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Abstract

While tree-to-string (T2S) translation the-
oretically holds promise for efficient, ac-
curate translation, in previous reports T2S
systems have often proven inferior to other
machine translation (MT) methods such as
phrase-based or hierarchical phrase-based
MT. In this paper, we attempt to clarify
the reason for this performance gap by
investigating a number of peripheral ele-
ments that affect the accuracy of T2S sys-
tems, including parsing, alignment, and
search. Based on detailed experiments
on the English-Japanese and Japanese-
English pairs, we show how a basic T2S
system that performs on par with phrase-
based systems can be improved by 2.6-4.6
BLEU, greatly exceeding existing state-
of-the-art methods. These results indi-
cate that T2S systems indeed hold much
promise, but the above-mentioned ele-
ments must be taken seriously in construc-
tion of these systems.

1 Introduction

In recent years, syntactic parsing is being viewed
as an ever-more important element of statistical
machine translation (SMT) systems, particularly
for translation between languages with large dif-
ferences in word order. There are many ways of
incorporating syntax into MT systems, including
the use of string-to-tree translation (S2T) to ensure
the syntactic well-formedness of the output (Gal-
ley et al., 2006; Shen et al., 2008), tree-to-string
(T2S) using source-side parsing as a hint during
the translation process (Liu et al., 2006), or pre-
or post-ordering to help compensate for reorder-
ing problems experienced by non-syntactic meth-
ods such as phrase-based MT (PBMT) (Collins et
al., 2005; Sudoh et al., 2011). Among these, T2S

translation has a number of attractive theoretical
properties, such as joint consideration of global re-
ordering and lexical choice while maintaining rel-
atively fast decoding times.

However, building an accurate T2S system is
not trivial. On one hand, there have been multiple
reports (mainly from groups with a long history
of building T2S systems) stating that systems us-
ing source-side syntax greatly out-perform phrase-
based systems (Mi et al., 2008; Liu et al., 2011;
Zhang et al., 2011; Tamura et al., 2013). On the
other hand, there have been also been multiple re-
ports noting the exact opposite result that source-
side syntax systems perform worse than Hiero,
S2T, PBMT, or PBMT with pre-ordering (Ambati
and Lavie, 2008; Xie et al., 2011; Kaljahi et al.,
2012). In this paper, we argue that this is due to the
fact that T2S systems have the potential to achieve
high accuracy, but are also less robust, with a num-
ber of peripheral elements having a large effect on
translation accuracy.

Our motivation in writing this paper is to pro-
vide a first step in examining and codifying the
more important elements that make it possible to
construct a highly accurate T2S MT system. To do
so, we perform an empirical study of the effect of
parsing accuracy, packed forest input, alignment
accuracy, and search. The reason why we choose
these elements is that past work that has reported
low accuracy for T2S systems has often neglected
to consider one or all of these elements.

As a result of our tests on English-Japanese (en-
ja) and Japanese-English (ja-en) machine transla-
tion, we find that a T2S system not considering
these elements performs only slightly better than a
standard PBMT system. However, after account-
ing for all these elements we see large increases of
accuracy, with the final system greatly exceeding
not only standard PBMT, but also state-of-the-art
methods based on syntactic pre- or post-ordering.
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2 Experimental Setup

2.1 Systems Compared
In our experiments, we use a translation model
based on T2S tree transducers (Graehl and Knight,
2004), constructed using the Travatar toolkit (Neu-
big, 2013). Rules are extracted using the GHKM
algorithm (Galley et al., 2006), and rules with
up to 5 composed minimal rules, up to 2 non-
terminals, and up to 10 terminals are used.

We also prepare 3 baselines not based on T2S
to provide a comparison with other systems in the
literature. The first two baselines are standard sys-
tems using PBMT or Hiero trained using Moses
(Koehn et al., 2007). We use default settings, ex-
cept for setting the reordering limit or maximum
chart span to the best-performing value of 24. As
our last baselines, we use two methods based on
syntactic pre- or post-ordering, which are state-of-
the-art methods for the language pairs. Specifi-
cally, for en-ja translation we use the head finaliza-
tion pre-ordering method of (Isozaki et al., 2010b),
and for ja-en translation, we use the syntactic post-
ordering method of (Goto et al., 2012). For all
systems, T2S or otherwise, the language model is
a Kneser-Ney 5-gram, and tuning is performed to
maximize BLEU score using minimum error rate
training (Och, 2003).

2.2 Data and Evaluation

We perform all of our experiments on en-ja
and ja-en translation over data from the NTCIR
PatentMT task (Goto et al., 2011), the most stan-
dard benchmark task for these language pairs. We
use the training data from NTCIR 7/8, a total of
approximately 3.0M sentences, and perform tun-
ing on the NTCIR 7 dry run, testing on the NTCIR
7 formal run data. As evaluation measures, we use
the standard BLEU (Papineni et al., 2002) as well
as RIBES (Isozaki et al., 2010a), a reordering-
based metric that has been shown to have high
correlation with human evaluations on the NTCIR
data. We measure significance of results using
bootstrap resampling at p < 0.05 (Koehn, 2004).
In tables, bold numbers indicate the best system
and all systems that were not significantly differ-
ent from the best system.

2.3 Motivational Experiment
Before going into a detailed analysis, we first
present results that stress the importance of the el-
ements described in the introduction. To do so,

en-ja ja-en
System BLEU RIBES BLEU RIBES
PBMT 35.84 72.89 30.49 69.80
Hiero 34.45 72.94 29.41 69.51
Pre/Post 36.69 77.05 29.42 73.85
T2S-all 36.23 76.60 31.15 72.87
T2S+all 40.84 80.15 33.70 75.94

Table 1: Overall results for five systems.

we compare the 3 non-T2S baselines with two
T2S systems that vary the settings of the parser,
alignment, and search, as described in the follow-
ing Sections 3, 4, and 5. The first system “T2S-
all” is a system that uses the worst settings1 for
each of these elements, while the second system
“T2S+all” uses the best settings.2 The results for
the systems are shown in Table 1.

The most striking result is that T2S+all signif-
icantly exceeds all of the baselines, even includ-
ing the pre/post-ordering baselines, which provide
state-of-the-art results on this task. The gains are
particularly striking on en-ja, with a gain of over 4
BLEU points over the closest system, but still sig-
nificant on the ja-en task, where the use of source-
side syntax has proven less effective in previous
work (Sudoh et al., 2011). The next thing to notice
is that if we had instead used T2S-all, our conclu-
sion would have been much different. This system
is able to achieve respectable accuracy compared
to PBMT or Hiero, but does not exceed the more
competitive pre/post-ordering systems.3 With this
result in hand, we will investigate the contribution
of each of these elements in detail in the following
sections. In the remainder of the paper settings
follow T2S+all except when otherwise noted.

3 Parsing

3.1 Parsing Overview

As T2S translation uses parse trees both in train-
ing and testing of the system, an accurate syntactic
parser is required. In order to test the extent that
parsing accuracy affects translation, we use two

1Stanford/Eda, GIZA++, pop-limit 5000 cube pruning.
2Egret forests, Nile, pop-limit 5000 hypergraph search.
3We have also observed similar trends on other genres and

language pairs. For example, in a Japanese-Chinese/English
medical conversation task (Neubig et al., 2013), forests,
alignment, and search resulted in BLEU increases of en-ja
24.55→30.81, ja-en 19.28→22.46, zh-ja 15.22→20.67, ja-zh
30.88→33.89.
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different syntactic parsers and examine the trans-
lation accuracy realized by each parser.

For English, the two most widely referenced
parsers are the Stanford Parser and Berkeley
Parser. In this work, we compare the Stanford
Parser’s CFG model, with the Berkeley Parser’s
latent variable model. In previous reports, it has
been noted (Kummerfeld et al., 2012) that the la-
tent variable model of the Berkeley parser tends to
have the higher accuracy of the two, so if the accu-
racy of a system using this model is higher then it
is likely that parsing accuracy is important for T2S
translation. Instead of the Berkeley Parser itself,
we use a clone Egret,4 which achieves nearly iden-
tical accuracy, and is able to output packed forests
for use in MT, as mentioned below. Trees are
right-binarized, with the exception of phrase-final
punctuation, which is split off before any other el-
ement in the phrase.

For Japanese, our first method uses the MST-
based pointwise dependency parser of Flannery et
al. (2011), as implemented in the Eda toolkit.5

In order to convert dependencies into phrase-
structure trees typically used in T2S translation,
we use the head rules implemented in the Travatar
toolkit. In addition, we also train a latent variable
CFG using the Berkeley Parser and use Egret for
parsing. Both models are trained on the Japanese
Word Dependency Treebank (Mori et al., 2014).

In addition, Mi et al. (2008) have proposed a
method for forest-to-string (F2S) translation us-
ing packed forests to encode many possible sen-
tence interpretations. By doing so, it is possible to
resolve some of the ambiguity in syntactic inter-
pretation at translation time, potentially increasing
translation accuracy. However, the great majority
of recent works on T2S translation do not consider
multiple syntactic parses (e.g. Liu et al. (2011),
Zhang et al. (2011)), and thus it is important to
confirm the potential gains that could be acquired
by taking ambiguity into account.

3.2 Effect of Parsing and Forest Input

In Table 2 we show the results for Stanford/Eda
with 1-best tree input vs. Egret with trees or
forests as input. Forests are those containing all
edges in the 100-best parses.

First looking at the difference between the two
parsers, we can see that the T2S system using

4http://code.google.com/p/egret-parser
5http://plata.ar.media.kyoto-u.ac.jp/tool/EDA

en-ja ja-en
System BLEU RIBES BLEU RIBES
Stan/Eda 38.95 78.47 32.56 73.03
Egret-T 39.26 79.26 32.97 74.94
Egret-F 40.84 80.15 33.70 75.94

Table 2: Results for Stanford/Eda, Egret with tree
input, and Egret with forest input.
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Figure 1: BLEU scores using various levels of for-
est pruning. Numbers in the graph indicate decod-
ing time in seconds/sentence.

Egret achieves greater accuracy than that using the
other two parsers. This improvement is particu-
larly obvious in RIBES, indicating that an increase
in parsing accuracy has a larger effect on global
reordering than on lexical choice. When going
from T2S to F2S translation using Egret, we see
another large gain in accuracy, although this time
with the gain in BLEU being more prominent. We
believe this is related to the observation of Zhang
and Chiang (2012) that F2S translation is not nec-
essarily helping fixing parsing errors, but instead
giving the translation system the freedom to ignore
the parse somewhat, allowing for less syntactically
motivated but more fluent translations.

As passing some degree of syntactic ambigu-
ity on to the decoder through F2S translation has
proven useful, a next natural question is how much
of this ambiguity we need to preserve in our forest.
The pruning criterion that we use for the forest is
based on including all edges that appear in one or
more of the n-best parses, so we perform transla-
tion setting n to 1 (trees), 3, 6, 12, 25, 50, 100, and
200. Figure 1 shows results for these settings with
regards to translation accuracy and speed. Over-
all, we can see that every time we double the size
of the forest we get an approximately linear in-
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crease in BLEU at the cost of an increase in decod-
ing time. Interestingly, the increases in BLEU did
not show any sign of saturating even when setting
the n-best cutoff to 200, although larger cutoffs re-
sulted in exceedingly large translation forests that
required large amounts of memory.

4 Alignment

4.1 Alignment Overview
The second element that we investigate is align-
ment accuracy. It has been noted in many previ-
ous works that significant gains in alignment accu-
racy do not make a significant difference in trans-
lation results (Ayan and Dorr, 2006; Ganchev et
al., 2008). However, none of these works have ex-
plicitly investigated the effect on T2S translation,
so it is not clear whether these results carry over to
our current situation.

As our baseline aligner, we use the GIZA++ im-
plementation of the IBM models (Och and Ney,
2003) with the default options. To test the effect
of improved alignment accuracy, we use the dis-
criminative alignment method of Riesa and Marcu
(2010) as implemented in the Nile toolkit.6 This
method has the ability to use source- and target-
side syntactic information, and has been shown to
improve the accuracy of S2T translation.

We trained Nile and tested both methods on
the Japanese-English alignments provided with
the Kyoto Free Translation Task (Neubig, 2011)
(430k parallel sentences, 1074 manually aligned
training sentences, and 120 manually aligned test
sentences).7 As creating manual alignment data is
costly, we also created two training sets that con-
sisted of 1/4 and 1/16 of the total data to test if
we can achieve an effect with smaller amounts of
manually annotated data. The details of data size
and alignment accuracy are shown in Table 3.

4.2 Effect of Alignment on Translation
In Table 4, we show results when we vary the
aligner between GIZA++ and Nile. For reference,
we also demonstrate results when using the same
alignments for PBMT and Hiero.

From this, we can see that while for PBMT and
Hiero systems the results are mixed, as has been
noted in previous work (Fraser and Marcu, 2007),

6http://code.google.com/p/nile
7This data is from Wikipedia articles about Kyoto City,

and is an entirely different genre than our MT test data. It is
likely that creating aligned data that matches the MT genre
would provide larger gains in MT accuracy.

Name Sent. Prec. Rec. F-meas
GIZA++ 0 60.46 55.48 57.86
Nile/16 68 70.21 60.81 65.17
Nile/4 269 72.85 62.70 67.40
Nile 1074 72.73 63.97 68.07

Table 3: Alignment accuracy (%) by method and
number of manually annotated training sentences.

en-ja ja-en
System BLEU RIBES BLEU RIBES
PBMT-G 35.84 72.89 30.49 69.80
PBMT-N 36.05 71.84 30.77 69.75
Hiero-G 34.45 72.94 29.41 69.51
Hiero-N 33.90 72.63 28.90 69.83
T2S-G 39.57 78.94 32.62 75.19
T2S-N/16 40.79 80.05 32.82 74.89
T2S-N/4 40.97 80.32 33.35 75.46
T2S-N 40.84 80.15 33.70 75.94

Table 4: Results varying the aligner (GIZA++ vs.
Nile), including results for Nile when using 1/4 or
1/16 of the annotated training data.

Figure 2: Probabilities for SVO→SOV rules.

improving the alignment accuracy gives signifi-
cant gains for T2S translation. The reason for this
difference is two-fold. The first is that in rule
extraction in syntax-based translation (Galley et
al., 2006), a single mistaken alignment crossing
phrase boundaries results not only in a bad rule be-
ing extracted, but also prevents the extraction of a
number of good rules. This is reflected in the size
of the rule table; the en-ja system built using Nile
contains 92.8M rules, while the GIZA++ system
contains only 83.3M rules, a 11.2% drop.

The second reason why alignment is important
is that while one of the merits of T2S models is
their ability to perform global re-ordering, it is dif-
ficult to learn good reorderings from bad align-
ments. We show an example of this in Figure 2.
When translating SVO English to SOV Japanese,
we expect rules containing a verb and a following
noun phrase (VO) to have a high probability of be-
ing reversed (to OV), possibly with the addition of
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the Japanese direct object particle “wo.” From the
figure, we can see that the probabilities learned by
Nile match this intuition, while the probabilities
learned by GIZA heavily favor no reordering.

Finally, looking at the amount of data needed to
train the model, we can see that a relatively small
amount of manually annotated data proves suffi-
cient for large gains in alignment accuracy, with
even 68 sentences showing a 7.31 point gain in F-
measure over GIZA++. This is because Nile’s fea-
ture set uses generalizable POS/syntactic informa-
tion and also because mis-alignments of common
function words (e.g. a/the) will be covered even
by small sets of training data. Looking at the MT
results, we can see that even the smaller data sets
allow for gains in accuracy, although the gains are
more prominent for en-ja.

5 Search

5.1 Search Overview

Finally, we examine the effect that the choice of
search algorithm has on the accuracy of transla-
tion. The most standard search algorithm for T2S
translation is bottom-up beam search using cube
pruning (CP, Chiang (2007)). However, there are
a number of other search algorithms that have
been proposed for tree-based translation in gen-
eral (Huang and Chiang, 2007) or T2S systems
in particular (Huang and Mi, 2010; Feng et al.,
2012). In this work, we compare CP and the hy-
pergraph search (HS) method of Heafield et al.
(2013), which is also a bottom-up pruning algo-
rithm but performs more efficient search by group-
ing together similar language model states.

5.2 Effect of Search

Figure 3 shows BLEU and decoding speed results
using HS or CP on T2S and F2S translation, us-
ing a variety of pop limits. From this, we can see
that HS out-performs CP for both F2S and T2S,
especially with smaller pop limits. Comparing the
graphs for F2S and T2S translation, it is notable
that the shapes of the graphs for the two meth-
ods are strikingly similar. This result is somewhat
surprising, as the overall search space of F2S is
larger and it would be natural for the characteris-
tics of the search algorithm to vary between these
two settings. Finally, comparing ja-en and en-ja,
search is simpler for the former, a result of the fact
that the Japanese sentences contain more words,
and thus more LM evaluations per sentence.
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Figure 3: Hypergraph search (HS) and cube
pruning (CP) results for F2S and T2S. Numbers
above and below the lines indicate time in sec-
onds/sentence for HS and CP respectively.

6 Conclusion

In this paper, we discussed the importance of three
peripheral elements that contribute greatly to the
accuracy of T2S machine translation: parsing,
alignment, and search. Put together, a T2S sys-
tem that uses the more effective settings for these
three elements greatly outperforms a system that
uses more standard settings, as well as the current
state-of-the-art on English-Japanese and Japanese-
English translation tasks.

Based on these results we draw three conclu-
sions. The first is that given the very competitive
results presented here, T2S systems do seem to
have the potential to achieve high accuracy, even
when compared to strong baselines incorporating
syntactic reordering into a phrase-based system.
The second is that when going forward with re-
search on T2S translation, one should first be sure
to account for these three elements to ensure a
sturdy foundation for any further improvements.
Finally, considering the fact that parsing and align-
ment for each of these languages is far from per-
fect, further research investment in these fields
may very well have the potential to provide ad-
ditional gains in accuracy in the T2S framework.
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