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Abstract

We present a conditional-random-field ap-
proach to discriminatively-trained phrase-
based machine translation in which training
and decoding are both cast in a sampling
framework and are implemented uniformly
in a new probabilistic programming language
for factor graphs. In traditional phrase-based
translation, decoding infers both a "Viterbi"
alignment and the target sentence. In con-
trast, in our approach, a rich overlapping-
phrase alignment is produced by a fast de-
terministic method, while probabilistic decod-
ing infers only the target sentence, which is
then able to leverage arbitrary features of the
entire source sentence, target sentence and
alignment. By using SampleRank for learn-
ing we could in principle efficiently estimate
hundreds of thousands of parameters. Test-
time decoding is done by MCMC sampling
with annealing. To demonstrate the potential
of our approach we show preliminary experi-
ments leveraging alignments that may contain
overlapping bi-phrases.

1 Introduction

Traditional approaches to phrase-based machine
translation use dynamic programming to search for
the derivation (or phrase alignment) that gets the
maximum probability (or score) given the source
sentence. The following setting is standardly as-
sumed: the source sentence is partitioned into spans
of words, each span covered by a translation phrase
(biphrase), which are then reordered. While this

∗This work was conducted during an internship at XRCE.

method performs well in practice, three potential
downsides are associated with it: First, finding the
optimal partitioning of the source sentence and se-
lection of translation phrases can be done efficiently
only if the global score is composed of several local
scores. Corresponding short-range Markov assump-
tions may be too limited to capture all dependencies
of interest. Second, unrestricted reordering makes
decoding NP-hard, and search has to be approxi-
mated by beam-search techniques, which work by
generating the target sentence left-to-right, and have
difficulty recovering from wrong decisions taken on
early prefixes. Third, maximizing the joint proba-
bility of translation and an auxiliary (hidden) phrase
alignment (“Viterbi decoding”) is clearly not an in-
tuitive or easily motivated objective when rather just
the translation itself is of interest.

While in current models these restrictions may
not harm performance seriously if associated with
strong heuristic guidance for the beam-search, it is
not clear that they are still appropriate for more
expressive statistical models. Therefore alternative
frameworks that allow a richer representation of
translation pairs and a more flexible search are a
worthwhile object of study.

In this paper we show how a translation model
that does not rely on a rigid partition in non-
overlapping phrases can be trained and used for in-
ference in a sampling setup, leveraging the generic
facilities offered by the recent probabilistic pro-
gramming language FACTORIE (McCallum et al.,
2009). The model is trained with SampleRank
(Wick et al., 2009) and can in principle incorpo-
rate arbitrary features of the translation pair. De-



coding is done by a random walk with a sharpened
(annealed) version of the learned model distribution.
Our work differs from previous approaches in that
SampleRank is used as the training method and in
that the features and the proposal steps depend on
an overlapping alignment which is deterministically
associated with every source-target sentence pair.

2 Related Work

Arun et. al (2009) use operations in a non-
overlapping phrase-based setting and traditional fea-
tures to obtain random samples of alignments,
where translation samples are obtained by a form of
marginalization that corresponds to “forgetting” the
alignment and only outputting the target string. In
contrast to our work, their approach is strongly con-
nected to the traditional phrase-based setting, and
is concerned with the question of whether sampling
and marginalization can reach equally good transla-
tions as dynamic programming for the same type of
model.

Kääriäinen (2009) has developed a system
for phrase-based translations using overlapping
biphrases, which allows decoding to use a repre-
sentation which is consistent with that used when
heuristically extracting the biphrases from bilingual
data, contrary to what is the case with standard
phrase-based systems. Each biphrase is a feature,
and biphrase parameters are estimated on the ba-
sis of maximizing the likelihood of a large bilin-
gual corpus relative to a simplified translation model
that does not incorporate a language model or dis-
tortion. Decoding is done through dynamic pro-
gramming, either in the simplified mode not includ-
ing a language model, or in a full mode including
one, in which case a heuristic beam-search is used.
While we also employ overlapping biphrases here,
we perform decoding and training using a sampling
approach on a set of features including a language
model and a distortion model.

Sampling has also been used in the synchronous
grammar paradigm (hierarchical models), for the
training of synchronous grammars when Bayesian
priors are given (Blunsom et al., 2009) and for es-
timating the partition function for a model using a
synchronous grammar intersected with a language
model (Blunsom and Osborne, 2008).

initialize each source sentence with gloss and
alignment
if training then initialize model
if decoding then load model
for num iterations do

foreach sentence pair do
generate translation neighbors
compute alignments for neighbors
score neighbors
if training then

update parameters w.r.t. objective
function (BLEU) using SampleRank

end
sample next translation from neighbors
(proportional to score)

end
end

Algorithm 1: Training and decoding

3 Sampling For Training and Decoding

3.1 Overview

Algorithm 1 gives an overview of the procedure used
for training and decoding. The flow for training and
decoding differs only in two places, which concern
loading and updating the model parameters; other-
wise exactly the same code can be used.

The algorithm starts by initializing each source
sentence with a gloss (choosing the most likely
translation per source word). If the task is decoding,
a previously trained model is loaded, while for train-
ing the model parameters are initialized. Starting
from the glosses, an iterative Markov-Chain Monte
Carlo (MCMC) sampling procedure is performed
according to the following scheme: For each source
sentence x a set of translations y (neighbors) is gen-
erated by changing the current translation accord-
ing to neighborhood operators. For each of the
pairs (x, y), we first compute deterministically its
alignment, then compute features of (x, y) using the
value of this alignment and then score the result ac-
cording to the current model.

Since we are using the FACTORIE toolkit (McCal-
lum et al., 2009) as an implementation platform and
its embedded SampleRank training algorithm, we
actually model this as a very simple factor graph,
in which each factor directly connects the nodes x



and y; however, this could easily be extended to a
more sophisticated graphical model. In training, the
model parameters (feature weights) are updated if
the model’s ranking of two neighbors disagrees with
the ranking given by the objective function. Our ob-
jective function is the BLEU score of the current
model translations relative to the training corpus1.
Finally, the next translation is chosen by randomly
sampling one of the neighbors with probability pro-
portional to the score it was assigned by the model.

3.2 SampleRank

A translated text is scored according to a “log-
linear” model of the form exp (

∑
k Θkφk(x, y)),

where the φk(·, ·) are feature functions and Θ is
a vector of feature weights. We write x for the
(“observed”) source sentence and y for the (“unob-
served”) translation. The normalized score gives an
estimate P (y|x,Θ) of the probability of the unob-
served variable given the observed variable.

In SampleRank (Wick et al., 2009; Rohanimanesh
et al., 2009), the goal is to learn parameters Θ so that
the model agrees with the objective function in rank-
ing configurations. Candidates are taken from the
neighborhood, top-scoring candidates are compared.
In case of disagreement between objective function
and model in ranking two candidates, a perceptron-
style update of model parameters at iteration t is per-
formed:

Θt+1 ← Θt + η(φ(x, ŷ′)− φ(x, y′)),

where ŷ′ is the candidate preferred over y′ by the
objective function, and where η is a learning rate that
is set differently in different variants of the method.

The translation for the next iteration is sampled
according to a transition distribution Q(y′|y). In
our case, Q(y′|y) is zero for translations not in the
neighborhood of y, and proportional to the current
learnt model probability P (y′|x,Θ) otherwise (nor-
malized by the sum of all neighbor probabilities).

In preliminary experiments we tried several of the
possibilities provided by FACTORIE for setting the
learning rate (averaged perceptron (Collins, 2002),

1Note that, while the neighborhood is local (per-sentence),
the objective score is global (corpus-wide). This corresponds to
a factor model of the corpus with shared parameters for sentence
factors.

Figure 1: Consistent (left) and inconsistent (right) pairs
of biphrases. The x-axis (y-axis) denotes positions in the
source (target) sentence. The squares indicate the spans
of words covered on either side by the biphrases.

MIRA (Crammer and Singer, 2003) and confidence
weighted updates (Dredze et al., 2008)) and found
that the averaged perceptron, which amounts to set-
ting the learning rate to 1.0 and averaging the pa-
rameters over all iterations, works best in practice.
This might be related to the fact that in our current
experiments there are only around a dozen features:
if there were many sparse features (e.g. one binary
feature per biphrase) we would expect a confidence
weighting scheme to perform better.

3.3 Phrase Alignment
We call a phrase alignment a set of biphrases that
express correspondences between spans of words in
source and target sentences. In our case a phrase
alignment is used for two purposes: first, to com-
pute some features of a translation and secondly,
for constructing part of the proposal neighborhood
(proposed changes to current translation). We em-
ploy a greedy phrase alignment algorithm of source
and target sentences similar to Competitive Linking
(Melamed, 2000): first, biphrases2 that match on
both source and target side are ordered by a heuris-
tic weight (which does not depend on the model Θ).
Then, biphrases are added to the alignment set, in
descending order of their weight, if they are consis-
tent with the current alignment set.

Our notion of consistency allows for overlapping
2We use a biphrase table extracted by the heuristics in a stan-

dard run of the Moses pipeline.



Figure 2: Finding a target span (on the y-axis, marked)
for a source span (x-axis, marked). Here, the rightmost
point of the source span is mapped using the internal
word-alignment, the leftmost by choosing the point at the
corresponding relative position on target side.

biphrases: Two (alignment) biphrases are consistent
if the matching criterion is the same for source and
target side, otherwise they are inconsistent. Exis-
tence of (partial) overlap is used as the matching
criterion. A biphrase is consistent with an alignment
set, if it is consistent with all biphrases in this set,
see Figure 1 for an example.

For weighting the biphrases we resort to a heuris-
tic similar to the conditional link probability scor-
ing in (Moore, 2005). However, we use weights
that can be read off directly from the phrase-table
as used by the popular Moses (Koehn et al., 2007)
pipeline: the phrasal and lexicalized biphrase prob-
abilities P (f |e) and P (e|f) are multiplied instead
of using P (e, f). Additionally we normalize the
biphrase weights for length (lf and le), using the
geometric mean, in order not to penalize longer
biphrases. This has also the effect of increased con-
tiguity of alignments. The resulting biphrase weight
is:

lf

√
Plex(e|f)Pphr(e|f) le

√
Plex(f |e)Pphr(f |e)

3.4 Neighborhood Operators

At present, four operators are used to generate a
neighborhood of the current translation:

1. Remove: For each target position the word at
this position is removed.

2. Insert: For each target position, if the trigram
at this position is not present in the language
model, a random word is inserted according to
the trigram language model.

3. Replace: A span of words on the target side of
the sentence pair is replaced by the following
mechanism: First, a biphrase is sampled ran-
domly out of all biphrases that can match some-
where on the source side of the sentence pair (in
general, such a biphrase does not match on the
target side). Then the first and last position of
the match on the source side are mapped onto
positions of the target side, following the in-
ternal word alignment of the highest weighted
biphrases from the previous alignment. If no
word alignment is available at these positions,
a mapping is done along the sentence diagonal
(see Figure 2). The span of the target sentence
identified by this mapping is replaced by the
target side of the sampled biphrase.

The number of neighbors added by the replace
operator is set to the number of words in the
source sentence.

4. Shift: The target side of a random biphrase
in the alignment is shifted to all possible po-
sitions.

In total, this amounts to about 4× source-length op-
erations per iteration. All operators are only con-
cerned with changing the target side and do not di-
rectly change the phrase alignment but rather trigger
changes to it, since the alignment follows determin-
istically from a sentence pair.

3.5 Features

All current features are most naturally directly ex-
pressed as features φ(x, y) about a sentence pair,
since all other sources of information (e.g. align-
ments) are deterministically computed from this
configuration. The features group into length fea-
tures, a trigram language model feature, a distortion
feature, biphrase and alignment features.

There are two length features: first the bare target
length in order to counteract a potential length bias
of other features. Second, the relative length differ-
ence between target and source in order to control



source: furthermore , there are six basic aspects which worry us because of the method employed .
gloss: en outre , il y sont six de base aspects qui vous inquiétez nous parce que de la méthode

employées .
sampling: en outre , il y a six les aspects ∅ qui inquiètent nous à cause de la méthode ∅.
moses: en outre , il y a six aspects fondamentaux qui nous inquiète parce que la méthode utilisée.
reference: en outre , six autres questions de fond nous préoccupent à cause de la méthode suivie .

Figure 3: Example translations by initializing with maximal per-word phrase translation, the sampling model and
Moses. Obvious errors are underlined, omissions indicated by ∅.

length variation between the two languages. For-
mally: (

1− lf
le

)2

,

where lf and le are the lengths of source and target
sentence respectively.

As the language model feature we include the
mean of the trigram log-probabilities of the trans-
lation (that is, sum of these log-probs normalized by
the length of the target). The distortion feature is
computed as follows: For each alignment biphrase
the actual positions of start and end point on the
target side is compared to the projection of these
points from the source side along the sentence diag-
onal. The distortion feature is the average distance
between this projection and the actual position.

Several features are computed from the inferred
alignment. They are

• the number of biphrases in the alignment,

• the sum of alignment biphrase probabilities
(one feature for each direction, lexicalized and
unlexicalized),

• the sum of alignment biphrase weights and

• the number of unaligned source (target) words.

3.6 Implementation in FACTORIE

Our model uses the FACTORIE (McCallum et al.,
2009) toolkit, a library implemented in the Scala
programming language3 for performing learning
and inference with arbitrary factor graphs. With
FACTORIE, features need not be stored or repre-
sented in a particular form (e.g. expanded as vec-
tors), but can be extracted at run time as necessary.

3www.scala-lang.org

Changes to a variable-value configuration (a trans-
lation corresponds to an assignment to unobserved
variables) are represented efficiently by differences
(DiffList’s) to the preceding configuration. This
has the advantage that for sampling several alterna-
tives can be evaluated and scored with little over-
head. In learning, only weights of factors that are
affected by a particular change need to be updated.

In FACTORIE, a Variable stores everything
that changes and is used for features. In the transla-
tion model there are Variables for the target sentence
and the source-target sentence pair. Any change to
a Variable must be reflected by a Diff. A Diff is
an object that implements do and undo methods
for efficiently controlling the change. In addition,
it stores which Variable is affected. Diff’s add them-
selves to a DiffList which keeps track of consecutive
changes. For example, removing a word from a tar-
get sentence adds Diffs that capture

1. removal of the target token (Diff for
TokenVariable),

2. addition (removal) of biphrases that become
(cease to be) part of the cover4,

3. updating of alignment to account for modi-
fied target sentence, addition and removal of
biphrases w.r.t. new and old alignment.

Template’s are defined between types of
Variable’s. When a variable of the respective
type is changed, they gather statistics (feature val-
ues) and return the involved factors of the factor
graph. Finally, a Model is a set of Template’s.
Once all the components are defined, training the
machine translation model can be performed in just
a few lines, e.g.

4The cover is the set of all biphrases from the phrase table
that match on source and target side.



Table 1: Evaluation results on the WMT08 subset.

Method BLEU NIST
gloss 0.1039 4.5052
sampling 0.2213 5.6124
Moses 0.3023 6.3983

• Initialize the sampler:
new TranslationRandomSampler(model,

objective) with SampleRank

• Iteratively process sentence pairs:
sampler.process( pair )

4 Experiments

The WMT08-Europarl training set is used for the
heuristic extraction of biphrases, the corresponding
development set (2000 sentences) for estimating the
feature weights and 250 sentences of the test set
for evaluation. The model is trained using Sample-
Rank with averaged perceptron, the training sam-
pling is run for 1000 iterations (corresponding to
about 100K proposals per sentence).

Decoding with trained model is done in an anneal-
ing setup, i.e. the model probability P (y|x) used for
sampling the next successive translation is taken to
an exponent resulting in P (y|x)

1
α , with the temper-

ature α decreasing over time according to a cooling
factor. We set the initial temperature to 100 and the
cooling factor to .9. We observe that after about 50
iterations (5K proposals), the objective score oscil-
lates around the same value and the algorithm can
be stopped. Evaluation is done on the lowercased
and tokenized outputs of three methods: the gloss
the translation was initialized with, the result of the
sampling method and output of a standardly trained
Moses (Koehn et al., 2007) model.

Table 1 shows that the sampling method can
achieve a good improvement over the baseline with a
gloss initialization but does not yet reach the perfor-
mance of a mature machine translation system such
as Moses. Figure 3 gives an example of translations
produced by each method. In contrast to Moses,
here, the sampling model produces omissions of
words that are actually contained in the phrase-table
and also usually translated. This is related to the fact
that we do not hard-constrain our overlapping align-

ments to cover all source words (as is implicitly en-
forced with the alignments used by Moses), which is
sometimes a good thing — as when some function
words are better omitted in translation — but can be
detrimental with content words. Currently we do not
have different factors accounting for the two types
of omissions, but this could be easily added to the
model.

5 Future Work

We plan to explore several directions in order to
improve model performance: First, the neighbor-
hood operators could be improved by focusing on
such operators that empirically yield more promis-
ing neighbors. Especially an insertion mechanism
that is more connected to the source side might be an
interesting option to try. Second, we do not yet make
use of the ability of the SampleRank algorithm to
easily learn many thousands of feature weights. We
plan to include more fine-grained features possibly
even to the degree that every biphrase is regarded as
a feature itself. Such an approach could also demon-
strate FACTORIE’s ease in handling a more sophisti-
cated graphical model structure.

6 Conclusion

We outlined how a machine translation model can
be implemented from scratch in a just a few hun-
dred lines of code that deviates in many ways from
the standard phrase-based approach popularized by
Moses. Although we did not reach state-of-the-art
performance, we showed how to implement a trans-
lation system that allows great freedom with respect
to feature design and search operations. Both train-
ing as well as decoding are included in our approach.
In the current version, the use of overlapping align-
ment emphasizes this gained freedom in modeling.
However, more exotic features, long range depen-
dencies and settings with many more weights to be
estimated can be incorporated into such a model
without changing its basic principles. Models of this
kind may therefore become a valuable tool for ex-
perimenting with novel setups that do not fit in any
of the traditional settings.
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