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Abstract

This paper gives a detailed analysis of differ-
ent approaches to adapt a statistical machine
translation system towards a target domain us-
ing small amounts of parallel in-domain data.
Therefore, we investigate the differences be-
tween the approaches addressing adaptation
on the two main steps of building a translation
model: The candidate selection and the phrase
scoring. For the latter step we characterized
the differences by four key aspects. We per-
formed experiments on two different tasks of
speech translation and analyzed the influence
of the different aspects on the overall transla-
tion quality. On both tasks we could show sig-
nificant improvements by using the presented
adaptation techniques.

1 Introduction

Statistical machine translation (SMT) is currently
the most promising approach to machine translation
of large vocabulary tasks. The approach was first
presented in (Brown et al., 1993) and has been used
in many translation systems since then.

One drawback of this approach is that large
amounts of training data are needed. Furthermore,
the performance of the SMT system improves if this
data is matching in topic and genre. Since this is
not possible for many real-world scenarios, one ap-
proach to overcome this problem is to use all avail-
able data to train a general system and to adapt the
system to the task at hand using in-domain training
data.

Since parallel in-domain data is available for our
scenario, we will focus on the adaptation of the

translation model. When comparing the existing ap-
proaches to phrase table adaptation, the adaptation
of the translation model can take place in one of two
main steps: the candidate selection and the scoring
of phrase pairs. We found two different approaches
for candidate selection and analyzed their influence
on the translation quality. Secondly, we analyzed the
different techniques to adapt the phrase pair scoring
and characterized them by using four key aspects.

By analyzing the steps separately, we are able to
combine the techniques from the approaches in a
new way and improve the translation quality even
further.

The different strategies were evaluated on two dif-
ferent tasks of translating German to English: the
translation of TED lectures1 and computer science
university lectures.

2 Related work

In recent years different methods were proposed to
adapt translation systems to a specific domain. Some
adapted only the language model inspired by simi-
lar approaches in speech recognition (Bulyko et al.,
2007). The main advantage is that only monolingual
in-domain data is needed.

In cases where also parallel in-domain data is
available, the translation model can be adapted as
well. Koehn and Schroeder (2007) proposed to use a
log-linear combination of the in-domain and out-of-
domain phrase table. We will refer to this approach
as “Log-Linear”.

In (Niehues et al., 2010), the translation model is

1http://www.ted.com



adapted by adding the in-domain relative frequen-
cies to the general phrase table. If the phrase pair
does not occur in the in-domain phrase table, they
use a backoff value. We will refer to this method as
“Backoff ”.

In (Niehues and Waibel, 2010) a factored transla-
tion model was used to adapt the translation model.
They used the general scores together with the in-
domain or out-of-domain relative frequencies. In ad-
dition, a word factor represents the part of the corpus
where the phrase is extracted from. Then a Domain
Sequence Model counts the number of in-domain
phrase pairs or words (“Factored”).

Another approach using the “Fill-Up“ technique
was described in (Bisazza et al., 2011). They used
the in-domain and out-of-domain scores and an in-
dicator feature. The out-of-domain scores were only
used if no in-domain probabilities were available.

An approach based on mixture models was pre-
sented by Foster and Kuhn (2007) and Banerjee et
al. (2011). They used linear and log-linear, language
model and translation model adaptation. Further-
more, they optimized the weights for the different
domains on a development set and the weights are
set according to text distance measures.

Matsoukas et al. (2009) also adapt the system by
changing the weights of the phrase pairs. In their
approach this is done by assigning discriminative
weights for all sentences in the parallel corpus.

3 Translation model

When parallel in-domain data is available, we want
to adapt the translation model to be able to encode
the domain specific knowledge without losing the
information learned from the much bigger parallel
corpus. If we compare the different approaches of
translation model adaptation, we see that two main
aspects of the model can be adapted to better match
the specific domain. The first aspect is the candi-
date selection, where we determine for every pos-
sible source phrase, which translations to consider
during translation.

The second aspect we can adapt is the selection
of the phrase pair scores. There are different possi-
bilities to encode the additional information gained
only from the in-domain data.

In our experiments we used a phrase-based ma-

chine translation system. The phrase pairs were ex-
tracted from an automatically generated word align-
ment.

Before translation, a set of candidate translations
T (f̄i) is selected for every source phrase f̄i. For sev-
eral source phrases there are many different trans-
lations, which we cannot all consider during decod-
ing due to runtime limitations. Furthermore, most of
them have low probabilities and will not lead to good
translations of the sentence. Therefore, we limit the
number of translations for every source phrase to a
maximum of n by a combination of histogram and
beam pruning. We used at most 10 translations for
every source phrase. We rank the phrase pairs in or-
der to be able to select the top translations by scor-
ing them using some initial weights that were deter-
mined heuristically. These weights are independent
from the weights generated by MERT.

In the baseline phrase table we use four different
scores Φs((f̄i, ēi)) for every phrase pair (f̄i, ēi). The
relative frequencies in both directions and the lexi-
cal probabilities in both directions. We use modi-
fied Kneser-Ney smoothing for the relative frequen-
cies as described in (Foster et al., 2006). This leads
to the following definition of the translation model
when translating the source sentence f = f̄ I1 into
the target sentence e = ēI1 using the phrase pairs
((f̄1, ē1),(f̄2, ē2),..,(f̄I , ēI))

log(p(ēI1|f̄ I1 )) =
I∑

i=1

log(p(ēi|f̄i)) (1)

=

I∑
i=1

S∑
s=1

λslog(Φs((f̄i, ēi)))

−log(Z)

(2)

The weights used for the four scores during the
actual decoding are optimized using MER training
on the development data.

In our scenario there are three different phrase
tables. One trained only on the in-domain data
providing the candidate translations TIN (f̄i) for a
given source phrase f̄i, one trained on the out-of-
domain data (TOUT (f̄i)) and one trained on all data
(TALL(f̄i)). Consequently, for a given translation
task there are 3 different sets of phrase pairs, which



were determined by candidate selection as described
above. Each of these sets contain at most n trans-
lations for a given source phrase due to pruning as
mentioned before. In the next section we compare
different approaches on how to combine these three
sets into a new one. Afterwards, we will describe
the different features used as phrase table scores.

4 Candidate Selection

As described in the previous section, the first step
in the translation process is to determine the phrase
pairs which the decoder can then use to build the
translation.

The first approach here is to use the phrase pairs
which are selected from the phrase table trained on
all data T (f̄i) = TALL(f̄i) . In this case we would
not adapt the component of the candidate selection
at all. This approach was used by the backoff and
factored approaches and will be referred to as NoAd-
apt.

A second approach is to use the union of the can-
didates selected from the in-domain and the out-of-
domain phrase table T (f̄i) = TIN (f̄i) ∪ TOUT (f̄i).
This was done in the log-linear and fill-up ap-
proaches. We will refer to this method as UnionOut.
Instead of the out-of-domain phrase table, we could
alternatively use the phrase table trained on all data
and combine its candidate phrase pairs with the in-
domain phrase pair selection T (f̄i) = TIN (f̄i) ∪
TALL(f̄i). We will refer to this method as UnionAll.

A third approach is to mainly rely on the phrase
pairs of the in-domain phrase table. Only if there
are no or not enough candidate translations for one
source phrase, we will fill up the candidate list by the
ones suggested by the out-of-domain phrase table
or the general phrase table, respectively. This leads
to the definition of the translation candidates set as:
T (f̄i) = TIN (f̄i) ∪ T k

ALL(f̄i), where T k
ALL(f̄i) are

the top k translation of TALL(f̄i) and k = n −
|TIN (f̄i)|, where n is the maximum number of trans-
lation candidates and therefore k is always larger
than or equal to 0. In our case n is 10. In contrast to
the Union approaches, we will still have at most 10
translations for every source phrase. Analog to the
UnionAll and UnionOut approach, we will refer to
this approach as PaddingAll and PaddingOut.

In a last approach, we allow only to fall back

the candidates by the out-of-domain, if there are no
translations at all for the source phrase in the in-
domain phrase table. In this case we will consider
all out-of-domain candidates for this source phrase.

T (f̄i) =

{
TIN (f̄i) : TIN (f̄i) 6= ∅
TOUT (f̄i) : else

We will refer to this approach as SourcePadding.

5 Selecting Scores for Phrase Table

The other step in the translation model that can be
adapted is the scores of the phrase pairs. Here
the approaches differ in four key aspects. For the
adapted translation model the definition of the trans-
lation probability needs to be changed slightly in the
following way:

log(p(ēi|f̄i)) =
S∑

s=1

~λslog(
−−−−−−→
Φf (ēi|f̄i))

+
S′∑
f=1

λf log(Φf (ēi|f̄i))

− log(Zf̄i
)

Instead of having only one value for the four dif-
ferent phrase table features, there may be now sev-
eral ones from the different phrase tables as indi-
cated by the vectors. In this case, the log func-
tion should be applied separately for each compo-
nent. Furthermore, in some approaches their might
be some additional features S′.

The first key aspect is the usage of the scores
trained on all data. Although these scores are not
adapted to the target domain, they are often more re-
liable, since they are calculated on a bigger amount
data. Therefore, they might be useful for smoothing
the adapted features. We can use them as a log-linear
smoothing by defining Φs =< ΦAll

s ,ΦAdapted
s >

or we can ignore them by using only the adapted
features (Φs =< ΦAdapted

s >) and therefore do not
need to train an additional phrase table on the whole
data. While the backoff and factored approaches ex-
tend the features of the general phrase table by the
adapted ones, the general ones are not used at all in
the log-linear and fill-up approaches.



Secondly, when adding the in-domain scores to
the ones calculated on all data, it might not be nec-
essary to use all adapted scores, but just adding one
or two of the four scores might be sufficient. There-
fore, we will analyze for which scores we need an
adapted version and for which of them we can just
use the score from the general phrase table. In this
case, for some of the scores, the features will then
be defined as Φs =< ΦAll

s > and not Φs =<
ΦAll
s ,ΦAdapted

s >.
Thirdly, the out-of-domain scores and the in-

domain scores cannot be calculated for all phrase
pairs, but only for the ones that occur in the cor-
responding corpus. Therefore, the approaches sug-
gested different ways to handle unknown probabili-
ties.

Log-Linear As it was done in the log-linear combi-
nation, we can use either the in-domain or the
out-domain scores and then use different scal-
ing factors for each of them. That means both
in-domain and out-of-domain phrase pairs have
8 scores. For in-domain phrase pairs the four
out-of-domain phrase table features are set to
one and for the out-of-domain phrase pairs the
in-domain features are set to one. For phrase
pairs from the in-domain corpus this leads to
the definition ΦAdapted

s =< ΦIN
s , 1 > and for

the out-of-domain phrase pairs we get the defi-
nition: ΦAdapted

s =< 1,ΦOUT
s >

Backoff In the backoff method the in-domain
scores are used for in-domain phrase pairs.
For phrase pairs that only occur in the out-of-
domain phrase table each score is set to the
worst value that occurs in the in-domain phrase
table for this score. In this case, for all phrase
pairs from the in-domain corpus, we get the
definition: ΦAdapted

s = ΦIN
s and for all the

other phrase pairs:

ΦAdapted
s = min(ēi|f̄i)Φ

IN
s (ēi|f̄i))

Indicator An indicator feature signals whether the
phrase stems from the in-domain or from the
out-of-domain phrase table. As the first four
scores we use the probabilities from the in-
domain and out-of-domain phrase table, re-
spectively, and the last one being the indica-
tor feature. This additional feature will have

the value 1 for all in-domain phrase pairs and
exp(1) for all out-of-domain phrase pairs.

The fourth and last aspect is the treatment of
phrase pairs which can be assigned both in-domain
and out-of-domain scores, because they occur both
in the in-domain and in the out-of-domain corpus. In
this case, the backoff and fill-up approach suggest to
use only the in-domain scores, while the other two
approaches add the phrase pair to the phrase table
twice, once with in-domain and once with out-of-
domain scores.

An overview over the different aspects of the four
approaches to phrase table adapation as mentioned
in the related work is given in Table 1.

6 Results

After analyzing the different approaches we will
now evaluate their effects on translation quality. We
perform experiments on two different German-to-
English speech translation tasks. First, we describe
the SMT system and then we run some baseline ex-
periments to demonstrate the characteristics of the
data. Afterwards, we will evaluate the influence
of the candidate selection and aspects of the phrase
scoring.

We performed significance tests following (Zhang
and Vogel, 2004). All results that are significantly
better than the baseline system at a level of 0.05 are
marked by a star(*).

6.1 System Description

The translation system was trained on the European
Parliament corpus, News Commentary corpus and
the BTEC corpus. As parallel in-domain data, the
TED talks were used in addition. The data was
preprocessed and compound splitting was applied.
Afterwards the discriminative word alignment ap-
proach as described in (Niehues and Vogel, 2008)
was applied to generate the alignments between
source and target words. The phrase table was built
using the scripts from the Moses package (Koehn
et al., 2007). The language model was trained on
the target side of the parallel data using the SRILM
toolkit (Stolcke, 2002). In addition we used a bilin-
gual language model as described in (Niehues et al.,
2011).



Table 1: Different phrase table adaptation approaches

Approach Candidate Selection Score Selection Number of scores
General Adapted Unknown Prob. Unique

Log-Lin UnionOut all Log-Lin 8
Backoff NoAdapt X 2 Backoff X 6
Factored NoAdapt X 2 Indicator 7
Fill-Up UnionOut all Indicator X 5

Reordering was performed as a preprocessing
step using POS information generated by the Tree-
Tagger (Schmid, 1994). We used the reordering
approach described in (Rottmann and Vogel, 2007)
and the extensions presented in (Niehues and Kolss,
2009) to cover long-range reorderings, which are
typical when translating between German and En-
glish.

An in-house phrase-based decoder was used to
generate the translation hypotheses and the opti-
mization was performed using MER training.

We used TED talks as development and test data.
In addition, we tested the systems on transcribed
university lectures from the computer science(CS)
department. Each test set contains at least 30K
words.

6.2 Baseline

In a first series of experiments we show the influ-
ence of the in-domain and out-of-domain data. We
tested the systems on both tasks using three different
configurations. The first condition uses no language
model adaptation, the other two conditions use a lan-
guage model adapted by log-linear or linear combi-
nation of the in-domain and out-of-domain data.

As shown in Table 2 using only the small, in-
domain parallel data leads to quite good quality
translations despite of the size of the parallel data.
This is especially true for the TED task. In con-
trast, when using the much bigger out-of-domain
data, we get a worse performance unless language
model adaptation is used. If both corpora are com-
bined, we could improve on the CS task. On the
TED task, we can only improve by using some kind
of language model adaptation.

Table 3: Number of Phrase pairs

TED CS
In 140K 40% 109K 31%
Out 335K 96% 338K 97%
All 348K 100% 347K 100%
UnionOut 425K 122% 408K 118%
UnionAll 413K 118% 399K 115%
PaddingOut 366K 105 % 363K 105%
PaddingAll 364K 104% 361K 104%
SourcePadding 250K 72% 258K 74%

6.3 Candidate Selection

In the next series of experiments, we analyzed the
influence of the candidate selection.

Before considering the translation quality itself,
we analyzed the size of the phrase tables generated
by the different methods.

In Table 3 the number of phrase pairs selected by
the different methods for both test sets are presented.
The in-domain phrase table contains 30 to 40% of
the phrase pairs that are in the general phrase table
and the out-of-domain around 95%.

If we take the Union of in-domain and out-of-
domain (UnionOut) or in-domain and all data phrase
table (UnionAll) the size increases by around 20%.
By using the Padding method, the phrase table in-
creases only by around 5% compared to the phrase
table trained on all data. If we only use out-of-
domain phrase pairs for those source phrases, which
did not occur in the in-domain corpus, the phrase ta-
ble size is reduced by around 30% compared to the
aforementioned phrase table.

After looking at the phrase table sizes, we mea-
sured the quality of the translations generated us-
ing these phrase tables. In this case, we used the



Table 2: Baseline results (case-insensitive BLEU)

System
No LM Adaptation Log-Lin. LM Adaptation Linear LM Adaptation

Dev Test Dev Test Dev Test
TED CS TED CS TED CS

Only In 27.11 26.30 25.11 27.02 26.17 23.82 27.05 26.13 24.30
Only Out 25.30 24.65 24.86 26.42 26.10 24.97 26.38 26.33 25.32
All data 26.32 25.39 25.15 27.45 26.56 25.43 27.50 26.70 25.43

scores as described in the Backoff method. Since all
phrase tables use the same features, we performed
first experiments without running separate optimiza-
tions for the different methods. The results for the
TED translation task and the translations of the CS
lectures are shown in Table 4.

For the TED task the method using the Union of
the two phrase tables and the Padding method are
performing best. This leads to improvements be-
tween 0.05 and 0.3 BLEU points compared to the
system using the phrase pairs selected from the gen-
eral phrase table. They are also the only methods
that are significantly better than the baseline system
on the TED task using log-linear LM Adaptation.
The SourcePadding method leads to slightly worse
results than the best two methods. The differences
are bigger, if the language model is also adapted to-
wards the target domain.

To see the performance also for the cases where
the in-domain and test condition do not match per-
fectly, we also test the system on a set of computer
science lectures.

Again, the Union and Padding method perform
best. But in this case, the Union methods outper-
form the Padding technique. Furthermore, the Sour-
cePadding technique performs worse than using the
phrase pairs extracted from the general phrase table.

For all methods it does not matter whether we
combine the in-domain phrase table with the out-of-
domain phrase table or a phrase table trained on all
data.

We also performed experiments, where we opti-
mized the weights for every phrase table separately.
The results are summarized in Table 5.

Performing individual optimizations for every
configuration introduces additional random noise, so
that no clear picture can be seen. For the TED task,
the difference between Union, Padding and Sour-

cePadding is mostly below 0.2 BLEU points. For the
CS task, the situation is a little different. Here again,
SourcePadding the is worse than the other two and
Union produces in most cases the best translation.

To summarize the results of these experiments, it
seems to be important to keep all phrase pairs from
the in-domain phrase table. Not to adapt the candi-
date selection performs in many experiments worse
than the Union or the Padding approach. Further-
more, especially in the case where the in-domain
and test data do not perfectly match, i.e. with CS
lectures, it seems also to be important to keep all
phrase pairs from the bigger phrase table. Therefore,
we will use the UnionAll method for the following
experiments,

6.4 Selecting Scores for the Phrase Table

After analyzing the influence of the candidate selec-
tion, the remaining experiments concentrate on the
different features that can be used as scores for the
phrase table entries. In the first group of experiments
we analyzed which features need to be adapted.

In all system we used the four scores from the
phrase table trained on all data. In addition, we
used some of the in-domain scores. We used the in-
domain features as described in the backoff method.
The results for the TED and CS task are shown in
Table 6.

For the TED task, more improvements can be
gained by using the relative frequencies for adapta-
tion than by using the lexical probabilities. Further-
more, adapting both relative frequencies is mostly
better than adapting only one.

If we adapt all four features, no additional gains
can be reached over only adapting the relative fre-
quencies. But the systems perform similar. Over all,
an additional 0.6 to 1.3 BLEU points can be gained
by using the in-domain phrase scores.



Table 4: Candidate Selection (No Optimization) (BLEU)

System
No LM Adaptation Log-Lin. LM Adaptation Linear LM Adaptation

Test Test Test
Ted CS Ted CS Ted CS

NoCSAdapt 26.77 25.97 27.16 26.64 27.33 26.39
UnionOut 26.78 26.05 27.49* 26.82 27.41 26.44
UnionAll 26.78 26.04 27.49* 26.81 27.40 26.42
PaddingOut 26.80 25.95 27.50* 26.74 27.40 26.33
PaddingAll 26.80 25.94 27.50* 26.73 27.40 26.32
SourcePadding 26.76 25.81 27.35 26.57 27.21 26.26

Table 5: Candidate Selection (BLEU)

System
No LM Adaptation Log-Lin. LM Adaptation Linear LM Adaptation

Dev Test Dev Test Dev Test
Ted CS Ted CS Ted CS

NoCSAdapt 28.03 26.77 25.97 28.40 27.16 26.64 28.30 27.33 26.39
UnionOut 28.14 26.81 25.58 28.43 27.23 26.74* 28.61 27.21 26.58
UnionAll 28.34 27.03 26.44* 28.69 27.38 26.79 28.43 27.38 26.26
PaddingOut 28.20 26.96 25.77 28.68 27.46 26.73 28.66 27.59* 26.35
PaddingAll 28.19 26.74 25.69 28.53 27.37 26.20 28.61 27.48 25.93
SourcePadding 28.13 26.80 25.81 28.49 27.43 25.51 28.45 27.62 25.97

Table 6: Feature Selection (BLEU)

System
No LM Adaptation Log-Lin. LM Adaptation Linear LM Adaptation

Dev Test Dev Test Dev Test
TED CS TED CS TED CS

No 26.51 25.59 25.41 27.56 26.72 26.36 27.65 26.95 25.61
rel. Freq 1 28.04 26.73* 25.83* 28.50 27.18* 26.70* 28.37 27.40* 25.99*
rel. Freq 2 28.28 26.85* 25.99* 28.44 27.24* 25.18 28.56 27.59* 25.86
rel. Freq 28.34 27.03* 26.44* 28.69 27.38* 26.79* 28.43 27.38* 26.26*
Lex 1 27.87 26.33* 25.52 28.40 26.98 26.73* 28.17 27.16 25.88
Lex 2 27.73 26.61* 25.88* 28.42 27.22* 26.06 28.41 26.98 26.17*
Lex 27.47 26.53* 25.55 28.22 26.86 25.43 28.08 26.75 25.49
All 28.28 26.98* 25.32 28.46 27.42 26.17 28.43 27.46* 25.79



For the CS lectures the picture is not as clear. It
is not obvious which of the in-domain features is
the most important one. But again, using both in-
domain relative frequencies leads to the best perfor-
mance. In this task, this feature selection is clearly
better than using all in-domain features. The addi-
tional improvement for this task is between 0.4 and
1.0 BLEU points.

In conclusion, using in-domain phrase scores gen-
erated significantly better BLEU scores for all tasks.
If we use both relative frequencies we get signif-
icant improvements on all six conditions. And in
both tasks, these improvements are bigger than the
ones gained by selecting translation candidates in a
different way.

After dealing with the number of adapted fea-
tures, we focus on the other aspects mentioned in
Section 5.

If the phrase pair occurs both in the in-domain and
out-of-domain corpus, we can calculate the adapted
scores according to definition for the in-domain or
out-of-domain phrase pairs for all approaches ex-
cept the backoff. We can then either use only the
ones generated by the in-domain scores or add the
phrase pair to the translation model twice with the
different scores. In some preliminary experiments,
we could not find any significant difference between
the two approaches. Therefore, we did not perform
any additional experiments on this task and always
used two phrase table entries, one based on the in-
domain scores, and one based on the out-of-domain
scores. Now we concentrated on the other two as-
pects: whether to include the general scores in the
in-domain phrase table entry in addition to the in-
domain scores and how to deal with unknown prob-
abilities.

Since the number and type of features is different
for all the experiments, a separate optimization had
to be run each time. In all the experiments we used
the UnionAll method as candidate selection and use
two sets of features for one phrase pair if the phrase
occurs in the in-domain and out-of-domain corpus.
The results are shown in Table 7.

The first system in the table uses no adapted fea-
tures at all. The next two systems use only the
adapted features using the indicator and log-linear
method to handle unknown probabilities. The re-
maining six systems use both, the general scores and

the adapted ones. Out of these systems, the first
three systems use all adapted scores, while the last
three use only the adapted relative frequencies.

If we first look at the TED translation task, the
results for the different features are quite similar.
The maximal average difference between the differ-
ent approaches is 0.25 BLEU points. The best result
is achieved with the General + Log-Lin combina-
tion. The reason for this may be that this approach
uses the most features, so there are more dimensions
for adapting to the target domain.

The influence of the general scores and the effect
of using two or four adapted scores on the translation
quality is not clear for this task.

If we now take a look at the translation quality
in the task of CS lecture translation, the picture is a
little different. First of all, not all features could im-
prove over the baseline system using no in-domain
features and the translation quality of the approaches
differ more. So it may be harder to gain improve-
ments when using phrase table adaptation, if the test
domain does not match the in-domain data perfectly.

On the other hand, using the scores from the gen-
eral phrase table helps in all cases. In addition, most
of the time it was better to use only the relative prob-
abilities for the adaptation and not all four phrase
table scores.

The systems General+Indicator and Gen-
eral+rel.Backoff could significantly improve over
the baseline system on all conditions.

7 Conclusion

In this paper we analyzed different approaches to
perform phrase table adaptation. We compared their
way of dealing with different aspects in the transla-
tion model adaptation. The comparison was done
on two different tasks of speech translation. In a
first step, we compared different ways of selecting
the candidate phrase pairs and it could be shown
that the best performance is reached by the Union
or Padding approaches. When the in-domain and
test condition do not match very well, the Union ap-
proach performed better.

Afterwards we analyzed different methods to se-
lect scores for the phrase pairs. First, some ap-
proaches use the general and adapted scores, while
others only use the adapted ones. In our experi-



Table 7: Feature Combination (BLEU)

System
No LM Adaptation Log-Lin. LM Adaptation Linear LM Adaptation

Dev Test Dev Test Dev Test
TED CS TED CS TED CS

No 26.51 25.59 25.41 27.56 26.72 26.36 27.65 26.95 25.61
Log-Lin 28.26 27.01* 25.53 28.63 27.51* 25.87 28.18 27.84* 25.55
Indicator 28.23 27.06* 25.15 28.31 27.77* 26.34 28.33 27.36 25.06
General + Backoff 28.28 26.98* 25.32 28.46 27.42 26.17 28.43 27.46* 25.79
General + Log-Lin 28.52 27.27* 25.60 28.60 27.59* 26.07 28.68 27.74* 26.52*
General + Indicator 28.34 26.83* 26.17* 28.40 27.37* 26.72* 28.31 27.58* 25.93*
General + rel. Backoff 28.34 27.03* 26.44* 28.69 27.38* 26.79* 28.43 27.38* 26.26*
General + rel. Log-Lin 28.23 26.92* 26.15* 28.61 27.52* 25.81 28.40 27.34* 26.15*
General + rel. Indicator 28.40 27.13* 26.67* 28.48 27.53* 26.60 28.53 27.54* 26.18*

ments, it turned out that for not perfectly matching
training and test condition it was best to include the
general scores. Furthermore, the approaches differ
in how to handle unknown probabilities. While it
was best to use the log-linear approach for the TED
task, on the CS task the backoff or indicator feature
approach performed best.

Overall, for some aspects there seems to be a best
method for both tasks, while for other aspects which
method performs best depends on how well the test
and in-domain training data matches.
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