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Abstract

This paper studies named entity trans-
lation and proposes “selective temporal-
ity” as a new feature, as using temporal
features may be harmful for translating
“atemporal” entities. Our key contribution
is building an automatic classifier to dis-
tinguish temporal and atemporal entities
then align them in separate procedures to
boost translation accuracy by 6.1%.

1 Introduction

Named entity translation discovery aims at map-
ping entity names for people, locations, etc. in
source language into their corresponding names in
target language. As many new named entities ap-
pear every day in newspapers and web sites, their
translations are non-trivial yet essential.

Early efforts of named entity translation have
focused on using phonetic feature (called PH)
to estimate a phonetic similarity between two
names (Knight and Graehl, 1998; Li et al., 2004;
Virga and Khudanpur, 2003). In contrast, some
approaches have focused on using context feature
(called CX) which compares surrounding words
of entities (Fung and Yee, 1998; Diab and Finch,
2000; Laroche and Langlais, 2010).

Recently, holistic approaches combining such
similarities have been studied (Shao and Ng, 2004;
You et al., 2010; Kim et al., 2011). (Shao and
Ng, 2004) rank translation candidates using PH
and CX independently and return results with the
highest average rank. (You et al., 2010) compute
initial translation scores using PH and iteratively
update the scores using relationship feature (called
R). (Kim et al., 2011) boost You’s approach by ad-
ditionally leveraging CX.

More recent approaches consider temporal fea-
ture (called T) of entities in two corpora (Klemen-
tiev and Roth, 2006; Tao et al., 2006; Sproat et
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(a) Temporal entity: “Usain Bolt”
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(b) Atemporal entity: “Hillary Clinton”

Figure 1: Illustration on temporality

al., 2006; Kim et al., 2012). T is computed us-
ing frequency vectors for entities and combined
with PH (Klementiev and Roth, 2006; Tao et al.,
2006). (Sproat et al., 2006) extend Tao’s approach
by iteratively updating overall similarities using R.
(Kim et al., 2012) holistically combine all the fea-
tures: PH, CX, T, and R.

However, T used in previous approaches is a
good feature only if temporal behaviors are “sym-
metric” across corpora. In contrast, Figure 1 il-
lustrates asymmetry, by showing the frequencies
of “Usain Bolt,” a Jamaican sprinter, and “Hillary
Clinton,” an American politician, in comparable
news articles during the year 2008. The former is
mostly mentioned in the context of some temporal
events, e.g., Beijing Olympics, while the latter is
not. In such case, as Hillary Clinton is a famous fe-
male leader, she may be associated with other Chi-
nese female leaders in Chinese corpus, while such
association is rarely observed in English corpus,
which causes asymmetry. That is, Hillary Clin-
ton is “atemporal,” as Figure 1(b) shows, such that
using such dissimilarity against deciding this pair
as a correct translation would be harmful. In clear
contrast, for Usain Bolt, similarity of temporal dis-
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tributions in Figure 1(a) is a good feature for con-
cluding this pair as a correct one.

To overcome such problems, we propose a new
notion of “selective temporality” (called this fea-
ture ST to distinguish from T) to automatically
distinguish temporal and atemporal entities. To-
ward this goal, we design a classifier to distinguish
temporal entities from atemporal entities, based
on which we align temporal projections of entity
graphs for the temporal ones and the entire entity
graphs for the atemporal ones. We also propose
a method to identify the optimal window size for
temporal entities. We validate this “selective” use
of temporal features boosts the accuracy by 6.1%.

2 Preliminaries

Our approach follows a graph alignment frame-
work proposed in (You et al., 2010). Our graph
alignment framework consists of 4 steps.

2.1 Step 1: Graph Construction

We first build a graph G = (V,E) from each lan-
guage corpus, where V is a set of entities (nodes)
and E is a set of co-occurrence relationships (un-
weighted edges) between entities. We consider en-
tities occurring more than η times as nodes and en-
tity pairs co-occurring more than σ times as edges.

To identify entities, we use a CRF-based named
entity tagger (Finkel et al., 2005) and a Chinese
word breaker (Gao et al., 2003) for English and
Chinese corpora, respectively.

2.2 Step 2: Initialization

Given two graphs Ge = (Ve, Ee) and Gc =
(Vc, Ec), we initialize |Ve|-by-|Vc| initial similar-
ity matrix R0 using PH and CX for every pair
(e, c) where e ∈ Ve and c ∈ Vc.

For PH, we use a variant of Edit-Distance (You
et al., 2010) between English entity and a ro-
manized representation of Chinese entity called
Pinyin. For CX, the context similarity is computed
based on entity context which is defined as a set of
words near to the entity (we ignore some words
such as stop words and other entities). We com-
pute similarity of the most frequent 20 words for
each entity using a variant of Jaccard index. To in-
tegrate two similarity scores, we adopt an average
as a composite function.

We finally compute initial similarity scores for
all pairs (e, c) where e ∈ Ve and c ∈ Vc, and build
the initial similarity matrix R0.

2.3 Step 3: Reinforcement

We reinforce R0 by leveraging R and obtain a con-
verged matrix R∞ using the following model:

Rt+1
(i,j) = λR0

(i,j) + (1 − λ)
∑

(u,v)k∈Bt(i,j,θ)

Rt
(u,v)

2k

This model is a linear combination of (a) the initial
similarity R0

(i,j) of entity pair (i, j) ∈ Ve × Vc and
(b) the similarities Rt

(u,v) of their matched neigh-
bors (u, v) ∈ Ve × Vc where t indicates iteration,
Bt(i, j, θ) is an ordered set of the matched neigh-
bors, and k is the rank of the matched neighbors.
λ is the coefficient for balancing two terms.

However, as we cannot assure the correctly
matched neighbors (u, v), a chicken-and-egg
dilemma, we take advantage of the current simi-
larity Rt to estimate the next similarity Rt+1. Al-
gorithm 1 describes the process of matching the
neighbors where N(i) and N(j) are the sets of
neighbor nodes of i ∈ Ve and j ∈ Vc, respectively,
and H is a priority queue sorting the matched pairs
in non-increasing order of similarities. To guaran-
tee that the neighbors are correctly matched, we
use only the matches such that Rt

(u,v) ≥ θ.

Algorithm 1 Bt(i, j, θ)

1: M ← {}; H ← {}
2: ∀u ∈ N(i), ∀v ∈ N(j) H.push(u, v) such that

Rt
(u,v) ≥ θ

3: while H is not empty do
4: (u, v)← H.pop()
5: if neither u nor v are matched yet then
6: M ←M ∪ {(u, v)}
7: end if
8: end while
9: return M

2.4 Step 4: Extraction

From R∞, we finally extract one-to-one matches
by using simple greedy approach of three steps:
(1) choosing the pair with the highest similarity
score; (2) removing the corresponding row and
column from R∞; (3) repeating (1) and (2) until
the matching score is not less than a threshold δ.

3 Entity Translation Discovery using
Selective Temporality

Overall Framework: We propose our framework
by putting together two separate procedures for
temporal and atemporal entities to compute the
overall similarity matrix R
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We first build two temporal graphs from the cor-
pora within every time window, optimized in Sec-
tion 3.1. We then compute the reinforced matrix
R∞

s obtained from the window starting at the time-
stamp s. To keep the best match scores among
all windows, we update R using the best similar-
ity among ∀s,R∞

s . we then extract the candidate
translation pairs Mours by running step 4.

As there can exist atemporal entities in Mours,
we classify them (Section 3.2). Specifically, we
build two entire graphs and compute R∞. We then
distinguish temporal entities from atemporal ones
using our proposed metric for each matched pair
(i, j) ∈ Mours and, if the pair is atemporal, R(i,j)

is updated as the atemporal similarity R∞
(i,j).

From the final matrix R, we extract the matched
pairs by running step 4 with R once again.

3.1 Projecting Graph for Temporal Entities
We first project graphs temporally to improve
translation quality for temporal entities. As the
optimal projection would differ across entities, we
generate many projected graphs by shifting time
window over all periods, and then identify the best
window for each entity.

The rest of this section describes how we set
the right window size w. Though each entity may
have its own optimal w, we find optimizing for
each entity may negatively influence on consider-
ing relationships with entities of different window
sizes. Thus, we instead find the optimal window
size ŵ to maximize the global “symmetry” of the
given two graphs.

We now define “symmetry” with respect to the
truth translation pair M . We note it is infeasi-
ble to assume we have M during translation, and
will later relax to consider how M can be approx-
imated.

Given a set of graph pairs segmented by the
shifted windows

{(G(0,w)
e , G(0,w)

c ), · · · , (G(s,s+w)
e , G(s,s+w)

c ),

(G(s+∆s,s+∆s+w)
e , G(s+∆s,s+∆s+w)

c ), · · · },

where s is the time-stamp, our goal is to find the
window size ŵ maximizing the average symmetry
S of graph pairs:

ŵ = arg max
∀w

(∑
s S(G

(s,s+w)
e , G

(s,s+w)
c ; M)

N

)

Given M , symmetry S can be defined for (1)
node and (2) edge respectively. We first define the

node symmetry Sn as follows:

Sn(Ge, Gc; M) =

∑
(e,c)∈Ve×Vc

I(e, c;M)

max{|Ve|, |Vc|}

where I(u, v; M) to be 1 if (u, v) ∈ M , 0 other-
wise. High node symmetry leads to accurate trans-
lation in R0 (Initialization step). Similarly, we de-
fine the edge symmetry Se as follows:

Se(Ge, Gc; M) =∑
(e1,e2)∈Ee

∑
(c1,c2)∈Ec

I(e1, c1; M)I(e2, c2; M)

max{|Ee|, |Ec|}

In contrast, high edge symmetry leads to accurate
translation in R∞ (Reinforcement step).

We finally define the symmetry S as the
weighted sum of Sn and Se with parameter α (em-
pirically tuned to 0.8 in our experiment).

S(Ge, Gc; M) =

αSn(Ge, Gc; M) + (1 − α)Se(Ge, Gc; M)

However, as it is infeasible to assume we have
the truth translation pair M , we approximate M
using intermediate translation results Mours com-
puted at step 4. To insert only true positive pairs in
Mours, we set threshold higher than the optimized
value from the step 4. We found out that symmetry
from Mours closely estimates that from M :

S(Ge, Gc; M) ≈ S(Ge, Gc; Mours)

Specifically, observe from Table 1 that, given a
manually built ground-truth set Mg ⊂ M as de-
scribed in Section 4.1, S(Ge, Gc; Mours) returns
the best symmetry value in two weeks for person
entities, which is expectedly the same as the result
of S(Ge, Gc; Mg). This suggests that we can use
Mours for optimizing window size.

Weeks 26 13 4 2 1
Mg .0264 .0276 .0303 .0318 .0315

Mours .0077 .0084 .0102 .0113 .0107

Table 1: Symmetry of window size

3.2 Building Classifier
We then classify temporal/atemporal entities. As
a first step, we observe their characteristics: Tem-
poral entities have peaks in the frequency distri-
bution of both corpora and these peaks are aligned,
while such distribution of atemporal entities are
more uniform and less aligned.
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Based on these observations, we identify the
following criteria for temporal entities: (1) Their
two distributions m in English corpus and n in
Chinese corpus should have aligned peaks. (2)
Frequencies at the peaks are the higher the better.

For the first criterion, we first normalize the two
vectors m̂ and n̂ since two corpora have different
scales, i.e., different number of documents. We
then calculate the inner product of the two vectors
x = ⟨m̂, n̂⟩, such that this aggregated distribution
x peaks, only if both m̂ and n̂ peak at the same
time.

For the second criterion, we have a spectrum
of option from taking the frequencies at all peaks
in one extreme, to taking only the maximum fre-
quency in another extreme. A metric representing
such a spectrum is p-norm, which represents sum
when p = 1 and maximum when p = ∞. We em-
pirically tune the right balance to distinguish tem-
poral and atemporal entities, which turns out to be
p = 2.2.

Overall, we define a metric d(m,n) which sat-
isfies both criteria as follow:

d(m,n) =

(
n∑

i=1

(m̂in̂i)
p

) 1
p

For instance, this measure returns 0.50 and 0.03
for the distributions in Figure 1(a) and (b), respec-
tively, from which we can determine the transla-
tion of Figure 1(a) is temporal and the one of Fig-
ure 1(b) is atemporal.

4 Experimental Evaluation

4.1 Experimental Settings

We obtained comparable corpora from English
and Chinese Gigaword Corpora (LDC2009T13
and LDC2009T27) published by the Xinhua News
Agency during the year 2008. From them, we ex-
tracted person entities and built two graphs, Ge =
(Ve, Ee) and Gc = (Vc, Ec) by setting η = 20
which was used in (Kim et al., 2011).

Next, we built a ground truth translation pair
set Mg for person entities. We first selected 500
person names randomly from English corpus. We
then hired a Chinese annotator to translate them
into their Chinese names. Among them, only 201
person names were matched to our Chinese cor-
pus. We used all such pairs to identify the best
parameters and compute the evaluation measures.

We implemented and compared the following
approaches denoted as the naming convention of
listing of the used features in a parenthesis ():

• (PH+R) in (You et al., 2010).

• (PH+CX+R) in (Kim et al., 2011).

• (PH+CX+R+T) in (Kim et al., 2012).

• (PH+CX+R+ST): This is our approach.

We evaluated the effectiveness of our new ap-
proach using four measures: MRR, precision, re-
call, and F1-score, where MRR (Voorhees, 2001)
is the average of the reciprocal ranks of the query
results defined as follows:

MRR =
1

|Q|
∑

(u,v)∈Q

1

rank(u,v)
,

where Q is a set of ground-truth matched pairs
(u, v) such that u ∈ Ve and v ∈ Vc, and rank(u,v)

is the rank of R(u,v) among all R(u,w)’s such that
w ∈ Vc. We performed a 5-fold cross validation
by dividing ground truth into five groups. We used
four groups to training the parameters to maximize
F1-scores, used the remaining group as a test-set
using trained parameters, and computed average
of five results. (bold numbers indicate the best
performance for each metric.)

4.2 Experimental Results

Effect of window size
We first validated the effectiveness of our ap-
proach for various window sizes (Table 2). Ob-
serve that it shows the best performance in two
weeks for MRR and F1 measures. Interestingly,
this result also corresponds to our optimization re-
sult ŵ of Table 1 in Section 3.1.

Weeks 26 13 4 2 1
MRR .7436 .8066 .8166 .8233 .8148

Precision .7778 .7486 .8126 .8306 .8333
Recall .6617 .6875 .7320 .7295 .7214

F1 .7151 .7165 .7701 .7765 .7733

Table 2: Optimality of window size

Overall performance
Table 3 shows the results of four measures. Ob-
serve that (PH+CX+R+T) and (PH+CX+R+ST)
outperform the others in all our settings. We
can also observe the effect of selective temporal-
ity, which maximizes the symmetry between two
graphs as shown in Table 1, i.e., (PH+CX+R+ST)
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Method MRR Precision Recall F1
(PH+R) .6500 .7230 .4548 .5552
(PH+CX+R) .7499 .7704 .6623 .7120
(PH+CX+R+T) .7658 .8223 .6608 .7321
(PH+CX+R+ST) .8233 .8306 .7295 .7765

Table 3: MRR, Precision, Recall, and F1-score

Figure 2: The translation examples where shaded
cells indicate the correctly translated pairs.

outperforms (PH+CX+R+T) by 6.1%. These im-
provements were statistically significant according
to the Student’s t-test at P < 0.05 level.

Figure 2 shows representative translation exam-
ples. All approaches found famous entities such
as “Hu Jintao,” a former leader of China, but
(PH+CX+R) failed to find translation of lesser
known entities, such as “Kim Yong Nam.” Using
temporal features help both (PH+CX+R+T) and
(PH+CX+R+ST) identify the right translation, as
Kim’s temporal occurrence is strong and symmet-
ric in both corpora. In contrast, (PH+CX+R+T)
failed to find the translation of “Karzai”, the presi-
dent of Afghanistan, as it only appears weakly and
transiently during a short period time, for which
only (PH+CX+R+ST) applying varying sizes of
window per entity is effective.

5 Conclusion

This paper validated that considering temporal-
ity selectively is helpful for improving the trans-
lation quality. We developed a classifier to dis-
tinguish temporal/atemporal entities and our pro-
posed method outperforms the state-of-the-art ap-
proach by 6.1%.
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