
Transliterating From All Languages

Ann Irvine
anni@jhu.edu

Chris Callison-Burch
ccb@cs.jhu.edu

Computer Science Department
Johns Hopkins University

Baltimore, MD 21218

Alexandre Klementiev
aklement@jhu.edu

Abstract

Much of the previous work on transliteration
has depended on resources and attributes spe-
cific to particular language pairs. In this work,
rather than focus on a single language pair, we
create robust models for transliterating from
all languages in a large, diverse set to En-
glish. We create training data for 150 lan-
guages by mining name pairs from Wikipedia.
We train 13 systems and analyze the effects of
the amount of training data on transliteration
performance. We also present an analysis of
the types of errors that the systems make. Our
analyses are particularly valuable for building
machine translation systems for low resource
languages, where creating and integrating a
transliteration module for a language with few
NLP resources may provide substantial gains
in translation performance.

1 Introduction

Transliteration is a critical subtask of machine trans-
lation (MT). Many named entities (e.g. person
names, organizations, locations) are transliterated
rather than translated into other languages. That is,
the sounds in the source language word are approx-
imated with the target language phonology and or-
thography. Named entities constitute an open class
of words. The names of people and organizations,
for example, never seen before in training often
show up in new documents. It is critical that MT sys-
tems properly handle these content-bearing words.
Integrating a transliteration module into an MT sys-
tem is one way of handing out of vocabulary NEs
and cognates.

In this paper we use the machinery that is used to
train statistical translation systems to build translit-
eration modules. In translation, words and phrases
in the source language are translated and then re-
ordered to form coherent sentences in the target lan-
guage. In transliteration, characters and character
sequences are transliterated to form words in the tar-
get orthography. In transliteration there is no re-
ordering, making it a monotone translation task.

Although in many ways transliteration is a sim-
pler task than translation, it has its own set of chal-
lenges. The phonetic inventories of languages are
extremely varied. For example, Rotokas (a language
spoken in Papa New Guinea) has only six conso-
nant sounds, while Southern Khoisan (spoken in
Botswana) has 122 (Maddieson, 2008). Addition-
ally, in many languages, the spoken form of words
is often not true to the written form. English has
many such inconsistencies, including silent e’s, as in
Kate, and unpredictable pronunciations patterns, ex-
emplified by the ai in Craig and Caitlin. These types
of differences make approximating source language
sounds in the target language difficult and transliter-
ation as a whole highly ambiguous.

In this paper, we build a large number of translit-
eration systems for a diverse set of languages, us-
ing name pairs mined from Wikipedia. We present
the results in a variety of ways. We show how the
volume of training data affects transliteration perfor-
mance, and we discuss common transliteration er-
rors.

The rest of the paper is organized as follows. In
Section 2 we discuss prior work in transliteration,
and in Section 3 we describe our model and dataset

in detail. In Section 3 we also compare our systems’
performance with that of other systems and explain
our evaluation metric. In Section 4, we describe ex-
periments in transliterating from other languages to
English. We conclude with some thoughts on future
work in Section 5.

2 Previous Work

There has been a large amount of research focused
on the task of transliteration with both discrimina-
tive and generative methods achieving good perfor-
mance. Knight and Graehl (1997) reported the re-
sults of a generative model for back-transliterating
from Japanese to English using a weighted FST. Re-
cently, Ravi and Knight (2009) trained the same
Japanese-English models on unsupervised data.
Virga and Khudanpur (2003) and Haizhou et al.
(2004) suggest using the traditional source-channel
SMT model to ‘translate’ the sounds of one lan-
guage into another and present results on Chinese-
English transliteration.

Other recent work (Klementiev and Roth, 2006;
Tao et al., 2006; Yoon et al., 2007) proposes to
view transliteration as a classification task and sug-
gests training a discriminative model to determine
whether a pair of words are transliterations of one
another. Subsequent work (Bergsma and Kondrak,
2007; Goldwasser and Roth, 2008) improves on this
idea by focusing on selecting better pairwise fea-
tures. Following this line of work, Sproat et al.
(2008) developed a toolkit for computing the cost
of mapping between two strings in any two scripts.
Their toolkit also includes generative pronunciation
modules for Chinese and English.

In 2009, the Named Entities Workshop (NEWS)
at the ACL-IJCNLP conference included a Ma-
chine Transliteration shared task (Li et al., 2009a).
Over thirty teams participated in the task, which in-
volved transliterating from English to the following
languages: Hindi, Tamil, Kannada, Russian, Chi-
nese, Korean, and Japanese. The workshop released
a common dataset with training and development
transliteration pairs for each language and used a
common evaluation. We report results comparing
our system to the workshop systems in Section 3.2.

With the exception of the shared task, most re-
search papers present performance on just one or

two language pairs. In this work, we evaluate a sin-
gle transliteration framework for transliterating from
many languages to English. We compare our sys-
tems to previous work where it is possible.

3 Transliteration Model

Following Virga and Khudanpur (2003), we treat
transliteration as a monotone character translation
task. Rather than using a noisy channel model, our
transliteration models is based on the log-linear for-
mulation of statistical machine translation (SMT)
described in Och and Ney (2002). Whereas SMT
systems are trained on parallel sentences and use
word-based n-gram language models, we use pairs
of transliterated words along with character-based n-
gram language models. We use the Berkeley aligner
(DeNero and Klein, 2007) to automatically align
characters in pairs of transliterations. This is anal-
ogous to word-based alignment in SMT. Translitera-
tion is simpler than translation, since phrases are of-
ten reordered in translation, but characters sequence
are monotonic in transliteration. Our feature func-
tions include a character sequence mapping proba-
bility (similar to the phrase translation probability),
a character substitution probability (similar to the
lexical probability), and a character-based language
model probability.

For our experiments, we use the off-the-shelf
Joshua open source statistical machine translation
system (Li et al., 2009b). Joshua’s translation model
uses synchronous context free grammars, like the
Hiero system (Chiang, 2005; Chiang, 2007). How-
ever, because transliteration is strictly a monotone
task, we do not extract grammar rules that involve
any hierarchical structure by restricting the number
of nonterminals to zero. We have the grammar ex-
tractor identify rules for character-based phrases up
to length ten. Our language models are also trained
on up to 10-gram sequences of target language char-
acters. Unlike in machine translation, our phrase
tables and language models can support very large
n-gram sizes because the number of characters in a
given script is small compared to word vocabular-
ies. As a preprocessing step, we append start-of-
word and end-of-word symbols to all training pairs
and test words. Table 1 shows examples of Russian
to English and Greek to English transliteration rules

Russian→English
Rule Feature Function Scores
f o t → f a u t 0.301 1.456 3.118
c y → t s y 0.204 2.490 1.431
w u k → s c h u k 0.845 2.185 2.034
a r d � → a r j 0.398 1.432 0.506

Greek→English
Rule Feature Function Scores
o χ ´α→ o c h a 0.602 1.115 1.036
γ ε ρ→ g e r 0.301 0.556 0.152
α λ µ→ a l l m 0.699 0.214 0.175

Table 1: Examples of Russian to English and Greek to
English transliteration rules learned by Joshua along with
the following associated log probabilities: a character
sequence mapping probability, a character substitution
probability, and a character-based language model prob-
ability.

learned by Joshua along with their feature function
scores. We use Joshua’s MERT optimization to learn
the feature weights. Although, as discussed below,
we would actually like to minimize the edit distance
between our systems’ output and reference translit-
erations, we optimize using a character-based BLEU
score objective function (BLEU-4), the MERT de-
fault in Joshua. Optimizing on a metric more suit-
able to transliteration is left to future work.

3.1 Training Data
All of the models that we describe are trained on
name pairs mined from Wikipedia. Wikipedia main-
tains inter-language links between pages, making it
possible to gather a set of pages that describe the
same topic in multiple languages. Additionally, the
site categorizes articles and maintains lists of all of
the pages within each category. We have taken ad-
vantage of a particular set of categories that list peo-
ple born in a given year. For example, the Wikipedia
category page ‘1961 births’ includes links to the
‘Barack Obama’ and ‘Michael J. Fox’ pages. By it-
erating through all categories that list people born in
a given year and then all people listed, we follow all
of the language links from each English page about a
person and compile a large file of person names (the
Wikipedia page titles) in many languages. The 100
languages with the most overlapping name pages
with English are shown in Table 2. Our 14 languages

ja 56786 mr 4847 bs 961 io 411
ru 47044 th 4610 br 894 cv 395
de 35365 ka 3624 ur 893 sq 377
fr 29317 sk 3536 cy 875 jv 326
zh 23345 da 3310 nn 857 wuu 322
pl 19731 tr 3281 zh-y 826 ku 287
it 17409 eo 2898 ms 708 kk 283
he 16436 ro 2857 sw 701 bat 256
es 16399 sl 2642 sh 692 nds 251
nl 14855 lv 2630 tg 667 an 244
ar 12253 id 2409 simp 664 gd 204
sv 11323 et 2407 yi 651 ast 204
ko 10782 hr 2275 tl 628 zh-m 186
pt 10734 mk 2124 oc 623 ceb 173
bg 10704 lt 2106 arz 621 gan 172
uk 8251 bn 2100 ga 584 qu 170
sr 8119 gl 2011 lb 584 als 160
fi 7981 hi 1811 is 573 vls 150
ca 7405 vi 1747 hy 540 vec 128
no 7364 ml 1543 af 501 uz 122
el 6506 ta 1463 scn 481 dv 117
hu 6484 be-x 1333 kn 456 am 116
la 6241 eu 1193 mn 456 sco 113
fa 5891 be 1146 ht 443 lmo 110
cs 5485 az 1087 fy 431 tt 106

Table 2: The 100 languages with the largest number of
name pairs with English. The counts are for Wikipedia
pages describing people that have a inter-language link
with English, and whose title is not identical to the En-
glish page title.

of interest and the number of names that we gathered
for each are listed in Table 31.

In addition to English, we have chosen to translit-
erate the Wikipedia languages that are written in a
non-Roman script, have at least 1000 person names
(see Table 3), and were relatively easy to word align.
Word aligning multi-word names from Wikipedia
page titles is not trivial. Table 4 shows a few prob-
lematic cases in the Russian and English pairs. Of-
ten one page title includes middle names while the
corresponding page title in another language does
not, or the pages may use abbreviations or titles in-
consistently. In order to align multi-word names, we
use simple romanization character mappings, also
mined from Wikipedia. In comparing multi-word
names, we compute the best word alignments and
set an edit distance threshold to filter the noisy data.

1Our data is available for download at http://www.
clsp.jhu.edu/˜anni/data/wikipedia_names

Language Number of names
English 826508
Russian 47044
Hebrew 16436
Arabic 12253
Korean 10782

Bulgarian 10704
Ukranian 8251
Serbian 8119
Greek 6506
Farsi 5891

Georgian 3624
Macedonian 2124

Old-Belarusian 1333
Belarusian 1146

Table 3: Languages of interest and the number of har-
vested person names. There are many more English
names than there are for other languages and, correspond-
ingly, its overlap with other languages is relatively large.
Consequently, the amount of training data for transliter-
ating between English and other languages is greater than
between any other pair of languages.

We built our default English language model by
tagging and counting named entities in the English
Gigaword corpus2. We identified over 1.3 million
unique NEs in the corpus. Using the name list and
their corpus frequencies, we built a character-based
language model that includes n-grams up to length
ten. In this work, our non-English language models
are built from monolingual Wikipedia name lists.

3.2 Comparison with other systems

Before presenting results from our novel set of ex-
periments, we compare our transliteration system
with those evaluated in a 2009 ACL shared task
workshop (Li et al., 2009a). The workshop evalu-
ated systems trained to transliterate from English to
several other languages using a variety of metrics.
Although the focus of our current work is translit-
erating into English, it is helpful to make sure that
our framework can provide reasonable results that
are comparable with the current state-of-the-art.

We used the workshop data to build English to
Russian and English to Hindi transliteration systems

2see LDC corpus LDC2003T05

En-Wiki Ru-Wiki Ru-Gloss
Abbas I of
Persia

Abbas I
Veliki�

Abbas I the
Great

Abbot Suger Sugeri� Suger
Canute VI of
Denmark

Knud VI Canute VI

C. A. R.
Hoare

Hoar,

Qarl~z

�ntoni

Riqard

Hoare,
Charles
Antony
Richard

Table 4: Examples of multi-word Russian-English name
pairs that require word alignments and filtering.

Metric Our System Others
English→Russian

Top-1 Accuracy .55 .35 - .61
Top-1 F-score .91 .87 - .93

Mean Avg Prec. at 10 .20 .13 - .29
Training Pairs 5977

English→Hindi
Top-1 Accuracy .45 .00 - .50
Top-1 F-score .87 .01 - .89

Mean Avg Prec. at 10 .18 .00 - .20
Training Pairs 4840

Table 5: A comparison of our performance against the
systems submitted to the Russian and Hindi translitera-
tion shared tasks at the 2009 Named Entities Workshop.

and evaluated them using the workshop metrics. The
results are presented in Table 5. In general, although
our systems do not outperform the best participating
systems (Jiampojamarn et al., 2009; Oh et al., 2009),
they generate results that are comparable to the state
of the art in English to Hindi and English to Rus-
sian transliteration. Thus, with a competitive sys-
tem framework, we turn to our main focus, which is
transliterating from a large, diverse set of languages
into English.

3.3 Evaluation Metric
It is often the case that imperfect transliterations
(i.e., inexact matches with the reference transliter-
ation) are still readable in text. Since our goal is to
integrate our model into an SMT system, it is impor-
tant to know not only how frequently we produce
perfect transliterations but how similar our output

Candidate Reference Edit D. Norm. Edit D.
Burkin Burkin 0 0.00

Andruck Andruk 1 16.67
Shikai Schikay 2 28.57

Gutsaev Guzayev 3 42.86
Truxtun Trakston 4 50.00

Table 6: Examples of candidate transliterations and their
corresponding reference transliterations, and the edit dis-
tances and normalized edit distances between them. The
normalized edit distance is the minimum number of in-
sertions, deletions, and substitutions that must be made
to transform one string into the other, normalized by the
length of the reference string, and multiplied by 100.

is to the reference. So, we have used the standard
Levenshtein edit distance metric for evaluation. To
compute the similarity between a pair of strings, we
count the minimum number of insertions, deletions,
and substitutions that must be made to transform
one string into the other and then normalize by the
length of the reference string. The numbers that we
report here are the normalized edit distances multi-
plied by 100, or the percent of characters in the ref-
erence that require a transformation for the string to
match the system output. Prior work has also used
edit distance as a metric for transliteration (Zhao et
al., 2007; Noeman, 2009). Examples of transliter-
ation candidates, references, edit distances, and the
normalized edit distances between them are shown
in Table 6.

4 Experimental Results

4.1 Transliteration from many languages

In our first experiment, we train systems to translit-
erate from 13 languages into English. Figure 1
plots the performance (average normalized edit dis-
tance between the output and reference) of the 13
systems versus the number of training pairs avail-
able in the Wikipedia data. To compute the aver-
ages, we performed a ten-fold cross validation (us-
ing 80% of the data for training, 10% for develop-
ment, and 10% for testing at each stage) and re-
port the overall averages. The Russian system, for
which there is the most available training data, out-
performs the other 12. However, it is not universally
true that systems built for languages for which we
have more training data outperform those built for

!"#$%&'($)*
+#,-!"#$%&'($)*

.$/",0)($)*

1"0%2($)*

30%"$)*

4"%'($)*

1%""5*

65%$)($)*

7"%8($)*

!$%($)*

9%$8(/*

:"8%";*

<&''($)*

=>%(##(/*7/%(?@*

4"%'0-9%$8(/*7/%(?@*

+@A"%*7/%(?@*

BC*

BD*

BE*

BF*

GB*

GC*

GD*

H* DHHH* BHHHH* BDHHH* GHHHH* GDHHH* CHHHH* CDHHH*

!
"#
$%
&#
'(
)$
*
%+
,-
#.

'/
.,
0'
1
,2
0%
34
#'
'

5
,0
6'
7#

8#
$#
34
#'

9$%,3,3&':%,$2'

Figure 1: Number of training pairs vs. system perfor-
mance as measured by average normalized edit distance
from the reference. The normalized edit distance is the
minimum number of insertions, deletions, and substitu-
tions that must be made to transform one string into the
other, normalized by the length of the reference string,
and multiplied by 100.

languages for which we have little. For example,
although there is a relatively large amount of data
available for Arabic, it does not perform as well as
we would predict on this factor alone. Linguistic
differences make some languages inherently more
difficult to transliterate to English. For example, the
small Arabic vowel space makes transliterating, and
especially back-transliterating (recovering names of
English origin), into English relatively difficult.

4.2 Learning Curves

To gain a better picture of the effect that the num-
ber of training pairs has on system performance, we
incrementally hold out data from each of the sys-
tems. The learning curves resulting from using 25%,
50%, 75%, and 100% of the available training data
for each language are presented in Figure 2. For lan-
guages with a large amount of data, we perform ad-
ditional experiments with very small training sets.
All experiments are performed using 10-fold cross
validation, and the results are shown in Figure 2.

Unsurprisingly, the average normalized edit dis-
tance between the hypothesis and the reference de-
creases with more training data nearly without ex-
ception. It is interesting to note that the average
distance continues to decrease slowly as more data
is added to the very large Russian training corpus.

!"##$%&'

Figure 2: Learning curves resulting from holding out
some training pairs from the models. The normalized
edit distance is the minimum number of insertions, dele-
tions, and substitutions that must be made to transform
one string into the other, normalized by the length of the
reference string, and multiplied by 100.

As in translation, more transliteration training data
seems to only help performance.

4.3 N-best Transliterations

We also examine the transliterations in our systems’
n-best lists. For this evaluation, we count the num-
ber of perfect transliterations (exact matches with
the reference) that we find as we look at different
size n-best lists for all items in the test set. The
results are shown in Figure 3. On average, exact
transliterations are found for an additional 20% of
test set words in the 5-best list over those found in
the 1-best transliteration. Nearly 10% more are in
the 10-best list. These general trends hold for all of
the languages that we tested. Re-ranking methods
(e.g. Collins and Koo (2000)) may potentially im-
prove the ranking of transliteration candidates, and
this is part of our ongoing work. It is clear from
the Figure that we should not expect much gain in
re-ranking beyond the 10-best output.

4.4 Error Analysis

Finally, we explore the space of common mistakes
made by our systems as well as some samples of out-
put. The most common mistakes are shown in Table
7. The errors are not surprising for systems translit-
erating into English. The letters e and h are often not

!"#

$"#

%"#

&"#

'"#

("#

)"#

*# %# *"# +%# %"#

!
""
#$
%"
&'
()

*'

+',-'+./012'

,-./01/0#

23.41/0#

56771/0#

89:;<39/.671/0#

=/>3:?01/0#

@?.3/0#

A34.3B#

C.33-#

C3?.D1/0#

E/.71#

<69D/.1/0#

<39/.671/0#

F./41>#

Figure 3: The percent of perfect transliterations found in
the n-best output vs. n in n-best.

pronounced in English and, hence, not represented
in some foreign language transliterations. Thus, our
transliteration systems often do not produce them.
For example, the final e in the English name Pete
is not pronounced and, therefore, is unlikely to ap-
pear in a foreign transliteration. When our systems
attempt to back-transliterate this name into English,
they are likely to also leave out the final e. Although
the phrase tables do include rules that are capable
of generating silent English characters, the systems
do not always choose to apply them. Additionally,
it is not surprising that letters like a and e are often
confused, as well as c and k.

There is not a large amount of variation among
the types of mistakes made by the different lan-
guage systems. However, we do see that in Russian,
Bulgarian, Serbian, and Macedonian, w and v are
frequently confused. This is not surprising due to
the fact that these languages do not distinguish the
two sounds, which makes it difficult to discriminate
between the correct and incorrect potential English
representations. Similarly, p and b confusion from
Arabic is frequent for the same reason. Table 7 high-
lights some of the differences.

Table 8 shows some examples of the Russian to
English transliteration system output. In the first
three examples, the system transliterated correctly.
The next group shows cases where the translitera-
tion system outputs a correct alternative transliter-
ation to the reference. That is, both the output and
the reference are true alternative English spellings of
the Russian named entities, and it would be impossi-
ble to be sure which alternative should be used with-

Overall Russian Serbian Arabic Hebrew
E E E E E
H H Ć C E I E A
Y I Y I H A A
A C Y I U O U O
C K C K C I E A E
S U S U Y I
C Y C K Y I H

I T T I A
U W V A S E I
E I S U A F P
T I Y L C K C
E A I O P B U
O A E A E A C K
U O E A W V C S
A E S Z A E H V B

Table 7: The 10 most common errors. The reference is
on the left, and hypothesis is on the right. E indicates
that the letter E is dropped from the hypothesis, and I
indicates I is inserted.

out additional context. These examples highlight the
difficulty in evaluating transliteration performance
and suggest that evaluation metrics are likely to be
pessimistic. In future work, we plan to use human
annotations to measure the upper limit of transliter-
ation performance. The system incorrectly translit-
erated the final set of names. These mistakes suggest
that using additional evidence may assist transliter-
ation. For example, as shown in Huang (2005), if
a name’s origin is known, we may be able to infer
the proper spelling of the erroneous transliterations
in the third part of Table 8.

5 Conclusion

In this work, we have demonstrated that freely avail-
able resources (both systems and data) are sufficient
to build models capable of producing high quality
transliterations from a large set of languages into
English. We have shown that we can build high
performing systems even for languages for which
there are few available NLP resources. We have
also shown that more data is better. We could sup-
plement the training data pairs that we extracted
from Wikipedia with those gathered by unsuper-
vised or weakly supervised methods (Klementiev
and Roth, 2006). Other directions for future work
include building systems that transliterate into lan-

Russian System Reference
Kastel~nuovo Castelnuovo Castelnuovo
Sigizmondi Sigismondi Sigismondi
Uil~�mson Williamson Williamson
Raevski� Raevsky Rayevskiy
Dittrih Ditterich Dittrich
Lukoviq Lukovic Lukowich
Xart~e Shartie Chartier
Kavasumi Kavasumi Kawasumi
Makfarle�n Macfarlein Macfarlane

Table 8: Examples of Russian to English transliteration
output. The system produced the reference translitera-
tion in the first three examples, and it produced a correct
alternative English transliteration in the second three ex-
amples. It incorrectly transliterated the final three.

guages other than English and those that incorporate
name origin information. Our results, which suggest
that a language pair independent model trained with
modest amounts of data can yield reasonable perfor-
mance, are encouraging, especially for research on
low-resource language NLP.

References
Shane Bergsma and Grzegorz Kondrak. 2007.

Alignment-based discriminative string similarity. In
Proceedings of ACL.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
ACL.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Michael Collins and Terry Koo. 2000. Discriminative
reranking for natural language parsing. In Proceed-
ings of the International Conf. on Machine Learning.

John DeNero and Dan Klein. 2007. Tailoring word
alignments to syntactic machine translation. In Pro-
ceedings of ACL.

Dan Goldwasser and Dan Roth. 2008. Transliteration as
constrained optimization. In Proceedings of EMNLP.

Li Haizhou, Zhang Min, and Su Jian. 2004. A joint
source-channel model for machine transliteration. In
Proceedings of ACL.

Fei Huang. 2005. Cluster-specific named entity translit-
eration. In Proceedings of EMNLP.

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou,
Kenneth Dwyer, and Grzegorz Kondrak. 2009. Di-
rectl: a language-independent approach to translitera-
tion. In Proceedings of the 2009 Named Entities Work-
shop: Shared Task on Transliteration (NEWS 2009).
ACL–IJCNLP.

Alexandre Klementiev and Dan Roth. 2006. Weakly
supervised named entity transliteration and discovery
from multilingual comparable corpora. In Proceed-
ings of ACL.

Kevin Knight and Jonathan Graehl. 1997. Machine
transliteration. In Proceedings of ACL.

Haizhou Li, A Kumaran, Vladimir Pervouchine, and Min
Zhang. 2009a. Report of NEWS 2009 machine
transliteration shared task. In Proceedings of the 2009
Named Entities Workshop: Shared Task on Transliter-
ation (NEWS 2009), pages 1–18. ACL–IJCNLP.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Gan-
itkevitch, Sanjeev Khudanpur, Lane Schwartz, Wren
Thornton, Jonathan Weese, and Omar Zaidan. 2009b.
Joshua: An open source toolkit for parsing-based ma-
chine translation. In Proceedings of the Workshop on
Statistical Machine Translation.

Ian Maddieson. 2008. Consonant inventories. The World
Atlas of Language Structures Online.

Sara Noeman. 2009. Transliteration using phrase based
SMT approach on substrings. In Proceedings of the
International Conference on Arabic Language Re-
sources and Tools.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for statis-
tical machine translation. In Proceedings of ACL.

Jong-Hoon Oh, Kiyotaka Uchimoto, and Kentaro Tori-
sawa. 2009. Machine transliteration using target-
language grapheme and phoneme: Multi-engine
transliteration approach. In Proceedings of the 2009
Named Entities Workshop: Shared Task on Transliter-
ation (NEWS 2009). ACL–IJCNLP.

Sujith Ravi and Kevin Knight. 2009. Learning phoneme
mappings for transliteration without parallel data. In
Proceedings of NAACL.

Richard Sproat, Jim Baker, Martin Jansche, Bhuvana
Ramabhadran, Michael Riley, Murat Saraclar, Abhi-
nav Sethy, Patrick Wolfe, Sanjeev Khudanpur, Arnab
Ghoshal, Kristy Hollingshead, Chris White, Ting
Qian, Erica Cooper, and Morgan Ulinski. 2008. Mul-
tilingual spoken term detection: Finding and testing
new pronunciations. In Report on the Center for Lan-
guage and Speech Processing Summer Workshop.

Tao Tao, Su-Youn Yoon, Andrew Fister, Richard Sproat,
and ChengXiang Zhai. 2006. Unsupervised named
entity transliteration using temporal and phonetic cor-
relation. In Proceedings of EMNLP.

Paola Virga and Sanjeev Khudanpur. 2003. Translitera-
tion of proper names in cross-lingual information re-
trieval. In Proceedings of ACL.

Su-Youn Yoon, Kyoung-Young Kim, and Richard Sproat.
2007. Multilingual transliteration using feature based
phonetic method. In Proceedings of ACL.

Bing Zhao, Nguyen Bach, Ian Lane, and Stephan Vogel.
2007. A log-linear block transliteration model based
on bi-stream hmms. In Proceedings of NAACL.

