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Abstract

We propose a novel approach to cross-
lingual model transfer based on feature
representation projection. First, a com-
pact feature representation relevant for the
task in question is constructed for either
language independently and then the map-
ping between the two representations is
determined using parallel data. The tar-
get instance can then be mapped into
the source-side feature representation us-
ing the derived mapping and handled di-
rectly by the source-side model. This ap-
proach displays competitive performance
on model transfer for semantic role label-
ing when compared to direct model trans-
fer and annotation projection and suggests
interesting directions for further research.

1 Introduction

Cross-lingual model transfer approaches are con-
cerned with creating statistical models for var-
ious tasks for languages poor in annotated re-
sources, utilising resources or models available
for these tasks in other languages. That includes
approaches such as direct model transfer (Ze-
man and Resnik, 2008) and annotation projec-
tion (Yarowsky et al., 2001). Such methods have
been successfully applied to a variety of tasks,
including POS tagging (Xi and Hwa, 2005; Das
and Petrov, 2011; Täckström et al., 2013), syntac-
tic parsing (Ganchev et al., 2009; Smith and Eis-
ner, 2009; Hwa et al., 2005; Durrett et al., 2012;
Søgaard, 2011), semantic role labeling (Padó and
Lapata, 2009; Annesi and Basili, 2010; Tonelli
and Pianta, 2008; Kozhevnikov and Titov, 2013)
and others.

Direct model transfer attempts to find a shared
feature representation for samples from the two
languages, usually generalizing and abstract-
ing away from language-specific representations.

Once this is achieved, instances from both lan-
guages can be mapped into this space and a model
trained on the source-language data directly ap-
plied to the target language. If parallel data is
available, it can be further used to enforce model
agreement on this data to adjust for discrepancies
between the two languages, for example by means
of projected transfer (McDonald et al., 2011).

The shared feature representation depends on
the task in question, but most often each aspect
of the original feature representation is handled
separately. Word types, for example, may be re-
placed by cross-lingual word clusters (Täckström
et al., 2012) or cross-lingual distributed word rep-
resentations (Klementiev et al., 2012). Part-of-
speech tags, which are often language-specific,
can be converted into universal part-of-speech
tags (Petrov et al., 2012) and morpho-syntactic
information can also be represented in a unified
way (Zeman et al., 2012; McDonald et al., 2013;
Tsarfaty, 2013). Unfortunately, the design of such
representations and corresponding conversion pro-
cedures is by no means trivial.

Annotation projection, on the other hand, does
not require any changes to the feature represen-
tation. Instead, it operates on translation pairs,
usually on sentence level, applying the available
source-side model to the source sentence and
transferring the resulting annotations through the
word alignment links to the target one. The quality
of predictions on source sentences depends heav-
ily on the quality of parallel data and the domain
it belongs to (or, rather, the similarity between this
domain and that of the corpus the source-language
model was trained on). The transfer itself also
introduces errors due to translation shifts (Cyrus,
2006) and word alignment errors, which may lead
to inaccurate predictions. These issues are gen-
erally handled using heuristics (Padó and Lapata,
2006) and filtering, for example based on align-
ment coverage (van der Plas et al., 2011).
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Figure 1: Dependency-based semantic role labeling example. The top arcs depict dependency relations,
the bottom ones – semantic role structure. Rendered with https://code.google.com/p/whatswrong/.

1.1 Motivation
The approach proposed here, which we will refer
to as feature representation projection (FRP), con-
stitutes an alternative to direct model transfer and
annotation projection and can be seen as a com-
promise between the two.

It is similar to direct transfer in that we also
use a shared feature representation. Instead of
designing this representation manually, however,
we create compact monolingual feature represen-
tations for source and target languages separately
and automatically estimate the mapping between
the two from parallel data. This allows us to make
use of language-specific annotations and account
for the interplay between different types of infor-
mation. For example, a certain preposition at-
tached to a token in the source language might
map into a morphological tag in the target lan-
guage, which would be hard to handle for tradi-
tional direct model transfer other than using some
kind of refinement procedure involving parallel
data. Note also that any such refinement procedure
applicable to direct transfer would likely work for
FRP as well.

Compared to annotation projection, our ap-
proach may be expected to be less sensitive to par-
allel data quality, since we do not have to com-
mit to a particular prediction on a given instance
from parallel data. We also believe that FRP
may profit from using other sources of informa-
tion about the correspondence between source and
target feature representations, such as dictionary
entries, and thus have an edge over annotation pro-
jection in those cases where the amount of parallel
data available is limited.

2 Evaluation

We evaluate feature representation projection on
the task of dependency-based semantic role label-
ing (SRL) (Hajič et al., 2009).

This task consists in identifying predicates and
their arguments in sentences and assigning each
argument a semantic role with respect to its pred-
icate (see figure 1). Note that only a single word
– the syntactic head of the argument phrase – is
marked as an argument in this case, as opposed
to constituent- or span-based SRL (Carreras and
Màrquez, 2005). We focus on the assignment of
semantic roles to identified arguments.

For the sake of simplicity we cast it as a multi-
class classification problem, ignoring the interac-
tion between different arguments in a predicate. It
is well known that such interaction plays an impor-
tant part in SRL (Punyakanok et al., 2008), but it
is not well understood which kinds of interactions
are preserved across languages and which are not.
Also, should one like to apply constraints on the
set of semantic roles in a given predicate, or, for
example, use a reranker (Björkelund et al., 2009),
this can be done using a factorized model obtained
by cross-lingual transfer.

In our setting, each instance includes the word
type and part-of-speech and morphological tags (if
any) of argument token, its parent and correspond-
ing predicate token, as well as their dependency
relations to their respective parents. This repre-
sentation is further denoted ω0.

2.1 Approach

We consider a pair of languages (Ls, Lt) and
assume that an annotated training set Ds

T =
{(xs, ys)} is available in the source language as
well as a parallel corpus of instance pairs Dst ={(

xs, xt
)}

and a target dataset Dt
E =

{
xt
}

that
needs to be labeled.

We design a pair of intermediate compact
monolingual feature representations ωs

1 and ωt
1

and models Ms and Mt to map source and target
samples xs and xt from their original representa-
tions, ωs

0 and ωt
0, to the new ones. We use the par-
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allel instances in the new feature representation

D̄st =
{(

xs
1, x

t
1

)}
=
{(

Ms(xs), Mt(xt)
)}

to determine the mapping Mts (usually, linear) be-
tween the two spaces:

Mts = argmaxM

∑
(xs

1,xt
1∈D̄st)

∥∥∥xs
1 −M(xt

1)
∥∥∥

2

Then a classification model My is trained on the
source training data

D̄s
T = {(xs

1, y
s)} = {(Ms(xs), ys)}

and the labels are assigned to the target samples
xt ∈ Dt

E using a composition of the models:

yt = My(Mts(Mt(xt)))

2.2 Feature Representation
Our objective is to make the feature represen-
tation sufficiently compact that the mapping be-
tween source and target feature spaces could be
reliably estimated from a limited amount of paral-
lel data, while preserving, insofar as possible, the
information relevant for classification.

Estimating the mapping directly from raw cat-
egorical features (ω0) is both computationally ex-
pensive and likely inaccurate – using one-hot en-
coding the feature vectors in our experiments
would have tens of thousands of components.
There is a number of ways to make this repre-
sentation more compact. To start with, we re-
place word types with corresponding neural lan-
guage model representations estimated using the
skip-gram model (Mikolov et al., 2013a). This
corresponds to Ms and Mt above and reduces the
dimension of the feature space, making direct es-
timation of the mapping practical. We will refer to
this representation as ω1.

To go further, one can, for example, apply
dimensionality reduction techniques to obtain a
more compact representation of ω1 by eliminating
redundancy or define auxiliary tasks and produce
a vector representation useful for those tasks. In
source language, one can even directly tune an in-
termediate representation for the target problem.

2.3 Baselines
As mentioned above we compare the performance
of this approach to that of direct transfer and an-
notation projection. Both baselines are using the

same set of features as the proposed model, as de-
scribed earlier.

The shared feature representation for di-
rect transfer is derived from ω0 by replacing
language-specific part-of-speech tags with univer-
sal ones (Petrov et al., 2012) and adding cross-
lingual word clusters (Täckström et al., 2012) to
word types. The word types themselves are left as
they are in the source language and replaced with
their gloss translations in the target one (Zeman
and Resnik, 2008). In English-Czech and Czech-
English we also use the dependency relation infor-
mation, since the annotations are partly compati-
ble.

The annotation projection baseline implementa-
tion is straightforward. The source-side instances
from a parallel corpus are labeled using a classi-
fier trained on source-language training data and
transferred to the target side. The resulting anno-
tations are then used to train a target-side classifier
for evaluation. Note that predicate and argument
identification in both languages is performed us-
ing monolingual classifiers and only aligned pairs
are used in projection. A more common approach
would be to project the whole structure from the
source language, but in our case this may give
unfair advantage to feature representation projec-
tion, which relies on target-side argument identifi-
cation.

2.4 Tools

We use the same type of log-linear classifiers
in the model itself and the two baselines to
avoid any discrepancy due to learning proce-
dure. These classifiers are implemented using
PYLEARN2 (Goodfellow et al., 2013), based on
THEANO (Bergstra et al., 2010). We also use this
framework to estimate the linear mapping Mts be-
tween source and target feature spaces in FRP.

The 250-dimensional word representations for
ω1 are obtained using WORD2VEC tool. Both
monolingual data and that from the parallel cor-
pus are included in the training. In Mikolov et al.
(2013b) the authors consider embeddings of up to
800 dimensions, but we would not expect to bene-
fit as much from larger vectors since we are using
a much smaller corpus to train them. We did not
tune the size of the word representation to our task,
as this would not be appropriate in a cross-lingual
transfer setup, but we observe that the classifier
is relatively robust to their dimension when evalu-
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ated on source language – in our experiments the
performance of the monolingual classifier does not
improve significantly if the dimension is increased
past 300 and decreases only by a small margin
(less than one absolute point) if it is reduced to
100. It should be noted, however, that the dimen-
sion that is optimal in this sense is not necessarily
the best choice for FRP, especially if the amount
of available parallel data is limited.

2.5 Data

We use two language pairs for evaluation:
English-Czech and English-French. In the first
case, the data is converted from Prague Czech-
English Dependency Treebank 2.0 (Hajič et al.,
2012) using the script from Kozhevnikov and
Titov (2013). In the second, we use CoNLL 2009
shared task (Hajič et al., 2009) corpus for English
and the manually corrected dataset from van der
Plas et al. (2011) for French. Since the size of
the latter dataset is relatively small – one thou-
sand sentences – we reserve the whole dataset for
testing and only evaluate transfer from English to
French, but not the other way around. Datasets for
other languages are sufficiently large, so we take
30 thousand samples for testing and use the rest
as training data. The validation set in each exper-
iment is withheld from the corresponding training
corpus and contains 10 thousand samples.

Parallel data for both language pairs is de-
rived from Europarl (Koehn, 2005), which we pre-
process using MATE-TOOLS (Björkelund et al.,
2009; Bohnet, 2010).

3 Results

The classification error of FRP and the baselines
given varying amount of parallel data is reported
in figures 2, 3 and 4. The training set for each
language is fixed. We denote the two baselines AP
(annotation projection) and DT (direct transfer).

The number of parallel instances in these exper-
iments is shown on a logarithmic scale, the values
considered are 2, 5, 10, 20 and 50 thousand pairs.

Please note that we report only a single value
for direct transfer, since this approach does not ex-
plicitly rely on parallel data. Although some of
the features – namely, gloss translations and cross-
lingual clusters – used in direct transfer are, in fact,
derived from parallel data, we consider the effect
of this on the performance of direct transfer to be
indirect and outside the scope of this work.
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Figure 2: English-Czech transfer results
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Figure 3: Czech-English transfer results

The rather inferior performance of direct trans-
fer baseline on English-French may be partially
attributed to the fact that it cannot rely on depen-
dency relation features, as the corpora we consider
make use of different dependency relation inven-
tories. Replacing language-specific dependency
annotations with the universal ones (McDonald
et al., 2013) may help somewhat, but we would
still expect the methods directly relying on paral-
lel data to achieve better results given a sufficiently
large parallel corpus.

Overall, we observe that the proposed method
with ω1 representation demonstrates performance
competitive to direct transfer and annotation pro-
jection baselines.
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Figure 4: English-French transfer results

4 Additional Related Work

Apart from the work on direct/projected transfer
and annotation projection mentioned above, the
proposed method can be seen as a more explicit
kind of domain adaptation, similar to Titov (2011)
or Blitzer et al. (2006).

It is also somewhat similar in spirit to Mikolov
et al. (2013b), where a small number of word
translation pairs are used to estimate a mapping
between distributed representations of words in
two different languages and build a word transla-
tion model.

5 Conclusions

In this paper we propose a new method of cross-
lingual model transfer, report initial evaluation re-
sults and highlight directions for its further devel-
opment.

We observe that the performance of this method
is competitive with that of established cross-
lingual transfer approaches and its application re-
quires very little manual adjustment – no heuris-
tics or filtering and no explicit shared feature rep-
resentation design. It also retains compatibility
with any refinement procedures similar to pro-
jected transfer (McDonald et al., 2011) that may
have been designed to work in conjunction with
direct model transfer.

6 Future Work

This paper reports work in progress and there is
a number of directions we would like to pursue
further.

Better Monolingual Representations The rep-
resentation we used in the initial evaluation does
not discriminate between aspects that are relevant
for the assignment of semantic roles and those that
are not. Since we are using a relatively small set of
features to start with, this does not present much of
a problem. In general, however, retaining only rel-
evant aspects of intermediate monolingual repre-
sentations would simplify the estimation of map-
ping between them and make FRP more robust.

For source language, this is relatively straight-
forward, as the intermediate representation can be
directly tuned for the problem in question using
labeled training data. For target language, how-
ever, we assume that no labeled data is available
and auxiliary tasks have to be used to achieve this.

Alternative Sources of Information The
amount of parallel data available for many
language pairs is growing steadily. However,
cross-lingual transfer methods are often applied
in cases where parallel resources are scarce or of
poor quality and must be used with care. In such
situations an ability to use alternative sources of
information may be crucial. Potential sources
of such information include dictionary entries or
information about the mapping between certain
elements of syntactic structure, for example a
known part-of-speech tag mapping.

The available parallel data itself may also be
used more comprehensively – aligned arguments
of aligned predicates, for example, constitute only
a small part of it, while the mapping of vector rep-
resentations of individual tokens is likely to be the
same for all aligned words.

Multi-source Transfer One of the strong points
of direct model transfer is that it naturally fits the
multi-source transfer setting. There are several
possible ways of adapting FRP to such a setting.
It remains to be seen which one would produce
the best results and how multi-source feature rep-
resentation projection would compare to, for ex-
ample, multi-source projected transfer (McDonald
et al., 2011).
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Loganathan Ramasamy, Jan Štěpánek, Zdeněk
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