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Abstract

Machine Translation traditionally treats doc-
uments as sets of independent sentences. In
many genres, however, documents are highly
structured, and their structure contains infor-
mation that can be used to improve transla-
tion quality. We present a preliminary ap-
proach to document translation that uses struc-
tural features to modify the behaviour of a
language model, at sentence-level granularity.
To our knowledge, this is the first attempt to
incorporate structural information into statis-
tical MT. In experiments on structured En-
glish/French documents from the Hansard cor-
pus, we demonstrate small but statistically sig-
nificant improvements.

1 Introduction

It is a standard assumption in statistical machine
translation (SMT) that sentences within a document
can be translated independently. This is clearly an
approximation, since context is often helpful, and
occasionally essential, for correct translation. One
obvious dependence on context is for the resolution
of anaphora, as in the sentence He sees it, where the
referent of it must be known in order to translate
into languages with gender-marked pronouns such
as French. A more subtle dependence on context is
a sentence’s role within the document. For instance,
it may occur in an introductory paragraph or in the
main body of a text; it may be a quotation or a line
spoken by a character in a work of fiction; or it may
play a particular rhetorical role within a monograph.
All these factors can influence translation, and hence

they are potentially useful sources of information for
SMT.

In this paper, we explore the idea of using doc-
ument context to improve SMT. In general, this
means exploiting information that is available in a
document’s structure, but that is typically discarded
when the document is transformed into a sequence
of sentences for automatic translation. The docu-
ment structure may be specified by markup, or it
may be inferrable from formatting instructions or
other information. Most texts, even relatively un-
structured ones such as email or blogs, have some
degree of heterogeneity that can in principle be ex-
ploited to improve translation—although how best
to accomplish this, and how productive a strategy it
will be, clearly depends on genre.

Our approach is to characterize each sentence in
a document with a vector of feature values derived
from the document’s structure, then translate it with
a model optimized for those values. In its use of
sentence-level information, our method is related
to information-retrieval inspired approaches to do-
main adaptation (Zhao et al., 2004; Hildebrand et al.,
2005; Lü et al., 2007), which seek parts of the train-
ing corpus that resemble sentences in the current
document. However, those approaches pool matches
across sentences, and build a single adapted model
for each source document, rather than (potentially)
one for each sentence. Our method is also different
from previous work that relies on intrinsic surface
cues to categorize sentences for translation accord-
ing to whether they are interrogative or declarative
(Finch and Sumita, 2008), or match an ad hoc class
(Hasan and Ney, 2005). We rely on extrinsic prop-



erties derived from the whole document, and also,
unlike all previous work we are aware of, charac-
terize sentences along multiple axes (eg, a sentence
might be attributed to a particular speaker and be-
long to a specific section within a document). Fi-
nally, unlike anaphora resolution and discourse anal-
ysis applied to translation (Marcu et al., 2000), our
method does not explicitly depend on the content of
sentences other than the current one.

We formalize our notion of document transla-
tion in section 2, and present two alternative model-
ing techniques. Section 3 describes English/French
translation experiments with a version of the Cana-
dian Hansard corpus that has rich structural infor-
mation encoded in XML markup. Related work is
discussed in section 4, and section 5 concludes and
suggests some possibilities for future work.

2 Document Translation

SMT seeks the translation hypothesis t̂ that has high-
est probability according to a model conditioned
solely on the current source sentence s:

t̂ = argmax
t

log p(t|s).

Assuming that information about the source sen-
tence’s document context is captured in a feature
vector d, our document translation approach is de-
scribed by:

t̂ = argmax
t

log p(t|s, d), (1)

where d will typically consist of one or more discrete
features such as those in the examples in section 1.

To model (1), we suppose that a training corpus in
which each sentence pair is tagged with document
features is available. (Obviously, this will apply
only in cases where the training and testing domains
are identical or closely related.) Given the typical
SMT model structure, there are three main sites for
incorporating conditioning on d: the top-level log-
linear model1, the language model (LM), and the
translation model (TM). The log-linear model is not
ideal for directly capturing dependence on d, since
it is trained on a small development set of approxi-
mately 1000 sentences: even using a MIRA-like al-
gorithm (Chiang et al., 2009), and assuming simple

1That is, log p(t|s, d), assumed to be a weighted linear com-
bination of features that can be interpreted as log probabilities.

features that connect target words to d, one would
have to carefully select only a very small subset of
all potential features. The language and translation
models can use much larger feature sets, but they
also face a sparsity problem in that the number of
training examples available for a particular vector d
can be arbitrarily small. This is especially severe
for the translation model, which lacks the power-
ful backoff-based smoothing algorithms used in lan-
gauge modeling, and which usually depends on an
IBM-model training process that degrades badly on
small data. For this preliminary effort, we therefore
concentrated on the language model.

As just mentioned, the challenge in constructing
a language model p(w|h, d), where h is an ngram
context for word w, is data sparsity due to the con-
ditioning on d. The normal method for dealing
with sparsity in h—backing off to shorter contexts
(Goodman, 2001)—cannot be applied directly be-
cause there is no natural back-off ordering for the
features in d. Methods for handling similar situ-
ations have been devised in a factored model set-
ting (Bilmes and Kirchhoff, 2003), but these lack
straightforward training procedures. We opted in-
stead for two simple solutions: splitting d into its
component features di and training a specific model
for each; and clustering rare vectors d together to
increase the amount of data available for each.

2.1 Feature-Specific Models

The training procedure for feature-specific models is
extremely simple. For each feature di in d:

1. Partition the target half of the training corpus
into sets of sentences characterized by each dif-
ferent value that di can take on.

2. Train an LM on each corpus partition.

This yields models p(w|h, dij), one for each jth
value of each ith feature. These could be used di-
rectly for translating test-set sentences characterized
by dij , but there is still no guarantee that dij occurs
often enough in the training corpus to produce an
LM that generalizes well. We therefore smooth us-
ing a word-level mixture with a global LM:

ps(w|h, dij) = αijp(w|h, dij) + (1− αij)p(w|h).
(2)



To set mixture weights αij , we used a dynamic
smoothing technique similar to dynamic LM domain
adaptation (Foster and Kuhn, 2007). First, steps 1
and 2 above are repeated on the source half of the
training corpus to produce a set of source-language
LMs p′(w|h, dij) that correspond one to one with
their target-language counterparts. Then, for each
dij that occurs in the current source document to
be translated, a mixture weight α′

ij is learned us-
ing the EM algorithm to maximize the probability
of the source sentences tagged with dij , according to
the source-language counterpart of (2).2 Finally, the
source-side weights are simply transferred to the tar-
get side (α′

ij → αij) and used in (2). Although this
procedure lacks compelling theoretical justification,
it works well in practice (α′

ij tends to approximate
αij well), and it allows the model to closely reflect
the properties of the current source document.

The one-versus-all mixture in (2) is appropriate
for features with small numbers of values, such as
the major logical divisions of a document. However,
features such as speaker identity that can take on
many values will partition the corpus finely, and may
benefit from being able to share information across
partitions. As this does not occur with the all-versus-
one approach, we also tried mixing over all values
of a given feature (ie, over all LMs learned from the
training corpus for that feature):

ps(w|h, dij) =
∑

k

αijk p(w|h, dik), (3)

where
∑

k αijk = 1, and for notational convenience
we designate the global model—included in the
mixture—as p(w|h, dij0). The weights αijk were
learned using the dynamic smoothing procedure
above. To counter overfitting due to the large num-
ber of parameters, we incorporated MAP smoothing
into the EM procedure, following (He, 2007). This
uses a modified M-step update: p(x) = [c(x) +
λp0(x)]/(

∑
x c(x) + λ), where p(x) is a mixture-

component probability, c(x) is a corresponding ex-
pected count, and p0(x) is a prior probability for
which we used weights αi learned by pooling all val-
ues of feature di in the current source document. The
prior weight λ was set to 10, based on preliminary

2For values of dij that don’t occur in the training corpus, α′
ij

is set to zero.

experiments with a development set.3

The procedure we have just described constructs
a family of smoothed language models ps(w|h, dij)
for feature di that is specific to the current source
document D. To decode a sentence from D, we use
the value dij that di takes on for that sentence to se-
lect the appropriate member of the family. We tried
two ways of combining model families from differ-
ent document features di: a log-linear combination,
with model weights set by MERT (Och, 2003); and
a linear combination, with weights set to maximize
the likelihood of a target-language development cor-
pus. Both combinations involve one weight per doc-
ument feature di.

2.2 Clustered Models
A weakness of the approach outlined in the previ-
ous section is that it implicitly assumes features are
independent. Clearly this will not always be the
case. Furthermore, many feature vectors occur of-
ten enough in the training corpus to allow reliable
LMs to be produced. To capitalize on this, we used a
simple clustering method that attempts to group low-
frequency vectors together to increase the reliability
of the resulting LMs, while preserving the data asso-
ciated with high-frequency vectors. The algorithm is
as follows:

1. Create an initial clustering by grouping all tar-
get sentences having identical feature vectors
together.

2. Combine the cluster having the smallest num-
ber of tokens with the most similar other clus-
ter.

3. Stop if all clusters have token counts greater
than or equal to a threshold f , otherwise repeat
from step 2.

Note that this is a hard agglomerative algorithm that
produces a hierarchical structure which can be used
to assign any original feature vector associated with
a “leaf” cluster to the appropriate final cluster.

To determine cluster similarity, we relied solely
on the contents of the clusters, rather than their as-
sociated feature vectors. Since our aim is to be able

3For efficiency, since our implementation computes the mix-
ture in (3) dynamically during decoding, we limited the number
of components to the 20 having highest weights αijk.



to train informative LMs on each final cluster, we
would like the clusters to be as homogeneous as pos-
sible from the perspective of an ngram LM. To ac-
complish this, we merged clusters that resulted in
the lowest drop in corpus likelihood, defined as the
probability assigned to a cluster by an LM trained
on that cluster. For two merge candidates C1 and
C2, this merge cost is:

cost(C1, C2) = log[p(C1)p(C2)]− log p(C1 ∪ C2)

where p(C) is the probability assigned to cluster C
by a language model trained on C. For efficiency,
we used unigram probability to approximate higher-
order ngram LMs. Under this assumption, it is easy
to show that merge cost can be calculated using the
following formula that requires iteration only over
words in the intersection of C1 and C2:

cost(C1, C2) = T1 log
T

T1
+ T2 log

T

T2

−
∑

w∈C1∩C2

c1(w) log
c(w)
c1(w)

− c2(w) log
c(w)
c2(w)

,

where ci(w) is the count of word w in Ci, c(w) =
c1(w) + c2(w), Ti =

∑
w ci(w), and T = T1 + T2.

To translate with clustered models, we first iden-
tify the correct model for each feature vector d that
occurs in the current source document using the
cluster hierarchy as outlined above. (Feature vectors
that don’t appear in the training corpus are mapped
to the most similar vector that does.) Then we apply
dynamic smoothing as in (2) and use the resulting
smoothed models ps(w|h, d) when translating the
matching sentences.

3 Experiments

We performed experiments in English/French trans-
lation (both directions) using a standard phrase-
based SMT system, with a large corpus of structured
Hansard documents.

3.1 Corpora and Features
The Hansard corpus consists of transcripts of Cana-
dian parliamentary proceedings. During the manual
transcription process, the text is annotated with var-
ious items of information such as the speaker, the
purpose of the speech (a motion, debate, question to

the government, etc.), and the language used (En-
glish or French). These annotations are encoded in
XML and preserved through translation. The result-
ing corpus is aligned at the paragraph level (facil-
itating subsequent high-quality automatic sentence
alignment), and each “document”—generally a sin-
gle day’s proceedings—contains a rich set of struc-
tural information.

We extracted five main features for each aligned
sentence pair:

• session: The current parliamentary session.
Sessions can span years, so this feature is con-
stant for any given document. There are 8 ses-
sions in our data, ranging from 2001 to 2009.

• srclang: The language used by the current
speaker. Values are English (roughly 75% of
the corpus) and French (25%).4

• speaker: The name of the person speaking.
This takes on 586 different values in our train-
ing corpus, and follows a fairly Zipfian distri-
bution, from Peter Milliken (almost 150k sen-
tences) to Audrey O’Brien (4 sentences).

• title: Characterizes the current activity into one
of 45 categories, ranging from general—eg,
Debate (over 1m sentences) and QuestionsAnd-
Comments (500k sentences); to very specific—
RoyalAssent (290 sentences) and FirstReadin-
gOfSenatePublicBills (145 sentences).

• section: A hierarchical feature that is partially
complementary to title, with 4 top-level dis-
tinctions pertaining to daily routine in parlia-
ment, and 95 full values, including exotic ones
such as Intervention-Content-ParaText-Poetry-
Verse-Line. Since the distribution of values
is highly skewed (2.5m sentences are tagged
as Intervention-Content-ParaText), and many
lower-frequncy tags do not appear to be con-
sistently assigned, we used only the top-level
distinctions for feature-specific models (but all
values for clustering).

4It is interesting to note that when this value does not match
the current source language in our experiments, we are actually
translating previously manually translated material and using
the original source text as a reference.



corpus sentences words (en) words (fr)
train 2.9m 60.5m 68.6m
dev 2,002 40k 45k
test1 2,148 43k 48k
test2 2,166 45k 50k

Table 1: Corpus sizes

Table 1 summarizes our training corpus. We re-
served the most recent five documents (dating from
December 2009) for development and testing mate-
rial, and extracted the dev and test corpora shown.
Since some of the original documents were much
larger than typical devtest sizes, we sampled subsets
of them for the dev and test sets, in such as way as
to preserve the original distribution of features.

3.2 System
We used a standard one-pass phrase-based system
(Koehn et al., 2003), with 7 features in the baseline
configuration:

• relative-frequency TM probabilities in both di-
rections (2 features)

• “lexical” TM probabilities in both directions (2
features)

• 4-gram LM with Kneser-Ney smoothing

• word-displacement distortion

• word count

Feature weights were set using Och’s MERT algo-
rithm (Och, 2003) to maximize dev-set BLEU score.

The training corpus was word-aligned using both
HMM and IBM2 models; the phrase table consists
of the union of phrases extracted from these sepa-
rate alignments, with a phrase length limit of 7. It
was filtered to retain the top 30 translations for each
source phrase using the TM part of the current log-
linear model. Lexical probabilities were estimated
using the method described in (Zens and Ney, 2004).

3.3 Results
A preliminary step to generating translation results
is clustering the corpus as described in section 2.2.
Table 2 shows the results, for various frequency-
threshold (f) values (for the 20n value, clustering

f en # en max fr # fr max
0 57,428 5,167 57,428 5,167

1k 12,808 5,167 13,456 5,167
10k 3,317 10,976 3,683 7,307

100k 385 43,562 452 42,709
20n 20 351,209 20 238,292

Table 2: Clustering results. The # columns give the num-
ber of clusters, and the max columns give the number of
sentences in the largest cluster.

method test1 test2 avg
baseline 41.11 38.23 39.67
session 1-all 41.27 38.45 39.86
srclang 1-all 41.06 38.30 39.68
speaker 1-all 41.34 38.26 39.80
title 1-all 41.31 38.44 39.87
section 1-all 41.08 38.25 39.66
session multi 41.12 38.24 39.68
srclang multi 41.17 38.32 39.74
speaker multi 41.23 38.18 39.71
title multi 41.35 38.43 39.89
section multi 41.20 38.30 39.75
clust 1k 41.12 38.12 39.62
clust 10k 41.25 38.37 39.81
clust 100k 41.15 38.31 39.73
clust 20n 41.08 38.23 39.65
log comb 1-all 41.33 38.44 39.88
lin comb 1-all 41.34 38.45 39.89
log comb multi 41.33 38.41 39.87
lin comb multi 41.36 38.56 39.96

Table 3: Results for French to English translation.

was run until exactly 20 clusters remained). The re-
sults are similar for clustering on the English (for
translation into English) and French (for translation
into French) sides of the corpus. The largest clus-
ter size is identical for f = 0 (no clustering) and
for f = 1k, indicating that it was not merged at this
threshold; in fact, the largest 100 or so clusters sur-
vived intact for both English and French for f = 1k.
However, at f = 10k, no original cluster survived.

Tables 3 and 4 give BLEU scores for French to
English translation and the reverse. The top two
blocks in each table, after the baseline, contain, re-
spectively, results for feature-specific models with
1-versus-all smoothing mixtures (equation 2), and



method test1 test2 avg
baseline 41.38 37.62 39.50
session 1-all 41.71 37.96 39.84
srclang 1-all 41.91 38.10 40.00
speaker 1-all 41.89 37.82 39.86
title 1-all 41.79 37.84 39.81
section 1-all 41.64 37.77 39.70
session multi 41.80 37.93 39.87
srclang multi 41.59 37.78 39.68
speaker multi 41.91 37.79 39.85
title multi 41.83 37.90 39.86
section multi 41.78 37.78 39.78
clusters.1k 41.57 37.58 39.58
clusters.10k 41.76 37.84 39.80
clusters.100k 41.77 37.93 39.85
clusters.20n 41.81 37.83 39.82
log comb 1-all 41.92 37.80 39.86
lin comb 1-all 42.02 38.03 40.03
log comb multi 41.86 37.79 39.83
lin comb multi 41.93 37.85 39.89

Table 4: Results for English to French translation.

multiple-feature smoothing mixtures (equation 3).
The next block gives results for clustering models
with various frequency thresholds. Finally, the bot-
tom two blocks are log-linear and linear combina-
tions of 1-versus-all and multiple-feature specific
models over all features.

We can make several observations from these re-
sults. First, the feature-specific models, used in-
dividually, improve over the baseline in almost all
cases, although most improvements are not statisti-
cally significant, particularly for French to English.
It is difficult to tell which of these models is best, due
to the high variance across test set, smoothing pro-
cedure, and language pair. It is also hard to pick a
clear winner between the 1-versus-all and multiple-
feature smoothing methods: their average perfor-
mance across all conditions is nearly identical.

The results from the clustered models are some-
what more stable. In all cases, scores increase at first
as cluster size grows, then decrease. The optimum
points are different for the two translation directions,
but both are above the 1k threshold, which suggests
that it is not worthwhile to train langauge models
on portions of the corpus that are tagged with high-

frequency document vectors.
Turning to the bottom blocks in each table, we

can see that the combined models are generally bet-
ter than the individual-feature models, indicating
that the features capture complementary informa-
tion. The linear combinations appear to be slightly
better than the log-linear. This may be due to prob-
lems with MERT, since the log-linear combinations
involve five language model features instead of just
one as in all other approaches in tables 3 and 4.

Finally, the results for English to French transla-
tion appear to be somewhat better than for French
to English translation, with the maximum gain over
the baseline being approximately 0.5 BLEU points
in the former case, and 0.3 BLEU points in the lat-
ter. The gains in both cases are statistically signifi-
cant at the 0.95 level, however, according to paired
bootstrap resampling (Koehn, 2004). This also holds
for the results from the linear 1-versus-all combina-
tion in both translation settings; this technique offers
a good combination of performance and efficiency,
and is a good candidate for the best approach among
the ones tested in this paper.

4 Related Work

As mentioned above, we are unaware of any pre-
vious work on translating structured documents in
SMT. The closest related work is due to Finch and
Sumita (2008). Like us, they use models that oper-
ate at sentence-level granularity, and are trained on
corpus partitions. Unlike us, they modify all compo-
nents of their log-linear model, they make only a sin-
gle binary distinction (interrogative versus declara-
tive sentences), and they use a maxent classifier to
assign these properties to source sentences rather
than relying on document structure.

Other relevant work is on domain adaptation. One
way of viewing our approach is that it splits the
source document into many micro-domains, and at-
tempts to adapt to each. From this viewpoint, re-
cent work on SMT adaptation (Foster and Kuhn,
2007; Koehn and Schroeder, 2007; Lü et al., 2007;
Tam et al., 2007) is applicable, in addition to the IR
approaches already mentioned. However, most of
this work does not deal with adaptation along dif-
ferent axes simultaneously (for instance adapting to
topic and genre). An exception is (Matsoukas et



al., 2009), who build a model for weighting phrase-
pair joint counts during relative-frequency TM esti-
mation that can depend on arbitrary features of the
training corpus. Their feature weights are set dis-
criminatively using a dev set and do not distinguish
between sentences in that set, but it might be possi-
ble to extend the approach to allow for the sentence-
level dependencies required for handling structural
features.

5 Conclusion And Future Work

In this paper we have outlined a general approach
for taking the structure of documents into account
during statistical translation. This involves encoding
structural information into feature vectors that char-
acterize each source sentence, and building statisti-
cal models that are conditioned on this information.

Within this general framework, we propose two
methods for modifying the language model, given
a parallel training corpus that is also tagged with
document-structure features. The first method con-
centrates on one feature at a time, partitioning the
training corpus according to the different values it
can take on and training an LM on each partition.
Source sentences from the current test document
are essentially translated using the LM that matches
their feature value. To avoid sparsity problems on
small corpus partitions, this is mixed with a global
LM, with mixing weights set to optimum values de-
termined from the current source text. A variant
smoother mixes over LMs from all values the feature
can take on. The smoothed feature-specific LMs ob-
tained from this procedure are combined either lin-
early or log-linearly to produce the final structure-
conditioned LM.

A second method basically treats feature vectors
as atomic units and seeks to identify enough relevant
text to be able to train a reliable LM for each. This is
accomplished through a simple clustering algorithm
that repeatedly pools the text corresponding to low-
frequency vectors, using a minumum unigram like-
lihood drop criterion, until sufficient text is deemed
to have been accumulated for each (at the cost of
no longer distinguishing among the pooled vectors).
Source sentences are then mapped to an appropriate
smoothed LM, in a procedure similar to that used in
the first method.

We tested both these methods on a corpus of
structured Hansard documents, using five features
capturing mostly complementary information. Re-
sults were mildly positive across the spectrum of
approaches tested. The best, statistically signif-
icant, improvements were obtained from the first
method outlined above, using a linear combination
of feature-specific models.

Future Work

There are many possibilities for extending this ex-
ploratory work. The most obvious is to condition
other models, for instance the TM, on document
context. The methods outlined above could probably
be adapted to this relatively easily, provided suitable
smoothing techniques were used.

A harder challenge is to find better ways of condi-
tioning on the document structure information. One
interesting possibility would be to assume a latent
hierarchical structure for the features in order to ap-
ply recent hierachical adaptation techniques (Finkel
and Manning, 2009), suitably modified for multino-
mial language and translation models, possibly us-
ing MAP combinations (Bacchiani et al., 2004).

A related idea is to treat the features themselves as
hints rather than performing the kind of hard match-
ing used by the methods above. The multiple-feature
smoothing methods are a step in this direction, and
it would be interesting to apply a similar approach
to the whole training corpus, in order to more accu-
rately learn relations between features.

Finally, it would be interesting to experiment with
other structured domains to determine if the Hansard
is an outlier either in its availability of structured in-
formation or in the degree to which this is useful for
translation.
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