivable that
the eye will linger long on the word “shot” which
is ambiguous and will rapidly move across “shot”,
“camera-man” and “gun” to ascertain the clue for
disambiguation.

The terms Tp comp and Tp gen in (1) can now be
looked upon as the sum of fixation and saccadic
durations for both source and target sentences re-
spectively.

Modifying 1

Tp =
∑

f∈Fs

dur(f) +
∑

s∈Ss

dur(s)

+
∑

f∈Ft

dur(f) +
∑

s∈St

dur(s)
(3)
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Figure 2: Screenshot of Translog. The circles rep-
resent fixations and arrow represent saccades.

Here, Fs and Ss correspond to sets of fixations and
saccades for source sentence and Ft and St corre-
spond to those for the target sentence respectively.
dur is a function returning the duration of fixations
and saccades.

3.1 Computing TDI using eye-tracking
database

We obtained TDIs for a set of sentences from
the Translation Process Research Database (TPR
1.0)(Carl, 2012). The database contains trans-
lation studies for which gaze data is recorded
through the Translog software1(Carl, 2012). Fig-
ure 2 presents a screendump of Translog. Out of
the 57 available sessions, we selected 40 transla-
tion sessions comprising 80 sentence translations2.
Each of these 80 sentences was translated from
English to three different languages, viz. Span-
ish, Danish and Hindi by at least 2 translators.
The translators were young professional linguists
or students pursuing PhD in linguistics.

The eye-tracking data is noisy and often ex-
hibits systematic errors (Hornof and Halverson,
2002). To correct this, we applied automatic er-
ror correction technique (Mishra et al., 2012) fol-
lowed by manually correcting incorrect gaze-to-
word mapping using Translog. Note that, gaze and
saccadic durations may also depend on the transla-
tor’s reading speed. We tried to rule out this effect
by sampling out translations for which the vari-
ance in participant’s reading speed is minimum.
Variance in reading speed was calculated after tak-
ing a samples of source text for each participant
and measuring the time taken to read the text.

After preprocessing the data, TDI was com-
puted for each sentence by using (2) and (3).The
observed unnormalized TDI score3 ranges from
0.12 to 0.86. We normalize this to a [0,1] scale

1http://www.translog.dk
220% of the translation sessions were discarded as it was

difficult to rectify the gaze logs for these sessions.
3Anything beyond the upper bound is hard to translate and

can be assigned with the maximum score.

Figure 3: Dependency graph used for computing
SC

using MinMax normalization.
If the “time taken to translate” and Tp were

strongly correlated, we would have rather opted
“time taken to translate” for the measurement of
TDI. The reason is that “time taken to translate”
is relatively easy to compute and does not require
expensive setup for conducting “eye-tracking” ex-
periments. But our experiments show that there
is a weak correlation (coefficient = 0.12) between
“time taken to translate” and Tp. This makes us
believe that Tp is still the best option for TDI mea-
surement.

4 Relating TDI to sentence features

Our claim is that translation difficulty is mainly
caused by three features: Length, Degree of Poly-
semy and Structural Complexity.

4.1 Length

It is the total number of words occurring in a sen-
tence.

4.2 Degree of Polysemy (DP)

The degree of polysemy of a sentence is the sum of
senses possessed by each word in the Wordnet nor-
malized by the sentence length. Mathematically,

DPsentence =

∑
w∈W Senses(w)

length(sentence)
(4)

Here, Senses(w) retrieves the total number senses
of a word P from the Wordnet. W is the set of
words appearing in the sentence.

4.3 Structural Complexity (SC)

Syntactically, words, phrases and clauses are at-
tached to each other in a sentence. If the attach-
ment units lie far from each other, the sentence
has higher structural complexity. Lin (1996) de-
fines it as the total length of dependency links in
the dependency structure of the sentence.
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Figure 4: Prediction of TDI using linguistic prop-
erties such as Length(L), Degree of Polysemy
(DP) and Structural Complexity (SC)

Example: The man who the boy attacked
escaped.

Figure 3 shows the dependency graph for the
example sentence. The weights of the edges cor-
respond how far the two connected words lie from
each other in the sentence. Using Lin’s formula,
the SC score for the example sentence turns out to
be 15.

Lin’s way of computing SC is affected by sen-
tence length since the number of dependency links
for a sentence depends on its length. So we nor-
malize SC by the length of the sentence. After
normalization, the SC score for the example given
becomes 15/7 = 2.14

4.4 How are TDI and linguistic features
related

To validate that translation difficulty depends on
the above mentioned linguistic features, we tried
to find out the correlation coefficients between
each feature and empirical TDI. We extracted
three sets of sample sentences. For each sample,
sentence selection was done with a view to vary-
ing one feature, keeping the other two constant.
The Correlation Coefficients between L, DP and
SC and the empirical TDI turned out to be 0.72,
0.41 and 0.63 respectively. These positive correla-
tion coefficients indicate that all the features con-
tribute to the translation difficulty.

5 Predicting TDI

Our system predicts TDI from the linguistic prop-
erties of a sentence as shown in Figure 4.

The prediction happens in a supervised setting
through regression. Training such a system re-
quires a set sentences annotated with TDIs. In
our case, direct annotation of TDI is a difficult and
unintuitive task. So, we annotate TDI by observ-

Kernel(C=3.0) MSE (%) Correlation
Linear 20.64 0.69
Poly (Deg 2) 12.88 0.81
Poly (Deg 3) 13.35 0.78
Rbf (default) 13.32 0.73

Table 1: Relative MSE and Correlation with ob-
served data for different kernels used for SVR.

ing translator’s behavior (using equations (1) and
(2))instead of asking people to rate sentences with
TDI.

We are now prepared to give the regression sce-
nario for predicting TDI.

5.1 Preparing the dataset

Our dataset contains 80 sentences for which TDI
have been measured (Section 3.1). We divided this
data into 10 sets of training and testing datasets in
order to carry out a 10-fold evaluation. DP and SC
features were computed using Princeton Wordnet4

and Stanford Dependence Parser5.

5.2 Applying Support Vector Regression

To predict TDI, Support Vector Regression (SVR)
technique (Joachims et al., 1999) was preferred
since it facilitates multiple kernel-based methods
for regression. We tried using different kernels us-
ing default parameters. Error analysis was done
by means of Mean Squared Error estimate (MSE).
We also measured the Pearson correlation coeffi-
cient between the empirical and predicted TDI for
our test-sets.

Table 1 indicates Mean Square Error percent-
ages for different kernel methods used for SVR.
MSE (%) indicates by what percentage the pre-
dicted TDIs differ from the observed TDIs. In our
setting, quadratic polynomial kernel with c=3.0
outperforms other kernels. The predicted TDIs are
well correlated with the empirical TDIs. This tells
us that even if the predicted scores are not as ac-
curate as desired, the system is capable of ranking
sentences in correct order. Table 2 presents exam-
ples from the test dataset for which the observed
TDI (TDIO) and the TDI predicted by polynomial
kernel based SVR (TDIP ) are shown.

Our larger goal is to group unknown sentences
into different categories by the level of transla-

4http://www.wordnet.princeton.edu
5http://www.nlp.stanford.edu/software/

lex-parser.html
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Example L DP SC TDIO TDIP Error
1. American Express recently
announced a second round
of job cuts. 10 10 1.8 0.24 0.23 4%
2. Sociology is a relatively
new academic discipline. 7 6 3.7 0.49 0.53 8%

Table 2: Example sentences from the test dataset.

tion difficulty. For that, we tried to manually as-
sign three different class labels to sentences viz.
easy, medium and hard based on the empirical
TDI scores. The ranges of scores chosen for easy,
medium and hard categories were [0-0.3], [0.3-
0.75] and [0.75-1.0] respectively (by trial and er-
ror). Then we trained a Support Vector Rank
(Joachims, 2006) with default parameters using
different kernel methods. The ranking framework
achieves a maximum 67.5% accuracy on the test
data. The accuracy should increase by adding
more data to the training dataset.

6 Conclusion

This paper introduces an approach to quantify-
ing translation difficulty and automatically assign-
ing difficulty levels to unseen sentences. It estab-
lishes a relationship between the intrinsic senten-
tial properties, viz., length (L), degree of polysemy
(DP) and structural complexity (SC), on one hand
and the Translation Difficulty Index (TDI), on the
other. Future work includes deeper investigation
into other linguistic factors such as presence of do-
main specific terms, target language properties etc.
and applying more sophisticated cognitive analy-
sis techniques for more reliable TDI score. We
would like to make use of inter-annotator agree-
ment to decide the boundaries for the translation
difficulty categories. Extending the study to differ-
ent language pairs and studying the applicability
of this technique for Machine Translation Quality
Estimation are also on the agenda.
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