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Abstract

We present a simple and effective infrastruc-
ture for domain adaptation for statistical ma-
chine translation (MT). To build MT systems
for different domains, it trains, tunes and de-
ploys a single translation system that is capa-
ble of producing adapted domain translations
and preserving the original generic accuracy at
the same time. The approach unifies automatic
domain detection and domain model parame-
terization into one system. Experiment results
on 20 language pairs demonstrate its viability.

1 Introduction

Research in domain adaption for machine transla-
tion (MT) has been mostly focusing on one do-
main. Various methods have been proposed to make
a system work best on a resource-scarce domain
when most of the training data is from another open,
resource-rich domain, e.g., (Foster et al., 2010; Fos-
ter and Kuhn, 2007; Koehn and Schroeder, 2007).
Decent improvements have been made on domain
translation accuracy, but often, accuracy improve-
ments for one domain are obtained at the expense
of accuracy losses in another (e.g., the background)
domain.

With these methods, it remains unaddressed how
they can be generalized to work equally well with
more than one domains at the same time. One could
trivially build one system/model per domain, but
that does not scale and will require manual domain
detection if the incoming texts belong to heteroge-
neous domains. So far, there has been little work

on better infrastructure for building and deploying
large-scale multi-domain MT systems.

In this paper, we present a simple and effective
domain adaptation infrastructure that makes a single
MT system that has a single translation model capa-
ble of providing adapted, close-to-upper-bound do-
main translation accuracy and preserves the generic
translation accuracy at the same time. This is ful-
filled by introducing domain awareness into the tra-
ditional single-domain decoding and tuning compo-
nents with the help of an automatic domain detector,
to generalize an MT system to handle different do-
mains. We study this approach with two domains
(generic and patent), carry out large-scale experi-
ments for 20 language pairs, demonstrating the vi-
ability of our approach.

The rest of the paper is organized as follows. Sec-
tion 2 describes related work. Section 3 presents our
domain adaptation approach. Section 4 explains our
method to classify an input sentence into its domain.
Sections 5 and 6 talk about genre-aware decoding
and tuning. We present experiment results in Sec-
tion 7 and conclude in Section 8.

2 Related Work

The work of Xu et al. (2007) and Banerjee et al.
(2010) are perhaps the most relevant to our work.
Xu et al. (2007) adapt a shared, generic transla-
tion model for better web or broadcast conversation
translations and use a source-document classifier to
classify an input document into a domain. This work
makes the translation model shared across differ-
ent domains, but domain-specific training data is not
used and thus its impact is not studied. Neither did



they report the generic MT accuracy.
Banerjee et al. (2010) use source-sentence clas-

sification to combine two separate domain models,
each trained from small amounts of domain-specific
data obtained from a single corporate website. The
work does not study nor report the impact of generic
data on domain translation accuracy.

Both works realize the automatic domain detec-
tion with an experimental setup where the classi-
fier works as a “switch” between two independent
MT decoding runs, lacking a deeper integration, also
making it difficult to introduce genre awareness into
other components (e.g., tuning) other than decoding.

Current research along this line does not seem to
provide enough evidence that the automatic domain
classification idea is practical yet for building large-
scale MT systems that are optimized for different
domains. Neither has it proposed a practical, uni-
fied infrastructure. In particular, this idea remains
unexamined under the following conditions:

• A wide range of classification error rates.

• Unbalanced classification error rates across dif-
ferent domains.

• Vast amounts of generic data and varying
amounts of domain data.

• Different languages.

3 Our Approach

Our approach intends to generalize the standard
single-domain MT infrastructure to more than one
domains, by making the necessary infrastructure
components aware of domains (or genres). The ap-
proach is simple but turns out to be effective.

We use a single translation-model parameteriza-
tion to serve different domains, rather than intro-
ducing multiple models, each for one domain. In
the model, there are no domain-dependent phrase
features at all and thus any phrase and its features
can be used in the decoding of sentences of any do-
main. But during phrase extraction, we do record all
the domains where a phrase comes from. We train
the translation model on the merged generic and
domain-specific bilingual data. Therefore, our trans-
lation model has no major difference from the stan-
dard, widely-used single-domain translation model,

except for the phrase provenance information we
keep for each phrase. Using a single model makes
the system scale more easily to many domains: We
just need to maintain one model and any future mod-
eling improvement can be immediately available to
different domains.

The domain awareness is introduced in decoding
and tuning. In decoding, a genre classifier is used
to generalize the conventional single-domain decod-
ing to distinguish genres: The genre classifier clas-
sifies an input sentencef to a domaind(f), using
knowledge (e.g., the phrase provenance information
we keep for each phrase) solely from the translation
model. Contrast to the single-domain decoding that
finds the best translation̂e for f with formula

ê = argmax
e

(

I
∑

i=1

λi · hi (f, e)

)

(1)

wherehi’s are features andλi’s are feature weights,
in our generalized decoding, once the decoder re-
trieves from the translation model a phrase that
matchesf , we re-label its features, sayhi, intohd(f)i

with the classified domain labeld(f). Re-labeling

makes featurehd(f)i a different feature fromhci used
by a different domainc, even though both re-labeled
features are originally the same feature in the trans-
lation model. A re-labeled feature now can have its
own (domain-specific) weight. In another word, the
runtime feature re-labeling makes a feature that is
shared, domain-independent in the translation model
become decoupled, domain-dependent at decoding
runtime and consequently (and importantly) in the
n-best lists for tuning. The generalized decoding
finds the best translation with the following formula:

ê = argmax
e

(

I
∑

i=1

λ
d(f)
i · h

d(f)
i (f, e)

)

(2)

Generalizing decoding for genre awareness in
turn makes tuning genre-aware. Our tuning devel-
opment set consists of sentences fromD domains.
And we do not need to know the domain for each
sentence beforehand. The genre-aware decoding on
the entire set automatically classifies it intoD par-
titions. The runtime feature re-labeling makes each
partition, Sd, d = 0, . . . , D − 1, have its own set
of features that are decoupled from other domains.



Therefore the system hasD sets of features in to-
tal. We then can use Minimum Error Rate Train-
ing (MERT) (Och, 2003) out of the box to learn
the weights for all these features in a single MERT
run which maximizes the overall BLEU of the entire
genre-mixed development set:

max
{λd

i
,d=1...D,i=1...Id}

BLEU(∪D−1
d=0 Sd) (3)

In this formula, there is no explicit treatment on
genre, but there is a subtlety: Features are decou-
pled in n-best lists across domains and this gives
MERT the freedom to adjust weights for one domain
without much constraints from any other domain. In
other words, MERT is made implicitly genre-aware.

Actually, we can further tailor the MERT tuning
objectives to be explicitly aware of genre. We ex-
plain alternative genre-aware tuning objectives that
the classical MERT can be altered to adopt in a later
section and compare their effects experimentally.

Daume III (2007) does domain adaptation by au-
gumenting features. Chiang et al. (2011) improve
lexical smoothing also by augmenting features re-
fined by genres. In our approach, then-best lists for
tuning can be viewed as containing augmented fea-
tures as well. But we augment features in order to
decouple them across domains, rather than provid-
ing refined domain/genre bias in the model.

The language model feature deserves further ex-
planation. Even though we do not have domain spe-
cific features in the translation model, we have do-
main specific language models. In our approach,
the generic language model is used by different do-
mains, but a domain language model is turned on
only if the input sentence is classified as the corre-
sponding domain.

4 Genre Classifier

A genre classifier detects domains by classifying a
source sentence into its genre (or domain), so that
the MT system can be configured to use the proper
domain feature weights and turn on the appropriate
domain language model.

Text classification is a well-studied field, largely
in the purview of Information Retrieval but with
lots of crossovers to Natural Language Processing as
well. The previous work that is directly related to us
is (Xu et al., 2007; Banerjee et al., 2010). Their work

uses either the source language model approach or
the information retrieval approach to implement the
genre classifier. The former requires an additional
source language model and the latter needs source
lexical statistics. Both approaches incur additional
RAM and efficiency costs.

Our classifier is implemented by “re-using” the
phrase table. The features in the classifier are de-
signed to indicate the domain provenance of the
source sentence by considering the relative portion
of domain phrases with respect to all the phrases re-
trieved for the source sentence. We use the Percep-
tron algorithm to implement the classifier.

4.1 Features

Generally, if most source sentence words originate
from a domain, it is likely that the sentence belongs
to that domain. Or, in the set of phrases we re-
trieve for the source sentence, if a certain number of
phrases are from the domain training data, the source
sentence may come from that domain. The classifier
features are defined in these two perspectives:

Domain word coverage The ratio between the
number of words that are covered by any domain
phrase and the source sentence length. The more
words that are covered by phrases from a domain,
the more likely the sentence belongs to that domain.

Domain word coverage by phrase length The ra-
tio between the number of words that are covered
by a max-length-l domain phrase and the source
sentence length. The insight of having these finer-
grained features in addition to the above coarse ver-
sion is that a word being covered by a longer do-
main phrase could be a stronger indication of do-
main provenance than being covered by a shorter
one.

Average phrase length The average max-domain-
phrase-length (per word). It is computed by sum-
ming up the length of the longest-covering domain
phrase for each word and then divide it by the sen-
tence length. If a sentence tends to be covered by
longer domain phrases, rather than short (and fre-
quent) ones, the sentence is more likely to belong to
that domain.

Domain phrase ratio The ratio between domain
phrases to the total number of phrases retrieved for



the source sentence. The bigger the ratio, the more
likely the sentence is from that domain.

Domain phrase ratio by phrase length The ratio
between the domain phrases of lengthl to the total
number of phrases of lengthl retrieved for the source
sentence. The insight is that domain phrase ratio at
a longer phrase length could be more discriminative
than at a shorter length. Making the domain phrase
ratio features finer-grained at phrase length enables
the training to treat them differently.

Except for the average phrase length feature, we
convert the above ratios to the logarithm space
before using a learning algorithm to learn their
weights. In experiments, we observed classification
accuracy improvement with this conversion. When
there are multiple domains, the above features are
computed for each respective domain, and then a
multi-class classifier is used to make the final de-
cision.

In principle, we could also use language model
based features that capturen-gram coverage. But in
practice, we use only phrase-based features as de-
scribed above. This is an efficiency optimization.
We do not want to query the domain language mod-
els for generic sentences, but we need to query the
phrase table regardless. In terms of accuracy, as we
will show later, we can achieve a decent classifica-
tion accuracy by using only phrase-based features.

4.2 Classification algorithm

The classifier we use is an averaged perceptron,
which has a weightwi for each featurefi, i =
1 . . . I, and uses a linear combination of the features.
If we have only two domains, the classification de-
cisiony is made by:

y(fi=1...I) =

{

domainA if
∑I

i=1 fi ∗ wi < T

domainB otherwise

T is a threshold whose value we can adjust to
achieve a desired tradeoff between the classification
accuracies of the two domains. Raising the accuracy
for a domain can decrease that of another. When
high classification accuracy is not possible for both
domains, finding a proper tradeoff could be impor-
tant for meeting user’s MT accuracy requirements
– if we desire a lossless generic BLEU, we need

to changeT to raise the classification accuracy on
generic texts, usually by sacrificing some domain
classification accuracy.

Multi-class classification can be realized by using
multiple binary classifiers, each classifying between
domainsc and d. The class that has the majority
votes wins.

5 Genre-Aware Decoding

The genre classifier is integrated into the decoder to
detect the domain of an input sentence. Then the
decoder chooses the proper decoding configuration
to decode the sentence. A decoding configuration
includes the feature weights for the detected domain
and the additional domain specific language model
feature. For a domainc decoding, the decoder turns
on the domainc language model and turns off that
of domaind. The generic language mode is used by
all domains.

The genre-aware decoder records the genre infor-
mation in the feature names when it emitsn-best
lists. As a result, once the decoding on the entire de-
velopment set is finished, the set is partitioned into
different portions, each corresponding to a domain
and each having its own feature set. Features are not
shared across domains inn-best lists.

6 Genre-Aware Tuning Objectives

The conventional single-domain tuning induces the
optimal feature weights{λi, i = 1 . . . I} that max-
imizes the BLEU of the entire development setS:

max
{λi,i=1...I}

BLEU(S) (4)

In our genre-aware tuning, the tuning development
set consists of sentences fromD domains. A genre-
aware decoding classifiesS into D partitions, each
partitionSd having its own set of features{λd

i , i =
1 . . . Id}. So the system hasD sets of features in to-
tal. Then MERT induces the weights for all these
features by maximizing an objective. There are
more than one ways to reflect genre in the tuning
objectives.

As we explained in Section 3, we can use the opti-
mization objective that maximizes BLEU at the en-
tire genre-mixed development corpus level. We call
it max joint BLEU as it learns all the feature weights



jointly:

max
{λd

i
,d=1...D,i=1...Id}

BLEU(S = ∪D
d=1Sd) (5)

Similar to the above single-domain optimization
problem, this objective does not explicitly take genre
into account. However, the weights of different do-
mains, {λd

i , d = 1 . . . D, i = 1 . . . Id}, are de-
coupled (by the runtime feature name re-labeling
(Section 3)) in then-best lists, rather than being
shared, thus the weight optimization for one do-
main can concentrate on the domain itself, with-
out being constrained too much by any other do-
main. Since BLEU is not decomposable at the sen-
tence level, this objective generally can not guaran-
tee maximized BLEUs on respective domain parti-
tions, but rather an optimal overall BLEU (Chiang
et al., 2008).

Another optimization objective is themax BLEU
sum that maximizes the sum of BLEUs of the indi-
vidual genre partitions:

max
{λd

i
,d=1...D,i=1...Id}

(

D
∑

d=1

BLEU(Sd)

)

(6)

When none of the features is shared in then-best
lists across different domains (which is our case),
this objective is equivalent to the summation of the
individually maximized BLEUs:

D
∑

d=1

(

max
{λd

i
,i=1...Id}

BLEU(Sd)

)

(7)

There could be other genre-aware tuning objec-
tives that mix (or “nest”) the above two.1 But in our
paper, we are mainly interested in the experimental
comparison between the max joint BLEU and the
max BLEU sum objectives, due to concerns about
the potential length-penalty effects on genre-aware
tuning/decoding (motivated by Table 3 of (Chiang
et al., 2008)).

Due to classification errors, the classified devel-
opment set or the classified test set of a domain can

1For example, for some domains, we can separately opti-
mize their weights, respectively; for some other domains, we
can jointly optimize the BLEU of their merged development
set. These two types of optimization can then be combined into
one single objective.

be different from the true set. This affects the trans-
lation quality in two ways. In tuning, the feature
weights of domaind are actually tuned on a polluted
domaind development set by false positives. A high
false positive rate will make the feature weights of
domaind deviate from the optimal feature weights,
resulting in less accurate translations. In decoding,
the false positives that belong to other domains are
decoded using the domaind weights, leading to less
accurate translations as well. We study the impact
of classification error rates on the domain translation
accuracy in Section 7.

7 Experiments

7.1 Setup

Our experiments are carried out for 20 language
pairs, in both directions, between English and 10
European languages: Italian, Spanish, French, Por-
tuguese, German, Swedish, Finnish, Turkish, Dan-
ish, and Dutch. We have two domains: generic and
patent. The generic parallel data size is around 250
million words for each language pair. The patent
parallel data is from the European Patent Office
(www.epo.org). The parallel data we have for
each language pair ranges from 0.8 million words
to 10 million words.

The MERT tuning set constitutes a generic de-
velopment subset (3400 sentences) and a patent do-
main development set (2000 sentences). For test-
ing, each generic test set contains 5000 sentences
and each patent domain test set contains 2000 sen-
tences. Sentence overlapping between training, de-
velopment and test sets are removed from the train-
ing data.

For each language pair, we train a 4-gram generic
target LM. We also train a 4-gram patent LM from
the target side of the patent parallel data. LM data
overlap with the development set and the test set is
removed.

We use a phrase-based system (Koehn et al., ),
which has a source tree pre-ordering module (Xu
et al., 2009). MERT optimizes BLEU on lattices
(Macherey et al., 2008).

7.2 Genre classification accuracy

We use the MT development sets as the training data
of the genre classifier and the MT test sets as the



Classifier Generic (%) Patent (%)
Features dev test dev test
word coverage (5) 97.2 97.0 53.1 52.9
phrase ratio (5) 96.8 97.1 43.3 40.3
avg. phrase length (1) 97.3 97.0 24.2 23.7
all (11) 97.0 97.2 87.6 85.5

all features, per language pair:

language pair generic (%) patent (%)
English/Danish 97.1 96.1 87.8 85.7
English/Dutch 97.8 97.9 91.1 92.6
English/Finnish 96.3 95.8 85.1 82.4
English/French 99.8 99.6 98.2 96.1
English/German 99.5 99.2 95.6 96.5
English/Italian 97.5 96.9 91.3 89.2
English/Portuguese 95.5 95.5 85.4 86.5
English/Spanish 96.8 96.6 90.4 90.6
English/Swedish 96.2 98.9 73.4 67.2
English/Turkish 96.3 96.6 85.3 80.1
Danish/English 97.3 96.0 86.1 82.3
Dutch/English 97.3 97.4 88.2 88.3
Finnish/English 92.8 93.8 77.4 76.7
French/English 99.7 99.6 97.8 94.6
German/English 99.3 99.0 96.1 95.9
Italian/English 96.3 96.0 88.1 83.8
Portuguese/English 96.0 96.9 86.3 86.2
Spanish/English 97.3 96.7 88.4 86.6
Swedish/English 95.3 97.7 78.0 70.1
Turkish/English 95.3 97.0 83.1 78.3

Table 1:Genre classification precisions measured on a generic
test set and a patent test set. In the first table, each accuracy is an
average over 20 language pairs; and numbers in round brackets
are the number of features used.

classifier test sets. The gold-standard label for each
source sentence is automatically known based on its
file origin. Since the MT dev and test sets lack short
sentences, for each language pair, we collect the 100
most frequent words from its generic development
set as additional generic training data for the genre
classifier of that language pair. This encourages the
classifier to learn to classify short sentences to the
generic domain.

Even though the classifier takes a monolingual
(source) sentence as input, it needs to know the lan-
guage pairs of the MT system as well, because the
classifier features are computed using the translation
phrases in the phrase table. We train the averaged
perceptron for 200 iterations.

Table 1 shows the dev and test precisions of clas-
sifying between the two domains. In our case, we
are targeting a lossless generic translation accuracy,

so we adjust the classification threshold (on our dev
set) to obtain a high generic classification preci-
sion. On an average over the 20 language pairs,
the genre classifier classifies generic sentences at
a 97.2% (test) precision and patent sentences at
a 85.5% (test) precision. For individual language
pairs, the patent classification precision is as low as
67.2% (English/Swedish test), or as high as 96.5%
(English/German test). The dev and test precisions
seem to be very consistent.

Table 1 also shows the performance of different
types of classifier features. Just using one type does
not suffice and the combination of all brings us the
best patent classification accuracy.

7.3 BLEU

We carry out a series of experiments to examine how
patent resources like parallel data, dev set and lan-
guage model are helpful and to examine how effec-
tive our presented domain adaptation approach is.

The experiments are described in Table 2, where
the difference of experiments lies in the parallel
training data, dev data, language model used and if
an experiment uses the genre classifier. To examine
how the patent domain bilingual data is helpful, we
build systems from the following data and tune them
only on the generic development sets. Here T stands
for training data.

• T1: generic bilingual data.

• T2: generic + patent training data.

• T3: just patent training data.

To examine the effect of different choices of dev sets
on translation accuracy, we tune systems on (where
D stands for dev set):

• D4: T2 + combined dev set

• D5: T2 + just patent dev set

To examine the effect of using domain language
models, we run (where L stands for language
model):

• L6: D4 + patent LM

• L7: D5 + patent LM



Experiment Train Data Dev Data LM Classifier Generic BLEU Patent BLEU
tuning testing dev test dev test

T1 G G G none none 30.41 30.14 32.66 33.21
T2 G+P G G none none 30.43 30.17 35.27 35.56
T3 P G G none none 13.25 13.04 33.76 33.88
D4 G+P G+P G none none 29.63 29.58 37.40 37.18
D5 G+P P G none none 28.52 28.71 37.79 37.19
L6 G+P G+P G+P none none 28.79 28.75 39.40 38.95
L7 G+P P G+P none none 21.63 21.71 41.20 40.17
C8.1 G+P G+P G+P yes yes 30.17 29.98 40.77 39.82
Oracle G+P G+P G+P oracle oracle 30.42 30.16 41.20 40.17
tune-Oracle G+P G+P G+P oracle yes 30.25 30.00 40.72 39.78

Table 2:Generic BLEUs and patent domain BLEUs. G=generic, P=patent, yes=areal genre classifier, oracle=a perfect/cheating
genre classifier. Significant tests were performed between C8.1 (ourapproach) and T1 (baseline) for the dev and test sets of all
20 language pairs, respectively: Atp < 0.005, none of the system significantly differs in generic BLEU and all patent-BLEU
improvements are significant. In column one, T/D/L/C indicates what is beingcompared. I.e., T means training data, D means dev
data, L means language model and C means classifier.

Please note that, in L6 and L7, the patent language
model is used by both the generic decoding and the
patent decoding, just as the generic language model.
L6 and L7 (as well as T1-D5) do not use the genre
classifier but just treat the dev and test as belong-
ing to the same genre. The purpose of T1-L7 is to
show the effects of different patent resources (of 20
language pairs) without resorting to genre classifi-
cation. In-domain parallel data and in-domain lan-
guage model have been previously shown helpful
for domain adaptation, for example, by Koehn and
Schroeder (2007).

To verify that our presented approach really pro-
duces optimized translation accuracy for different
domains, we run experiments C8.1 (where C stands
for classifier) that uses the genre classifier in both
tuning and decoding, and that uses the max BLEU
sum tuning objective in Eq. (7):

• C8.1: L6 + classifier + max BLEU sum

In C8.1, the patent language model is used only
when the genre classifier classifies an input sentence
as patent, but the generic language model is used by
both domains.

We also run an oracle experiment (Oracle in Ta-
ble 2) to establish the upper bounds of both domains
for C8.1. This system uses a perfect genre classi-
fier that has a 100% classification precision. It is
re-tuned, and the perfect classifier is used in both
tuning and testing.2 We’ll explain another oracle ex-

2In principle, the Oracle generic BLEUs are expected to be

Experiment Generic TER Patent TER
dev test dev test

T1 49.05 48.75 50.71 49.35
C8.1 48.93 48.81 44.65 45.16
Oracle 49.05 48.75 44.35 44.84

Table 3:Generic TERs and patent domain TERs for T1 (base-
line), C8.1 (our approach) and Oracle.

periment, tune-Oracle, in a latter section.
The BLEU results are shown in Table 2. Each

number is an average over 20 language pairs. We
also compute the TER scores (in Table 3) for T1
(baseline), C8.1 (our approach) and the Oracle, re-
spectively. The TER scores confirm the BLEU gains
achieved by our approach.

T1 vs. T2 shows that simply merging the patent
bilingual data into the vast amounts of generic data
improves the patent test BLEU by 2.35 points with-
out any negative effect on generic BLEU. T2 vs. T3
shows that the use of generic data for training leads
to accuracy improvement for patent translation and
also preserves the generic translation accuracy.

D4 vs. T2 shows that adding domain sentences in
the dev set effectively improves patent test BLEU by
another 1.62 points, but drops the generic test BLEU
by 0.6 points at the same time. D5 vs. D4 shows that

identical to the generic BLEUs of T2 and the Oracle patent
BLEUs are expected to be identical to L7: A system with a
100%-precision classifier, tuned with objective in Eq. (7) be-
haves like two independent systems: T2 for generic and L7 for
patent. We still run the actual Oracle experiment here for clarity
purpose.



putting only domain sentences in the dev set hurts
generic BLEU even more.

L7 vs. D5 (or L6 vs. D4) shows that a domain
LM improves the patent test BLEU by 3 points (or
1.77 points), but drastically lowers down the generic
BLEU3 when the tuning set has a significant portion
of the domain-specific sentences and when we do
not classify/distinguish genres.

Oracle establishes the generic and patent BLEU
upper bounds for C8.1. These two upper bounds are
not closely approached at once in any system built
by experiments T1-L7. Our approach, however, is
able to produce a system (C8.1) whose translation
accuracies are very close to the respective BLEU up-
per bounds: We are 0.25 dev (or 0.18 test) BLEU
points away from the generic upper bound, and 0.43
dev (or 0.35 test) BLEU points away from the patent
domain upper bound.

Compared to the baseline T1, our approach builds
a single system that improves patent translation by
6.6 test BLEU points (or 4.2 test TER points accord-
ing to Table 3) with a slight BLEU drop in generic
translation. We perform significance test between
T1 and C8.1 for both dev and test of all 20 language
pairs, respectively, using the paired bootstrap resam-
pling (Koehn, 2004): atp < 0.0005, none of the
generic-BLEU drop is significant, all patent-BLEU
improvements are significant.

7.4 Classification error rate vs. BLEU loss

As explained in Section 6, genre classification er-
rors incur BLEU loss compared to its oracle upper
bound. We are therefore interested in investigating
how BLEU loss varies with respect to the classifi-
cation error. Moreover, knowing a quantitative cor-
respondence between them would make it possible
to predict if the accuracy of a genre classifier under
development (e.g., for a new language pair) meets
our requirement on BLEU without running the ac-
tual decodings.

In our approach, genre classification errors lead
to potential BLEU loss in two ways. In decoding,
wrongly classified sentences will be decoded using
non-perfect decoding feature weights (and wrong

3Recall that, in experiments L6 and L7, the patent LM is
used for both generic and patent, which are treated as the same
genre.

domain language model); In tuning, wrongly clas-
sified sentences of domainA may “pollute” the dev
set (thus the tuning quality) of domainB when these
sentences are mis-classified to domainB. We use a
real classifier in our approach rather than a perfect
one in tuning for the purpose of simplicity, so that
decoders in tuning and testing behave the same.

We first examine how the combined errors (of tun-
ing and testing) affect BLEU. An averaged corre-
spondence between BLEU loss and genre classifica-
tion error rate can be directly computed from Table 1
and Table 2 and is shown in Table 4. BLEU loss
here equals the difference between the C8.1 BLEUs
and the Oracle BLEUs. In Table 4, each number
is an average over 20 language pairs. The 3.0%
dev (or 2.8% test) error rate in generic classification
leads to 0.25 dev (or 0.18 test) generic BLEU loss,
so 1% generic classification error incurs a loss of
(less than) 0.1 generic BLEU points. In comparison,
the 12.4% dev (or 14.5% test) error rate in patent
classification leads to 0.43 dev (or 0.35 test) patent
BLEU loss, so 1% patent classification error results
in a loss of (less than) 0.04 patent BLEU points. In
other words, the patent BLEU loss is less sensitive
to genre classification errors than the generic BLEU
loss. This unbalanced behavior proves the impor-
tance of using generic data for domain adaptation –
The vast amounts of generic training data can ensure
a decent fallback translation accuracy for wrongly
classified patent texts, but not the other way round.

A per-language-pair correspondence between
patent BLEU loss and patent classification error rate
for each of the 20 language pairs is shown in Fig-
ure 1. The plot again shows that patent BLEU
loss does not drop as quickly as the error rate in-
creases. As an approximation, we compute a linear
regression (the dotted line) from the observed loss in
BLEU as a function of the classification error rate,
getting

BLEU loss= −0.048× error rate+ 0.351 (8)

We did not draw the figure for the generic case be-
cause we control (on dev) the generic classification
error rate to be mostly under3% (Table 1), which we
think is important for achieving domain adaptation
success (e.g., closely approaching Oracle bounds of
both domains).



Domain Classification Error Rate (%) BLEU (%) Loss
dev test dev test

generic 3.0 2.8 -0.25 -0.18
patent 12.4 14.5 -0.43 -0.35

Table 4:Genre classification error rates vs. (C8.1) BLEU loss
on average (over 20 language pairs). BLEU loss = C8.1 BLEU-
Oracle BLEU. Numbers are computed from Tables 1 and 2.
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Figure 1:Patent classification error rates vs. patent BLEU loss
(or distance to upper bound) for 20 language pairs, respectively.
Patent BLEU loss = C8.1 BLEU - upper bound.

We then examine how using a real classifier in
tuning (rather than a perfect/cheating one) affects
the tuning quality, we run experiment tune-Oracle
(results in Table 2) that uses a perfect classifier in
tuning and a real classifier in testing. The com-
parison among C8.1, tune-Oracle and Oracle indi-
cates that, empirically, using a real classifier in tun-
ing (C8.1) yields as good tuning quality as using a
perfect one (tune-Oracle).

7.5 Tuning objectives vs. BLEU

Due to concerns about the potential length-penalty
effects on genre-aware tuning/decoding (motivated
by Table 3 in (Chiang et al., 2008)), we perform ex-
periment C8.2 and compare it with C8.1 to know
the impact of different genre-aware tuning objec-
tives (Section 6) on the generic BLEU and the patent
BLEU. C8.1 uses the max BLEU sum objective in
Eq. (7) and C8.2 uses the max joint BLEU objective
in Eq. (5).

• C8.1: L6 + classifier + max BLEU sum

Generic BLEU Patent BLEU
dev test dev test

C8.1 30.17 29.98 40.77 39.82
C8.2 29.93+0−5 29.81+0−5 40.72+0−1 39.84+2−1

Table 5:The impact of different genre-aware tuning objectives
on generic BLEU and patent BLEU, respectively. Each BLEU
is an average over BLEUs of 20 language pairs. BLEU+m−n:
m is the number of language pairs for which C8.2 is statistically
significant better than C8.1;n is the number that is worse; The
rest20 − m − n language pairs are those in which C8.1 and
C8.2 do not significantly differ.

• C8.2: L6 + classifier + max joint BLEU

C8.1 produces generic/patent feature weights by
maximizing the (separate) BLEU of the (classified)
generic/patent dev portion in a single MERT run.
C8.2 jointly obtains feature weights for both do-
mains by optimizing the BLEU of the entire devel-
opment set. In either experiment, the weights that
MERT produces have two subsets, each for a do-
main, while any T1-L7 experiment produces just one
subset of features that are shared by both domains.

In Table 5, C8.1 vs. C8.2 shows that tuning to
maximize the BLEU of each domain development
set (via the max BLEU sum objective) has a similar
average effect to maximizing the overall BLEU of
the entire combined development set (via the max
joint BLEU objective), with the former having a
slightly better generic translation accuracy. We per-
form significance test using the paired bootstrap re-
sampling: For 5 language pairs, on both dev and
test, C8.1 performs better (p < 0.005) than C8.2
for generic translation; and for the rest 15 language
pairs, there is no significant difference; For patent
translation, C8.1 and C8.2 seem to differ only for
one or two language pairs. This further confirms
the overall similarity between the two tuning objec-
tives and hints their slight difference. This similar-
ity could be attributed to the fact that, in our ap-
proach, features are made decoupled across differ-
ent domains in tuning, so that the C8.2 tuning is still
aware of genre even if it is maximizing the BLEU of
the entire development corpus.

8 Conclusions

Most work in domain adaptation for statistical ma-
chine translation are focused on only one domain.



In this paper, we introduce a domain adaptation in-
frastructure to makes a single MT system capable
of providing adapted, close-to-upper-bound domain
translation accuracy and preserves the generic trans-
lation accuracy at the same time. Our approach uses
a single translation model and generalizes the tra-
ditional single-domain decoding and tuning to deal
with different domains in a single system. We use a
large number of experiments to demonstrate the vi-
ability of our approach.

We use this approach to adapt large-scale generic
MT systems for 20 language pairs for patent trans-
lation. Our results show that we achieve improved
patent translation accuracy that is 0.35 BLEU points
away from its upper bound, by sacrificing only 0.18
BLEU points for generic translation.

We explore simple but effective ways of using do-
main resources, showing domain accuracy improve-
ments made by the use of bilingual training data, do-
main development data and domain language mod-
els. We show the importance of using large amounts
of generic training data, particularly in the case
where the domain detection error rates for differ-
ent domains are unbalanced. We also investigate the
correlation between genre classification errors and
BLEU loss, and the impacts of different genre-aware
tuning objectives on BLEUs.

The topic on effectively building multi-domain
MT systems have been remained understudied in
previous work. We present an improved approach
to this problem, study it in a variety of dimensions
and show that it is practically working.
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