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Abstract

In this paper, we propose a novel deriva-
tion structure prediction (DSP) model
for SMT using recursive neural network
(RNN). Within the model, two steps are
involved: (1) phrase-pair vector represen-
tation, to learn vector representations for
phrase pairs; (2) derivation structure pre-
diction, to generate a bilingual RNN that
aims to distinguish good derivation struc-
tures from bad ones. Final experimental
results show that our DSP model can sig-
nificantly improve the translation quality.

1 Introduction

Derivation structure is important for SMT decod-
ing, especially for the translation model based
on nested structures of languages, such as BTG
(bracket transduction grammar) model (Wu, 1997;
Xiong et al., 2006), hierarchical phrase-based
model (Chiang, 2007), and syntax-based model
(Galley et al., 2006; Marcu et al., 2006; Liu et
al., 2006; Huang et al., 2006; Zhang et al., 2008;
Zhang et al., 2011; Zhai et al., 2013). In general,
derivation structure refers to the tuple that records
the used translation rules and their compositions
during decoding, just as Figure 1 shows.

Intuitively, a good derivation structure usually
yields a good translation, while bad derivations al-
ways result in bad translations. For example in
Figure 1, (a) and (b) are two different derivations
for Chinese sentence “Ù� � â9 Þ1 
 ¬
!”. Comparing the two derivations, (a) is more
reasonable and yields a better translation. How-
ever, (b) wrongly translates phrase “� â9” to
“and Sharon” and combines it with [Ù�;Bush]
incorrectly, leading to a bad translation.

To explore the derivation structure’s potential
on yielding good translations, in this paper, we
propose a novel derivation structure prediction
(DSP) model for SMT decoding.
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Figure 1: Two different derivation structures of
BTG translation model. In the structure, leaf
nodes denote the used translation rules. For each
node, the first line is the source string, while the
second line is its corresponding translation.

The proposed DSP model is built on recur-
sive neural network (RNN). Within the model,
two steps are involved: (1) phrase-pair vector
representation, to learn vector representations for
phrase pairs; (2) derivation structure prediction,
to build a bilingual RNN that aims to distinguish
good derivation structures from bad ones. Ex-
tensive experiments show that the proposed DSP
model significantly improves the translation qual-
ity, and thus verify the effectiveness of derivation
structure on indicating good translations.

We make the following contributions in this
work:

• We propose a novel RNN-based model to do
derivation structure prediction for SMT de-
coding. To our best knowledge, this is the
first work on this issue in SMT community;
• In current work, RNN has only been verified

to be useful on monolingual structure learn-
ing (Socher et al., 2011a; Socher et al., 2013).
We go a step further, and design a bilingual
RNN to represent the derivation structure;
• To train the RNN-based DSP model, we pro-

pose a max-margin objective that prefers gold
derivations yielded by forced decoding to
n-best derivations generated by the conven-
tional BTG translation model.
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2 The DSP Model

The basic idea of DSP model is to represent the
derivation structure by RNN (Figure 2). Here, we
build the DSP model for BTG translation model,
which is naturally compatible with RNN. We be-
lieve that the DSP model is also beneficial to other
translation models. We leave them as our future
work.

2.1 Phrase-Pair Vector Representation
Phrase pairs, i.e., the used translation rules, are the
leaf nodes of derivation structure. Hence, to repre-
sent the derivation structure by RNN, we need first
to represent the phrase pairs. To do this, we use
two unsupervised recursive autoencoders (RAE)
(Socher et al., 2011b), one for the source phrase
and the other for the target phrase. We call the unit
of the two RAEs the Leaf Node Network (LNN).

Using n-dimension word embedding, RAE can
learn a n-dimension vector for any phrase. Mean-
while, RAE will build a binary tree for the phrase,
as Figure 2 (in box) shows, and compute a re-
construction error to evaluate the vector. We use
E(Tph) to denote the reconstruction error given by
RAE, where ph is the phrase and Tph is the corre-
sponding binary tree. In RAE, higher error corre-
sponds to worse vector. More details can be found
in (Socher et al., 2011b).

Given a phrase pair (sp, tp), we can use LNN
to generate two n-dimension vectors, representing
sp and tp respectively. Then, we concatenate the
two vectors directly, and get a vector r ∈ R2n to
represent phrase pair (sp, tp) (shown in Figure
2). The vector r is evaluated by combining the
reconstruction error on both sides:

E(Tsp, Ttp) =
1
2

[E(Tsp) + E(Ttp) · Ns

Nt
] (1)

where Tsp and Ttp are the binary trees for sp and
tp. Ns and Nt denote the number of nodes in Tsp
and Ttp. Note that in order to unify the errors on
the two sides, we use ratio Ns/Nt to eliminate the
influence of phrase length.

Then, according to Equation (1), we compute
an LNN score to evaluate the vector of all phrase
pairs, i.e., leaf nodes, in derivation d:

LNN(d) = −
∑

(sp,tp)
E(Tsp, Ttp) (2)

where (sp, tp) is the used phrase pair in derivation
d. Obviously, the derivation with better phrase-
pair representations will get a higher LNN score.

布什

与 沙龙 with Sharon

举行 了 会谈 held a talk

Bush

Figure 2: Illustration of DSP model, based on the
derivation structure in Figure 1(a).

The LNN score will serve as part of the DSP
model for predicting good derivation structures.

2.2 Derivation Structure Prediction

Using the vector representations of phrase pairs,
we then build a Derivation Structure Network
(DSN) for prediction (Figure 2).

In DSN, the derivation structure is repre-
sented by repeatedly applying unit neural net-
work (UNN, Figure 3) at each non-leaf node. The
UNN receives two node vectors r1 ∈ R2n and
r2 ∈ R2n as input, and induces a vector p ∈ R2n

to represent the parent node.

r1 r2

p

score

Figure 3: The unit neural network used in DSN.

For example, in Figure 2, node [� â9; with
Sharon] serves as the first child with vector r1,
and node [Þ1
¬!; held a talk] as the second
child with vector r2. The parent node vector p,
representing [� â9 Þ1 
 ¬!; held a talk
with Sharon], is computed by merging r1 and r2:

p = f(WUNN [r1; r2] + bUNN ) (3)

where [r1; r2] ∈ R4n×1 is the concatenation of r1
and r2, WUNN ∈ R2n×4n and bUNN ∈ R2n×1 are
the network’s parameter weight matrix and bias
term respectively. We use tanh(·) as function f .

Then, we compute a local score using a simple
inner product with a row vector W score

UNN ∈ R1×2n:

s(p) = W score
UNN · p (4)

The score measures how well the two child nodes
r1 and r2 are merged into the parent node p.

As we all know, in BTG derivations, we have
two different ways to merge translation candi-
dates, monotone or inverted, meaning that we
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merge two candidates in a monotone or inverted
order. We believe that different merging or-
der (monotone or inverted) needs different UNN.
Hence, we keep two different ones in DSN, one for
monotone order (with parameter Wmono, bmono,
and W score

mono), and the other for inverted (with pa-
rameter Winv, binv, and W score

inv ). The idea is that
the merging order of the two candidates will de-
termine which UNN will be used to generate their
parent’s vector and compute the score in Equa-
tion (4). Using a set of gold derivations, we can
train the network so that correct order will receive
a high score by Equation (4) and incorrect one will
receive a low score.

Thus, when we merge the candidates of two ad-
jacent spans during BTG-based decoding, the lo-
cal score in Equation (4) is useful in two aspects:
(1) for the same merging order, it evaluates how
well the two candidates are merged; (2) for the dif-
ferent order, it compares the candidates generated
by monotone order and inverted order.

Further, to assess the entire derivation structure,
we apply UNN to each node recursively, until the
root node. The final score utilized for derivation
structure prediction is the sum of all local scores:

DSN(d) =
∑

p
s(p) (5)

where d denotes the derivation structure and p is
the non-leaf node in d. Obviously, by this score,
we can easily assess different derivations. Good
derivations will get higher scores while bad ones
will get lower scores.

Li et al. (2013) presented a network to predict
how to merge translation candidates, in monotone
or inverted order. Our DSN differs from Li’s work
in two points. For one thing, DSN can not only
predict how to merge candidates, but also evaluate
whether two candidates should be merged. For an-
other, DSN focuses on the entire derivation struc-
ture, rather than only the two candidates for merg-
ing. Therefore, the translation decoder will pursue
good derivation structures via DSN. Actually, Li’s
work can be easily integrated into our work. We
leave it as our future work.

3 Training

In this section, we present the method of training
the DSP model. The parameters involved in this
process include: word embedding, parameters of
the two unsupervised RAEs in LNN, and parame-
ters in DSN.

3.1 Max-Margin Framework
In DSP model, our goal is to assign higher scores
to gold derivations, and lower scores to bad ones.
To reach this goal, we adopt a max-margin frame-
work (Socher et al., 2010; Socher et al., 2011a;
Socher et al., 2013) for training.

Specifically, suppose we have a training data
like (ui,G(ui),A(ui)), where ui is the input
source sentence, G(ui) is the gold derivation set
containing all gold derivations of ui1, and A(ui)
is the possible derivation set that contains all
possible derivations of ui. We want to minimize
the following regularized risk function:

J(θ) =
1
N

N∑
i=1

Ri(θ) +
λ

2
‖ θ ‖2, where

Ri(θ) = max
d̂∈A(ui)

(
s
(
θ, ui, d̂

)
+ ∆

(
d̂,G(ui)

))
− max
d∈G(ui)

(
s
(
θ, ui, d

))
(6)

Here, θ is the model parameter. s(θ, ui, d) is the
DSP score for sentence ui’s derivation d. It is
computed by summing LNN score (Equation (2))
and DSN score (Equation (5)):

s(θ, u, d) = LNNθ(d) +DSNθ(d) (7)

∆(d̂,G(ui)) is the structure loss margin, which
penalizes derivation d̂ more if it deviates more
from gold derivations. It is formulated as:

∆
(
d̂,G(ui)

)
=
∑
π∈d̂

αsδ{π 6∈ G(ui)}+ αtDist(y(d̂), ref) (8)

The margin includes two parts. For the first part,
π is the source span in derivation d̂, δ {·} is an
indicator function. We use the first part to count
the number of source spans in derivation d̂, but
not in gold derivations. The second part is for
target side. Dist(y(d̂), ref) computes the edit-
distance between the translation result y(d̂) de-
fined by derivation d̂ and the reference translation
ref . Obviously, this margin can effectively esti-
mate the difference between derivation d̂ and gold
derivations, both on source side and target side.
Note that αs and αt are only two hyperparameters
for scaling. They are independent of each other,
and we set αs = 0.1 and αt = 0.1 respectively.

1We investigate the general case here and suppose that
one sentence could have several different gold derivations.In
the experiment, we only use one gold derivation for simple
implementation.
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3.2 Learning

As the risk function, Equation (6) is not differ-
entiable. We train the model via the subgradient
method (Ratliff et al., 2007; Socher et al., 2013).
For parameter θ, the subgriadient of J(θ) is:

∂J

∂θ
=

1
N

∑
i

∂s(θ, ui, d̂m)
∂θ

− ∂s(θ, ui, dm)
∂θ

+λθ

where d̂m is the derivation with the highest DSP
score, and dm denotes the gold derivation with the
highest DSP score. We adopt the diagonal vari-
ant of AdaGrad (Duchi et al., 2011; Socher et al.,
2013) to minimize the risk function for training.

3.3 Training Instances Collection

In order to train the model, we need to collect the
gold derivation set G(ui) and possible derivation
set A(ui) for input sentence ui.

For G(ui) , we define it by force decoding
derivation (FDD). Basically, FDD refers to the
derivation that produces the exact reference trans-
lation (single reference in our training data). For
example, since “Bush held a talk with Sharon” is
the reference of test sentence “Ù� � â9 Þ
1
¬!”, then Figure 1(a) is one of the FDDs.
As FDD can produce reference translation, we be-
lieve that FDD is of high quality, and take them as
gold derivations for training.

For A(ui), it should contain all possible deriva-
tions of ui. However, it is too difficult to obtain
all derivations. Thus, we use n-best derivations of
SMT decoding to simulate the complete derivation
space, and take them as the derivations in A(ui).

4 Integrating the DSP Model into SMT

To integrate the DSP model into decoding, we take
it (named DSP feature) as one of the features in the
log-linear framework of SMT. During decoding,
the DSP feature is distributed to each node in the
derivation structure. For the leaf node, the score
in Equation (2), i.e., LNN score, serves as the fea-
ture. For the non-leaf node, Equation (4) plays
the role. In order to give positive feature value to
the log-linear framework (for logarithm), we nor-
malize the DSP scores to [0,1] during decoding.
Due to the length limit, we ignore the specific nor-
malization methods here. We just preform some
simple transformations (such as adding a constant,
computing reciprocal), and convert the scores pro-
portionally to [0,1] at last.

5 Experiments

5.1 Experimental Setup

To verify the effectiveness of our DSP model, we
perform experiments on Chinese-to-English trans-
lation. The training data contains about 2.1M sen-
tence pairs with about 27.7M Chinese words and
31.9M English words2. We train a 5-gram lan-
guage model by the Xinhua portion of Gigaword
corpus and the English part of the training data.
We obtain word alignment by GIZA++, and adopt
the grow-diag-final-and strategy to generate the
symmetric alignment. We use NIST MT 2003 data
as the development set, and NIST MT04-083 as
the test set. We use MERT (Och, 2004) to tune pa-
rameters. The translation quality is evaluated by
case-insensitive BLEU-4 (Papineni et al., 2002).
The statistical significance test is performed by
the re-sampling approach (Koehn, 2004). The
baseline system is our in-house BTG system (Wu,
1997; Xiong et al., 2006; Zhang and Zong, 2009).

To train the DSP model, we first use Word2Vec4

toolkit to pre-train the word embedding on large-
scale monolingual data. The used monolingual
data contains about 1.06B words for Chinese and
1.12B words for English. The dimensionality of
our vectors is 50. The detiled training process is
as follows:

(1) Using the BTG system to perform force de-
coding on FBIS part of the bilingual training data5,
and collect the sentences succeeded in force de-
coding (86,902 sentences in total)6. We then col-
lect the corresponding force decoding derivations
as gold derivations. Here, we only use the best
force decoding derivation for simple implementa-
tion. In future, we will try to use multiple force
decoding derivations for training.

(2) Collecting the bilingual phrases in the leaf
nodes of gold derivations. We train LNN by these
phrases via L-BFGS algorithm. Finally, we get
351,448 source phrases to train the source side
RAE and 370,948 target phrases to train the tar-
get side RAE.

2LDC category number : LDC2000T50, LDC2002E18,
LDC2003E07, LDC2004T07, LDC2005T06, LDC2002L27,
LDC2005T10 and LDC2005T34.

3For MT06 and MT08, we only use the part of news data.
4https://code.google.com/p/word2vec/
5Here we only use the high quality corpus FBIS to guar-

antee the quality of force decoding derivation.
6Many sentence pairs fail in forced decoding due to many

reasons, such as reordering limit, noisy alignment, and phrase
length limit (Yu et al., 2013).
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(3) Decoding the 86902 sentences by the BTG
system to get n-best translations and correspond-
ing derivations. The n-best derivations are used to
simulate the entire derivation space. We retain at
most 200-best derivations for each sentence.

(4) Leveraging force decoding derivations and
n-best derivations to train the DSP model. Note
that all parameters, including word embedding and
parameters in LNN and DSN, are tuned together in
this step. It takes about 15 hours to train the entire
network using a 16-core, 2.9 GHz Xeon machine.

5.2 Experimental Results
We compare baseline BTG system and the DSP-
augmented BTG system in this section. The final
translation results are shown in Table 1.

After integrating the DSP model into BTG sys-
tem, we get significant improvement on all test
sets, about 1.0 BLEU points over BTG system on
average. This comparison strongly demonstrates
that our DSP model is useful and will be a good
complement to current translation models.

Systems BLEU(%)
MT04 MT05 MT06 MT08 Aver

BTG 36.91 34.69 33.83 27.17 33.15
BTG+DSP 37.41 35.77 35.08 28.42 34.17

Table 1: Final translation results. Bold numbers
denote that the result is significantly better than
baseline BTG system (p < 0.05). Column “Aver”
gives the average BLEU points of the 4 test sets.

To have a better intuition for the effectiveness
of our DSP model, we give a case study in Figure
4. It depicts two derivations built by BTG system
and BTG+DSP system respectively.

From Figure 4(b), we can see that BTG system
yields a bad translation due to the bad derivation
structure. In the figure, BTG system makes three
mistakes. It attaches candidates [¤Ò; achieve-
ments], [¤ �� �; has reached] and [#\·;
singapore] to the big candidate [ØU���n
¤�,; cannot be regarded as a natural]. Conse-
quently, the noun phrase “#\· ¤ �� � ¤
Ò” is translated separately, rather than as a whole,
leading to a bad translation.

Differently, the DSP model is designed for pre-
dicting good derivations. In Figure 4(c), the used
translation rules are actually similar to Figure 4(b).
However, under a better guidance to build good
derivation structure, BTG+DSP system generates
a much better translation result than BTG system.

(c) an example derivation structure generated by the DSP+BTG system 

 所  达到  的
 has reached

成就
achievements

不  能  被  当作
cannot be regarded as a

理所当然  
natural 

不  能  被  当作 理所当然 
cannot be regarded as a natural 

成就  不  能  被  当作 理所当然 
achievements cannot be regarded as a natural 

 所  达到  的  成就  不  能  被  当作 理所当然 
has reached achievements cannot be regarded as a natural 

新加坡  所  达到  的  成就  不  能  被  当作 理所当然 
singapore has reached  achievements cannot be regarded as a natural 

新加坡
singapore

 所  达到  的
attained by

不  能  被  当作
cannot be regarded as a

理所当然 

natural

不  能  被  当作 理所当然
cannot be regarded as a natural

新加坡  所  达到  的  成就  不  能  被  当作 理所当然 
the achievements attained by singapore cannot be regarded as a natural

新加坡
singapore

新加坡 所 达到 的
attained by singapore

成就
the achievements

新加坡 所 达到 的 成就
the achievements attained by singapore

(b) an example derivation structure generated by BTG system

新加坡
xinjiapo

 所  达到  的
suo dadao de

成就
chengjiu

不  能  被  当作
bu neng bei dangzuo 

理所当然  
lisuodangran 

singapore reached the achievements  cannot be taken for granted 

(a) the example test sentence and its corresponding reference.

Figure 4: Different derivation structures.

6 Conclusion

In this paper, we explored the method of derivation
structure prediction for SMT. To fulfill this task,
we have made several major efforts as follows:

(1) We propose a novel derivation structure pre-
diction model based on RNN, including two close
and interactive parts: LNN and DSN.

(2) We extend monolingual RNN to bilingual
RNN to represent the derivation structure.

(3) We train LNN and DSN by derivations from
force decoding. In this way, the DSP model learns
a preference to good derivation structures.

Experimental results show that the proposed
DSP model improves the translation performance
significantly. By this, we verify the effectiveness
of derivation structure on indicating good trans-
lations. We believe that our work will shed new
lights to SMT decoding.
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