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Abstract

We propose the use of stacking, an ensem-
ble learning technique, to the statistical machine
translation (SMT) models. A diverse ensem-
ble of weak learners is created using the same
SMT engine (a hierarchical phrase-based sys-
tem) by manipulating the training data and a
strong model is created by combining the weak
models on-the-fly. Experimental results on two
language pairs and three different sizes of train-
ing data show significant improvements of up
to 4 BLEU points over a conventionally trained
SMT model.

1 Introduction
Ensemble-based methods have been widely used
in machine learning with the aim of reduc-
ing the instability of classifiers and regressors
and/or increase their bias. The idea behind
ensemble learning is to combine multiple mod-
els, weak learners, in an attempt to produce a
strong model with less error. It has also been
successfully applied to a wide variety of tasks in
NLP (Tomeh et al., 2010; Surdeanu and Man-
ning, 2010; F. T. Martins et al., 2008; Sang, 2002)
and recently has attracted attention in the statis-
tical machine translation community in various
work (Xiao et al., 2013; Song et al., 2011; Xiao
et al., 2010; Lagarda and Casacuberta, 2008).

In this paper, we propose a method to adopt
stacking (Wolpert, 1992), an ensemble learning
technique, to SMT. We manipulate the full set of
training data, creating k disjoint sets of held-out
and held-in data sets as in k-fold cross-validation
and build a model on each partition. This creates
a diverse ensemble of statistical machine transla-
tion models where each member of the ensemble
has different feature function values for the SMT
log-linear model (Koehn, 2010). The weights of
model are then tuned using minimum error rate
training (Och, 2003) on the held-out fold to pro-
vide k weak models. We then create a strong
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model by stacking another meta-learner on top of
weak models to combine them into a single model.
The particular second-tier model we use is a model
combination approach called ensemble decoding
which combines hypotheses from the weak mod-
els on-the-fly in the decoder.

Using this approach, we take advantage of the
diversity created by manipulating the training data
and obtain a significant and consistent improve-
ment over a conventionally trained SMT model
with a fixed training and tuning set.

2 Ensemble Learning Methods

Two well-known instances of general framework
of ensemble learning are bagging and boosting.
Bagging (Breiman, 1996a) (bootstrap aggregat-
ing) takes a number of samples with replacement
from a training set. The generated sample set
may have 0, 1 or more instances of each origi-
nal training instance. This procedure is repeated
a number of times and the base learner is ap-
plied to each sample to produce a weak learner.
These models are aggregated by doing a uniform
voting for classification or averaging the predic-
tions for regression. Bagging reduces the vari-
ance of the base model while leaving the bias rela-
tively unchanged and is most useful when a small
change in the training data affects the prediction
of the model (i.e. the model is unstable) (Breiman,
1996a). Bagging has been recently applied to
SMT (Xiao et al., 2013; Song et al., 2011)

Boosting (Schapire, 1990) constructs a strong
learner by repeatedly choosing a weak learner
and applying it on a re-weighted training set. In
each iteration, a weak model is learned on the
training data, whose instance weights are modi-
fied from the previous iteration to concentrate on
examples on which the model predictions were
poor. By putting more weight on the wrongly
predicted examples, a diverse ensemble of weak
learners is created. Boosting has also been used in
SMT (Xiao et al., 2013; Xiao et al., 2010; Lagarda
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Algorithm 1: Stacking for SMT

Input: D = {〈fj , ej〉}Nj=1 . A parallel corpus
Input: k . # of folds (i.e. weak learners)
Output: STRONGMODEL s

1: D1, . . . ,Dk ← SPLIT(D, k)
2: for i = 1→ k do
3: T i ← D −Di . Use all but current partition as

training set.
4: φi← TRAIN(T i) . Train feature functions.
5: Mi← TUNE(φi, Di) . Tune the model on the

current partition.
6: end for
7: s← COMBINEMODELS(M1 , . . .,Mk) . Combine all

the base models to produce a strong stacked model.

and Casacuberta, 2008).
Stacking (or stacked generalization) (Wolpert,

1992) is another ensemble learning algorithm that
uses a second-level learning algorithm on top of
the base learners to reduce the bias. The first
level consists of predictors g1, . . . , gk where gi :
Rd → R, receiving input x ∈ Rd and produc-
ing a prediction gi(x). The next level consists
of a single function h : Rd+k → R that takes
〈x, g1(x), . . . , gk(x)〉 as input and produces an en-
semble prediction ŷ = h(x, g1(x), . . . , gk(x)).

Two categories of ensemble learning are ho-
mogeneous learning and heterogeneous learning.
In homogeneous learning, a single base learner
is used, and diversity is generated by data sam-
pling, feature sampling, randomization and pa-
rameter settings, among other strategies. In het-
erogeneous learning different learning algorithms
are applied to the same training data to create a
pool of diverse models. In this paper, we focus on
homogeneous ensemble learning by manipulating
the training data.

In the primary form of stacking (Wolpert,
1992), the training data is split into multiple dis-
joint sets of held-out and held-in data sets using
k-fold cross-validation and k models are trained
on the held-in partitions and run on held-out par-
titions. Then a meta-learner uses the predictions
of all models on their held-out sets and the actual
labels to learn a final model. The details of the
first-layer and second-layer predictors are consid-
ered to be a “black art” (Wolpert, 1992).

Breiman (1996b) linearly combines the weak
learners in the stacking framework. The weights
of the base learners are learned using ridge regres-
sion: s(x) =

∑
k αkmk(x), where mk is a base

model trained on the k-th partition of the data and
s is the resulting strong model created by linearly
interpolating the weak learners.

Stacking (aka blending) has been used in the
system that won the Netflix Prize1, which used a
multi-level stacking algorithm.

Stacking has been actively used in statistical
parsing: Nivre and McDonald (2008) integrated
two models for dependency parsing by letting one
model learn from features generated by the other;
F. T. Martins et al. (2008) further formalized the
stacking algorithm and improved on Nivre and
McDonald (2008); Surdeanu and Manning (2010)
includes a detailed analysis of ensemble models
for statistical parsing: i) the diversity of base
parsers is more important than the complexity of
the models; ii) unweighted voting performs as well
as weighted voting; and iii) ensemble models that
combine at decoding time significantly outperform
models that combine multiple models at training
time.

3 Our Approach
In this paper, we propose a method to apply stack-
ing to statistical machine translation (SMT) and
our method is the first to successfully exploit
stacking for statistical machine translation. We
use a standard statistical machine translation en-
gine and produce multiple diverse models by par-
titioning the training set using the k-fold cross-
validation technique. A diverse ensemble of weak
systems is created by learning a model on each
k−1 fold and tuning the statistical machine trans-
lation log-linear weights on the remaining fold.
However, instead of learning a model on the output
of base models as in (Wolpert, 1992), we combine
hypotheses from the base models in the decoder
with uniform weights. For the base learner, we
use Kriya (Sankaran et al., 2012), an in-house hier-
archical phrase-based machine translation system,
to produce multiple weak models. These mod-
els are combined together using Ensemble Decod-
ing (Razmara et al., 2012) to produce a strong
model in the decoder. This method is briefly ex-
plained in next section.

3.1 Ensemble Decoding

SMT Log-linear models (Koehn, 2010) find the
most likely target language output e given the
source language input f using a vector of feature
functions φ:

p(e|f) ∝ exp
(
w · φ

)

1http://www.netflixprize.com/
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Ensemble decoding combines several models
dynamically at decoding time. The scores are
combined for each partial hypothesis using a
user-defined mixture operation ⊗ over component
models.

p(e|f) ∝ exp
(
w1 · φ1 ⊗w2 · φ2 ⊗ . . .

)

We previously successfully applied ensemble
decoding to domain adaptation in SMT and
showed that it performed better than approaches
that pre-compute linear mixtures of different mod-
els (Razmara et al., 2012). Several mixture oper-
ations were proposed, allowing the user to encode
belief about the relative strengths of the compo-
nent models. These mixture operations receive
two or more probabilities and return the mixture
probability p(ē | f̄) for each rule ē, f̄ used in the
decoder. Different options for these operations
are:

• Weighted Sum (wsum) is defined as:

p(ē | f̄) ∝
M∑

m

λm exp
(
wm · φm

)

where m denotes the index of component
models, M is the total number of them and
λm is the weight for component m.

• Weighted Max (wmax) is defined as:

p(ē | f̄) ∝ max
m

(
λm exp

(
wm · φm

))

• Prod or log-wsum is defined as:

p(ē | f̄) ∝ exp
( M∑

m

λm (wm · φm)
)

• Model Switching (Switch): Each cell in the
CKY chart is populated only by rules from
one of the models and the other models’ rules
are discarded. Each component model is con-
sidered as an expert on different spans of the
source. A binary indicator function δ(f̄ ,m)
picks a component model for each span:

δ(f̄ ,m) =





1, m = argmax
n∈M

ψ(f̄ , n)

0, otherwise

The criteria for choosing a model for each
cell, ψ(f̄ , n), could be based on max

Train size Src tokens Tgt tokens

Fr - En
0+dev 67K 58K
10k+dev 365K 327K
100k+dev 3M 2.8M

Es - En
0+dev 60K 58K
10k+dev 341K 326K
100k+dev 2.9M 2.8M

Table 1: Statistics of the training set for different systems and
different language pairs.

(SW:MAX), i.e. for each cell, the model that
has the highest weighted score wins:

ψ(f̄ , n) = λn max
e

(wn · φn(ē, f̄))

Alternatively, we can pick the model with
highest weighted sum of the probabilities of
the rules (SW:SUM). This sum has to take into
account the translation table limit (ttl), on the
number of rules suggested by each model for
each cell:

ψ(f̄ , n) = λn
∑

ē

exp
(
wn · φn(ē, f̄)

)

The probability of each phrase-pair (ē, f̄) is
then:

p(ē | f̄) =

M∑

m

δ(f̄ ,m) pm(ē | f̄)

4 Experiments & Results

We experimented with two language pairs: French
to English and Spanish to English on the Europarl
corpus (v7) (Koehn, 2005) and used ACL/WMT
2005 2 data for dev and test sets.

For the base models, we used an in-house
implementation of hierarchical phrase-based sys-
tems, Kriya (Sankaran et al., 2012), which uses
the same features mentioned in (Chiang, 2005):
forward and backward relative-frequency and lex-
ical TM probabilities; LM; word, phrase and glue-
rules penalty. GIZA++ (Och and Ney, 2003) has
been used for word alignment with phrase length
limit of 10. Feature weights were optimized using
MERT (Och, 2003). We built a 5-gram language
model on the English side of Europarl and used the
Kneser-Ney smoothing method and SRILM (Stol-
cke, 2002) as the language model toolkit.

2http://www.statmt.org/wpt05/mt-shared-task/
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Direction k-fold Resub Mean WSUM WMAX PROD SW:MAX SW:SUM

Fr - En
2 18.08 19.67 22.32 22.48 22.06 21.70 21.81
4 18.08 21.80 23.14 23.48 23.55 22.83 22.95
8 18.08 22.47 23.76 23.75 23.78 23.02 23.47

Es - En
2 18.61 19.23 21.62 21.33 21.49 21.48 21.51
4 18.61 21.52 23.42 22.81 22.91 22.81 22.92
8 18.61 22.20 23.69 23.89 23.51 22.92 23.26

Table 2: Testset BLEU scores when applying stacking on the devset only (using no specific training set).

Direction Corpus k-fold Baseline BMA WSUM WMAX PROD SW:MAX SW:SUM

Fr - En 10k+dev 6 28.75 29.49 29.87 29.78 29.21 29.69 29.59
100k+dev 11 / 51 29.53 29.75 34.00 34.07 33.11 34.05 33.96

Es - En 10k+dev 6 28.21 28.76 29.59 29.51 29.15 29.10 29.21
100k+dev 11 / 51 33.25 33.44 34.21 34.00 33.17 34.19 34.22

Table 3: Testset BLEU scores when using 10k and 100k sentence training sets along with the devset.

4.1 Training on devset

We first consider the scenario in which there is
no parallel data between a language pair except
a small bi-text used as a devset. We use no spe-
cific training data and construct a SMT system
completely on the devset by using our approach
and compare to two different baselines. A natu-
ral baseline when having a limited parallel text is
to do re-substitution validation where the model
is trained on the whole devset and is tuned on the
same set. This validation process suffers seriously
from over-fitting. The second baseline is the mean
of BLEU scores of all base models.

Table 2 summarizes the BLEU scores on the
testset when using stacking only on the devset on
two different language pairs. As the table shows,
increasing the number of folds results in higher
BLEU scores. However, doing such will generally
lead to higher variance among base learners.

Figure 1 shows the BLEU score of each of the
base models resulted from a 20-fold partitioning
of the devset along with the strong models’ BLEU
scores. As the figure shows, the strong models are
generally superior to the base models whose mean
is represented as a horizontal line.

4.2 Training on train+dev

When we have some training data, we can use
the cross-validation-style partitioning to create k
splits. We then train a system on k − 1 folds and
tune on the devset. However, each system eventu-
ally wastes a fold of the training data. In order to
take advantage of that remaining fold, we concate-
nate the devset to the training set and partition the
whole union. In this way, we use all data available
to us. We experimented with two sizes of train-

ing data: 10k sentence pairs and 100k, that with
the addition of the devset, we have 12k and 102k
sentence-pair corpora.

Table 1 summarizes statistics of the data sets
used in this scenario. Table 3 reports the BLEU
scores when using stacking on these two corpus
sizes. The baselines are the conventional systems
which are built on the training-set only and tuned
on the devset as well as Bayesian Model Averaging
(BMA, see §5). For the 100k+dev corpus, we sam-
pled 11 partitions from all 51 possible partitions
by taking every fifth partition as training data. The
results in Table 3 show that stacking can improve
over the baseline BLEU scores by up to 4 points.

Examining the performance of the different
mixture operations, we can see that WSUM and
WMAX typically outperform other mixture oper-
ations. Different mixture operations can be domi-
nant in different language pairs and different sizes
of training sets.

5 Related Work

Xiao et al. (2013) have applied both boosting
and bagging on three different statistical machine
translation engines: phrase-based (Koehn et al.,
2003), hierarchical phrase-based (Chiang, 2005)
and syntax-based (Galley et al., 2006) and showed
SMT can benefit from these methods as well.

Duan et al. (2009) creates an ensemble of mod-
els by using feature subspace method in the ma-
chine learning literature (Ho, 1998). Each mem-
ber of the ensemble is built by removing one non-
LM feature in the log-linear framework or varying
the order of language model. Finally they use a
sentence-level system combination on the outputs
of the base models to pick the best system for each
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Figure 1: BLEU scores for all the base models and stacked models on the Fr-En devset with 20-fold cross validation. The
horizontal line shows the mean of base models’ scores.

sentence. Though, they do not combine the hy-
potheses search spaces of individual base models.

Our work is most similar to that of Duan et
al. (2010) which uses Bayesian model averaging
(BMA) (Hoeting et al., 1999) for SMT. They used
sampling without replacement to create a num-
ber of base models whose phrase-tables are com-
bined with that of the baseline (trained on the full
training-set) using linear mixture models (Foster
and Kuhn, 2007).

Our approach differs from this approach in a
number of ways: i) we use cross-validation-style
partitioning for creating training subsets while
they do sampling without replacement (80% of the
training set); ii) in our approach a number of base
models are trained and tuned and they are com-
bined on-the-fly in the decoder using ensemble de-
coding which has been shown to be more effective
than offline combination of phrase-table-only fea-
tures; iii) in Duan et al. (2010)’s method, each sys-
tem gives up 20% of the training data in exchange
for more diversity, but in contrast, our method not
only uses all available data for training, but pro-
motes diversity through allowing each model to
tune on a different data set; iv) our approach takes
advantage of held out data (the tuning set) in the
training of base models which is beneficial espe-
cially when little parallel data is available or tun-
ing/test sets and training sets are from different do-
mains.

Empirical results (Table 3) also show that our
approach outperforms the Bayesian model averag-
ing approach (BMA).

6 Conclusion & Future Work
In this paper, we proposed a novel method on ap-
plying stacking to the statistical machine transla-
tion task. The results when using no, 10k and 100k
sentence-pair training sets (along with a develop-
ment set for tuning) show that stacking can yield
an improvement of up to 4 BLEU points over con-
ventionally trained SMT models which use a fixed
training and tuning set.

Future work includes experimenting with larger
training sets to investigate how useful this ap-
proach can be when having different sizes of train-
ing data.
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