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Abstract

This paper addresses the problem of EM-
based decipherment for large vocabular-
ies. Here, decipherment is essentially
a tagging problem: Every cipher token
is tagged with some plaintext type. As
with other tagging problems, this one can
be treated as a Hidden Markov Model
(HMM), only here, the vocabularies are
large, so the usual O(NV 2) exact EM ap-
proach is infeasible. When faced with
this situation, many people turn to sam-
pling. However, we propose to use a type
of approximate EM and show that it works
well. The basic idea is to collect fractional
counts only over a small subset of links
in the forward-backward lattice. The sub-
set is different for each iteration of EM.
One option is to use beam search to do the
subsetting. The second method restricts
the successor words that are looked at, for
each hypothesis. It does this by consulting
pre-computed tables of likely n-grams and
likely substitutions.

1 Introduction

The decipherment of probabilistic substitution ci-
phers (ciphers in which each plaintext token can
be substituted by any cipher token, following a
distribution p(f |e), cf. Table 2) can be seen as
an important step towards decipherment for MT.
This problem has not been studied explicitly be-
fore. Scaling to larger vocabularies for proba-
bilistic substitution ciphers decipherment is a dif-
ficult problem: The algorithms for 1:1 or homo-
phonic substitution ciphers are not applicable, and
standard algorithms like EM training become in-
tractable when vocabulary sizes go beyond a few
hundred words. In this paper we present an effi-

cient EM based training procedure for probabilis-
tic substitution ciphers which provides high deci-
pherment accuracies while having low computa-
tional requirements. The proposed approach al-
lows using high order n-gram language models,
and is scalable to large vocabulary sizes. We show
improvements in decipherment accuracy in a va-
riety of experiments (including MT) while being
computationally more efficient than previous pub-
lished work on EM-based decipherment.

2 Related Work

Several methods exist for deciphering 1:1 substi-
tution ciphers: Ravi and Knight (2008) solve 1:1
substitution ciphers by formulating the decipher-
ment problem as an integer linear program. Cor-
lett and Penn (2010) solve the same problem us-
ing A∗ search. Nuhn et al. (2013) present a beam
search approach that scales to large vocabulary
and high order language models. Even though be-
ing successful, these algorithms are not applicable
to probabilistic substitution ciphers, or any of its
extensions as they occur in decipherment for ma-
chine translation.

EM training for probabilistic ciphers was first
covered in Ravi and Knight (2011). Nuhn et al.
(2012) have given an approximation to exact EM
training using context vectors, allowing to train-
ing models even for larger vocabulary sizes. Ravi
(2013) report results on the OPUS subtitle corpus
using an elaborate hash sampling technique, based
on n-gram language models and context vectors,
that is computationally very efficient.

Conventional beam search is a well studied
topic: Huang et al. (1992) present beam search for
automatic speech recognition, using fine-grained
pruning procedures. Similarly, Young and Young
(1994) present an HMM toolkit, including pruned
forward-backward EM training. Pal et al. (2006)
use beam search for training of CRFs.
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Method Publications Complexity

EM Full (Knight et al., 2006), (Ravi and Knight, 2011) O(NV n)
EM Fixed Candidates (Nuhn et al., 2012) O(N)
EM Beam This Work O(NV )
EM Lookahead This Work O(N)

Table 1: Different approximations to exact EM training for decipherment. N is the cipher sequence
length, V the size of the target vocabulary, and n the order of the language model.

The main contribution of this work is the pre-
selection beam search that—to the best of our
knowledge—was not known in literature before,
and serves as an important step to applying EM
training to the large vocabulary decipherment
problem. Table 1 gives an overview of the EM
based methods. More details are given in Sec-
tion 3.2.

3 Probabilistic Substitution Ciphers

We define probabilistic substitutions ciphers us-
ing the following generative story for ciphertext
sequences fN

1 :

1. Stochastically generate a plaintext sequence
eN1 according to a bigram1 language model.

2. For each plaintext token en choose a substi-
tution fn with probability P (fn|en, ϑ).

This generative story corresponds to the model

p(eN1 , f
N
1 , ϑ) = p(eN1 ) · p(fN

1 |eN1 , ϑ) , (1)

with the zero-order membership model

p(fN
1 |eN1 , ϑ) =

N∏
n=1

plex(fn|en, ϑ) (2)

with parameters p(f |e, ϑ) ≡ ϑf |e and normaliza-
tion constraints ∀e∑f ϑf |e = 1, and first-order
plaintext sequence model

P (eN1 ) =
N∏

n=1

pLM (en|en−1) . (3)

Thus, the probabilistic substitution cipher can be
seen as a Hidden Markov Model. Table 2 gives an
overview over the model. We want to find those
parameters ϑ that maximize the marginal distribu-
tion p(fN

1 |ϑ):

ϑ = arg max
ϑ′

∑
[eN

1 ]

p(fN
1 , e

N
1 |ϑ′)

 (4)

1This can be generalized to n-gram language models.

After we obtained the parameters ϑ we
can obtain eN1 as the Viterbi decoding
arg maxeN

1

{
p(eN1 |fN

1 , ϑ)
}

.

3.1 Exact EM training
In the decipherment setting, we are given the ob-
served ciphertext fN

1 and the model p(fN
1 |eN1 , ϑ)

that explains how the observed ciphertext has been
generated given a latent plaintext eN1 . Marginaliz-
ing the unknown eN1 , we would like to obtain the
maximum likelihood estimate of ϑ as specified in
Equation 4. We iteratively compute the maximum
likelihood estimate by applying the EM algorithm
(Dempster et al., 1977):

ϑ̃f |e =

∑
n:fn=f

pn(e|fN
1 , ϑ)∑

f

∑
n:fn=f

pn(e|fN
1 , ϑ)

(5)

with

pn(e|fN
1 , ϑ) =

∑
[eN

1 :en=e]

p(eN1 |fN
1 , ϑ) (6)

being the posterior probability of observing the
plaintext symbol e at position n given the cipher-
text sequence fN

1 and the current parameters ϑ.
pn(e|fN

1 , ϑ) can be efficiently computed using the
forward-backward algorithm.

3.2 Approximations to EM-Training
The computational complexity of EM training
stems from the sum

∑
[eN

1 :en=e] contained in the
posterior pn(e|fN

1 , ϑ). However, we can approx-
imate this sum (and hope that the EM training
procedure is still working) by only evaluating the
dominating terms, i.e. we only evaluate the sum
for sequences eN1 that have the largest contribu-
tions to

∑
[eN

1 :en=e]. Note that due to this approxi-
mation, the new parameter estimates in Equation 5
can become zero. This is a critical issue, since
pairs (e, f) with p(f |e) = 0 cannot recover from
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Sequence of cipher tokens : fN
1 = f1, . . . , fN

Sequence of plaintext tokens : eN1 = e1, . . . , eN
Joint probability : p(fN

1 , e
N
1 |ϑ) = p(eN1 ) · p(fN

1 |eN1 , ϑ)

Language model : p(eN1 ) =
N∏

n=1
pLM (en|en−1)

Membership probabilities : p(fN
1 |eN1 , ϑ) =

N∏
n=1

plex(fn|en, ϑ)

Paramater Set : ϑ = {ϑf |e}, p(f |e, ϑ) = ϑf |e
Normalization : ∀e :

∑
f

ϑf |e = 1

Probability of cipher sequence : p(fN
1 |ϑ) =

∑
[eN

1 ]

p(fN
1 , e

N
1 |ϑ)

Table 2: Definition of the probabilistic substitution cipher model. In contrast to simple or homophonic
substitution ciphers, each plaintext token can be substituted by multiple cipher text tokens. The parameter
ϑf |e represents the probability of substituting token e with token f .

acquiring zero probability in some early iteration.
In order to allow the lexicon to recover from these
zeros, we use a smoothed lexicon ˆplex(f |e) =
λplex(f |e) + (1 − λ)/|Vf | with λ = 0.9 when
conducting the E-Step.

3.2.1 Beam Search
Instead of evaluating the sum for terms with the
exact largest contributions, we restrict ourselves to
terms that are likely to have a large contribution to
the sum, dropping any guarantees about the actual
contribution of these terms.

Beam search is a well known algorithm related
to this idea: We build up sequences ec1 with grow-
ing cardinality c. For each cardinality, only a set
of the B most promising hypotheses is kept. Then
for each active hypothesis of cardinality c, all pos-
sible extensions with substitutions fc+1 → ec+1

are explored. Then in turn only the best B out of
the resulting B · Ve many hypotheses are kept and
the algorithm continues with the next cardinality.
Reaching the full cardinality N , the algorithm ex-
plored B ·N · Ve many hypotheses, resulting in a
complexity of O(BNVe).

Even though EM training using beam search
works well, it still suffers from exploring all Ve

possible extensions for each active hypothesis, and
thus scaling linearly with the vocabulary size. Due
to that, standard beam search EM training is too
slow to be used in the decipherment setting.

3.2.2 Preselection Search
Instead of evaluating all substitutions fc+1 →
ec+1 ∈ Ve, this algorithm only expands a fixed
number of candidates: For a hypothesis ending in

a language model state σ, we only look at BLM

many successor words ec+1 with the highest LM
probability pLM (ec+1|σ) and at Blex many suc-
cessor words ec+1 with the highest lexical prob-
ability plex(fc+1|ec+1). Altogether, for each hy-
pothesis we only look at (BLM +Blex) many suc-
cessor states. Then, just like in the standard beam
search approach, we prune all explored new hy-
potheses and continue with the pruned set of B
many hypotheses. Thus, for a cipher of length N
we only explore N · B · (BLM + Blex) many hy-
potheses.2

Intuitively speaking, our approach solves the
EM training problem for decipherment using large
vocabularies by focusing only on those substitu-
tions that either seem likely due to the language
model (”What word is likely to follow the cur-
rent partial decipherment?”) or due to the lexicon
model (”Based on my knowledge about the cur-
rent cipher token, what is the most likely substitu-
tion?”).

In order to efficiently find the maximizing e for
pLM (e|σ) and plex(f |e), we build a lookup ta-
ble that contains for each language model state σ
the BLM best successor words e, and a separate
lookup table that contains for each source word f
the Blex highest scoring tokens e. The language
model lookup table remains constant during all it-
erations, while the lexicon lookup table needs to
be updated between each iteration.

Note that the size of the LM lookup table scales
linearly with the number of language model states.
Thus the memory requirements for the lookup ta-

2We always use B = 100, Blex = 5, and BLM = 50.
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Figure 1: Illustration of the search space explored by full search, beam search, and preselection search.
Full search keeps all possible hypotheses at cardinality c and explores all possible substitutions at (c+1).
Beam search only keeps the B most promising hypotheses and then selects the best new hypotheses for
cardinality (c+ 1) from all possible substitutions. Preselection search keeps only the B best hypotheses
for every cardinality c and only looks at the (Blex + BLM ) most promising substitutions for cardinality
(c+ 1) based on the current lexicon (Blex dashed lines) and language model (BLM solid lines).

Name Lang. Sent. Words Voc.

VERBMOBIL English 27,862 294,902 3,723

OPUS
Spanish 13,181 39,185 562

English 19,770 61,835 411

Table 3: Statistics of the copora used in this pa-
per: The VERBMOBIL corpus is used to conduct
experiments on simple substitution ciphers, while
the OPUS corpus is used in our Machine Transla-
tion experiments.

ble do not form a practical problem of our ap-
proach. Figure 1 illustrates full search, beam
search, and our proposed method.

4 Experimental Evaluation

We first show experiments for data in which the
underlying model is an actual 1:1 substitution ci-
pher. In this case, we report the word accuracy
of the final decipherment. We then show experi-
ments for a simple machine translation task. Here
we report translation quality in BLEU. The cor-
pora used in this paper are shown in Table 3.

4.1 Simple Substitution Ciphers
In this set of experiments, we compare the exact
EM training to the approximations presented in
this paper. We use the English side of the German-
English VERBMOBIL corpus (Wahlster, 2000) to
construct a word substitution cipher, by substitut-
ing every word type with a unique number. In or-
der to have a non-parallel setup, we train language

Vocab LM Method Acc.[%] Time[h]

200 2 exact 97.19 224.88
200 2 beam 98.87 9.04
200 2 presel. 98.50 4.14

500 2 beam 92.12 24.27
500 2 presel. 92.16 4.70

3 661 3 beam 91.16 302.81
3 661 3 presel. 90.92 19.68

3 661 4 presel. 92.14 23.72

Table 4: Results for simple substitution ciphers
based on the VERBMOBIL corpus using exact,
beam, and preselection EM. Exact EM is not
tractable for vocabulary sizes above 200.

models of order 2, 3 and 4 on the first half of the
corpus and use the second half as ciphertext. Ta-
ble 4 shows the results of our experiments.

Since exact EM is not tractable for vocabulary
sizes beyond 200 words, we train word classes on
the whole corpus and map the words to classes
(consistent along the first and second half of the
corpus). By doing this, we create new simple sub-
stitution ciphers with smaller vocabularies of size
200 and 500. For the smallest setup, we can di-
rectly compare all three EM variants. We also in-
clude experiments on the original corpus with vo-
cabulary size of 3661. When comparing exact EM
training with beam- and preselection EM training,
the first thing we notice is that it takes about 20
times longer to run the exact EM training than
training with beam EM, and about 50 times longer
than the preselection EM training. Interestingly,
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Model Method BLEU [%] Runtime

2-gram Exact EM(Ravi and Knight, 2011) 15.3 850.0h
whole segment lm Exact EM(Ravi and Knight, 2011) 19.3 850.0h

2-gram Preselection EM (This work) 15.7 1.8h
3-gram Preselection EM (This work) 19.5 1.9h

Table 5: Comparison of MT performance (BLEU scores) and efficiency (running time in CPU hours) on
the Spanish/English OPUS corpus using only non-parallel corpora for training.

the accuracy of the approximations to exact EM
training is better than that of the exact EM train-
ing. Even though this needs further investigation,
it is clear that the pruned versions of EM training
find sparser distributions plex(f |e): This is desir-
able in this set of experiments, and could be the
reason for improved performance.

For larger vocabularies, exact EM training is not
tractable anymore. We thus constrain ourselves to
running experiments with beam and preselection
EM training only. Here we can see that the runtime
of the preselection search is roughly the same as
when running on a smaller vocabulary, while the
beam search runtime scales almost linearly with
the vocabulary size. For the full vocabulary of
3661 words, preselection EM using a 4-gram LM
needs less than 7% of the time of beam EM with a
3-gram LM and performs by 1% better in symbol
accuracy.

To summarize: Beam search EM is an or-
der of magnitude faster than exact EM training
while even increasing decipherment accuracy. Our
new preselection search method is in turn or-
ders of magnitudes faster than beam search EM
while even being able to outperform exact EM and
beam EM by using higher order language mod-
els. We were thus able to scale the EM deci-
pherment to larger vocabularies of several thou-
sand words. The runtime behavior is also consis-
tent with the computational complexity discussed
in Section 3.2.

4.2 Machine Translation

We show that our algorithm is directly applicable
to the decipherment problem for machine transla-
tion. We use the same simplified translation model
as presented by Ravi and Knight (2011). Because
this translation model allows insertions and dele-
tions, hypotheses of different cardinalities coex-
ist during search. We extend our search approach
such that pruning is done for each cardinality sep-

arately. Other than that, we use the same pres-
election search procedure as used for the simple
substitution cipher task.

We run experiments on the opus corpus as pre-
sented in (Tiedemann, 2009). Table 5 shows pre-
viously published results using EM together with
the results of our new method:

(Ravi and Knight, 2011) is the only publication
that reports results using exact EM training and
only n-gram language models on the target side:
It has an estimated runtime of 850h. All other
published results (using EM training and Bayesian
inference) use context vectors as an additional
source of information: This might be an explana-
tion why Nuhn et al. (2012) and Ravi (2013) are
able to outperform exact EM training as reported
by Ravi and Knight (2011). (Ravi, 2013) reports
the most efficient method so far: It only consumes
about 3h of computation time. However, as men-
tioned before, those results are not directly compa-
rable to our work, since they use additional context
information on the target side.

Our algorithm clearly outperforms the exact
EM training in run time, and even slighlty im-
proves performance in BLEU. Similar to the sim-
ple substitution case, the improved performance
might be caused by inferring a sparser distribution
plex(f |e). However, this requires further investi-
gation.

5 Conclusion

We have shown a conceptually consistent and easy
to implement EM based training method for deci-
pherment that outperforms exact and beam search
EM training for simple substitution ciphers and
decipherment for machine translation, while re-
ducing training time to a fraction of exact and
beam EM. We also point out that the preselection
method presented in this paper is not restricted to
word based translation models and can also be ap-
plied to phrase based translation models.
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