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Abstract
We introduce two document-level features to polish baseline sentence-level translations gen-
erated by a state-of-the-art statistical machine translation (SMT) system. One feature uses the
word-embedding technique to model the relation between a sentence and its context on the tar-
get side; the other feature is a crisp document-level token-type ratio of target-side translations
for source-side words to model the lexical consistency in translation. The weights of introduced
features are tuned to optimize the sentence- and document-level metrics simultaneously on the
basis of Pareto optimality. Experimental results on two different schemes with different cor-
pora illustrate that the proposed approach can efficiently and stably integrate document-level
information into a sentence-level SMT system. The best improvements were approximately
0.5 BLEU on test sets with statistical significance.

1 Introduction

State-of-the-art statistical machine translation (SMT) systems (Koehn et al., 2007) have
achieved good performance for many translations, such as French-to-English translation. The
success can be attributed to the statistical model used in translation and the huge data for model
training. However, the well-developed techniques of SMT are mainly focused on the sentence-
level translation, i.e., the models are trained on the parallel corpus of sentence pairs, and the
translation is conducted sentence-by-sentence. Because in practice sentences are usually con-
tained in a document and surrounded by context, recent research has begun to focus on enhanc-
ing SMT systems with the addition of document-level information.

As to the features of document-level translation, a frequently discussed issue is lexical
consistency in translation: i.e., words tend to be translated consistently in a document (Carpuat,
2009; Carpuat and Simard, 2012). There are also detailed discussions around the consistency
of different parts of speech (Guillou, 2013; Meyer and Webber, 2013). On the basis of lexical
consistency theory, many researchers focus on increasing the lexical consistency in translation
(Tiedemann, 2010; Xiao et al., 2011; Ture et al., 2012). Beyond lexical consistency, there are
attempts at using lexical cohesion in translation (Ben et al., 2013; Xiong et al., 2013a,b), which
considers the semantic relation between words. Rather than the lexical features, the topic of
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documents is also taken as a feature in some recent research (Gong et al., 2011; Eidelman et al.,
2012; Xiong and Zhang, 2013; Hasler et al., 2014).

Among the different features, lexical consistency is the simplest feature because it only
considers the lexical words themselves. In contrast, lexical cohesion involves more semantic
information, such as hypernyms and hyponyms, usually requiring a word-net. Approaches that
use the document topic as a feature usually require training data, such as a document-level
parallel corpus, in the training or decoding phases.

In this paper, we propose an approach that considers both the lexical consistency and se-
mantic relation on the document level. The approach first uses an off-the-shelf SMT system
to conduct the sentence-level translation, where both the training and decoding are on the sen-
tence level. Then we introduce two document-level features, one using the word-embedding
technique to model the semantic relation of context on the target side and the other using a
token-type ratio to model the consistency in translation. With the two document-level features,
we conduct a further decoding on the document level to get a better combination of sentence-
level translation within a document. As to the weights of the introduced features, we utilize
a multi-objective learning approach based on the Pareto optimality (Duh et al., 2012) to si-
multaneously optimize the sentence-level and document-level metrics. The proposed approach
requires no word-net or document-level parallel corpus for model training. Instead, it requires
a vector list of the target-side vocabulary by word embedding and a small development set of
parallel document pairs to tune the weights of document-level features.

The remainder of the paper is organized as follows. In Section 2, we mention the related
work around using document-level information in translation. In Section 3, we describe our
proposed approach. Section 4 presents experimental results, and Section 5 is the discussion,
where we compare the proposed approach with a consistency verification approach (Xiao et al.,
2011). Section 6 contains the conclusions and future work.

2 Related Work

For the approaches focusing on the lexical consistency, an early attempt is the work of Tiede-
mann (2010), where decaying cache models for both language and translation models are used
for SMT. The cache models give the SMT system a preference for recently used words and trans-
lation rules. The approach succeeded for an out-of-domain test set but failed for an in-domain
test set. Tiedemann (2010) mentions that the cache model may be “risky”. In Xiao et al. (2011),
a re-decoding approach for a baseline SMT system is proposed to ensure lexical consistency in
translation, with quite detailed manual analysis of the experiment results. The approach also
has an improved BLEU score, which the authors mention as a bonus. Ture et al. (2012) used a
force-decoding approach for an SCFG-based translation system with several Okapi BM25 term
weights. These works are based on the “one translation per corpus” constraint discussed in
Carpuat (2009). On the other hand, the report in Carpuat and Simard (2012) asserted “SMT
translates document remarkably consistently, even without document knowledges.” In our opin-
ion, this is a complex issue that may depend on the data used or even the language pair in the
translation task.

As to the approaches using lexical cohesion, Ben et al. (2013) and Xiong et al. (2013a)
use semantic relations in a word-net to identify bilingual hypernym and hyponym relations in
translation. In Xiong et al. (2013b), a thesaurus is used to construct the source-side lexical
chain. These approaches step forward into the field of the semantic; thus, they require the help
of particular linguistic resources.

Document-level topic-based approaches also exist (Gong et al., 2011; Eidelman et al.,
2012; Xiong and Zhang, 2013; Hasler et al., 2014), which introduce extra topic models into the
translation process to improve the word selection for specific topics. Usually, the topic model
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Figure 1: Overall process of proposed approach. Sentences are represented by boxes with bold
frame, and documents are represented by boxes with fine-dashed frame. A baseline SMT system
on sentence level will take the set of 1-best translations of each input sentence as the final
output (marked by the solid horizontal arrow). The proposed approach conducts a document-
level decoding on the target-side m-best candidate lists of source-side sentences to find a better
combination (marked by the dashed zigzag arrow).

is statistical and needs to be trained on monolingual or bilingual document-level data. Along
with the feature of lexical cohesion, the topic is a sophisticated feature that must be supported
by extra resources.

Many approaches using document-level features require to modify the decoder of a base-
line system to adapt to their features in decoding. Research mainly focusing on the decoding and
tuning algorithm, such as the series work of Hardmeier et al. (2012) and Stymne et al. (2013),
extends the traditional sentence-based SMT system to be able to collaborate with document-
level features.

As to our approach, the features used can model the lexical consistency as well as semantic
relation at a certain level while not being as rigid as the features/operations on the very lexical
level that many previous approaches use. We assume that these features, combined with the
multi-objective tuning, will provide a robust and stable way to take advantage of document-
level information in an SMT system.

3 Proposed Approach

3.1 Overview

The proposed approach is essentially a re-ranking process in a document-level decoding (Fig.
1). We first use an off-the-shelf baseline SMT system to translate a document sentence-by-
sentence, obtaining the m-best translation candidates for each sentence. The baseline SMT
system can be trained and tuned in a standard way with sentence-level parallel data. Then,
we conduct a decoding on the document level to find good combinations among the m-best
candidate sentences. The search is realized in a cube-pruning way (Chiang, 2007). Here, we
use good to mean that the combinations are good for both sentence- and document-level metrics
under the Pareto optimality (Duh et al., 2012). As far as we know, this is the first attempt to
apply document-level re-ranking in an SMT system.
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Figure 2: In Seval (BLEU), every translation t will be compared with its reference r.

3.2 Notation
In the following description, we useD to denote an input document on the source-side language
composed of n sentences, which are {s1, s2, · · · sn}. The reference translation of D on the
target-side language is denoted by Dr, composed of {r1, r2, · · · rn}, where sentence rk (1 ≤
k ≤ n) is the reference translation of sk. Each sentence sk (1 ≤ k ≤ n) in D has an m-best
translation candidate composed of {t1k, t2k, · · · , tmk }. Over the total n m-best candidate lists, we
search for a combination C = {tc11 , t

c2
2 , · · · tcnn } (1 ≤ ck ≤ m, 1 ≤ k ≤ n) for optimization.

Generally, a test set contains multiple l-documents of {D1, D2, · · ·Dl}; hence, correspondingly
we search {C1, C2, · · ·Cl}.

3.3 Optimization Function
For optimization, we use two objective metrics: a sentence-level metric (Seval) and a document-
level metric (Deval), as follows.

Seval({C1, · · · , Cl}, {Dr
1, · · · , Dr

l }) = BLEU({C1, · · · , Cl}, {Dr
1 · · · , Dr

l }) (1)

Using the BLEU score for the Seval, a candidate translation will be evaluated with its reference
translation, sentence by sentence, disregarding document-level information (Fig. 2).

Deval({C1, · · · , Cl}, {Dr
1, · · · , Dr

l }) = avg
1≤i≤l

{avg
k

diff(context of tk ∈ Ci, rk ∈ Dr
i )}

(1 ≤ k ≤ length(Ci))
(2)

For the Deval, we evaluate the context of a candidate translation with its reference transla-
tion (Fig. 3). In Exp. (2), avg represents average and the function diff represents the difference
between sentences. We will mention the details of the function diff and the context in the
description of introduced features’ calculation, because they are essentially identical.

Because the context is composed of candidate translation of other sentences within a doc-
ument, any candidate translation will be evaluated according to two aspects: the similarity
between its own reference and itself (Seval), and the relation with the other references where
it becomes a context (Deval). The former evaluation is preformed in a strict n-gram match-
ing method to control the local translation of every word, whereas the latter is quite sketchy to
reveal more sentence cross-relation in the document.

3.4 Document-Level Features
As a baseline, SMT system has already been tuned to optimize the Seval (i.e., BLEU), we
introduce two features, f tdoc and fstdoc, to represent the performance against Deval as follows.
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tk tk-1 tk-2 tk+1 tk+2 

rk rk-1 rk-2 rk+1 rk+2 

Figure 3: In Deval, every translation t will be compared with reference r of the other transla-
tions, where t becomes context within a document. Here, the context of tk is tk−1 and tk+1.

f tdoc(C) = avg
1≤k≤length(C)

diff(context of tk ∈ C, tk ∈ C) (3)

Exp. (3) is similar to Exp. (2), with the rk ∈ Dr substituted for tk ∈ C (i.e., in Fig.
3, the lower rank and the upper rank are identical). The feature f tdoc reveals the difference
of a candidate translation with its context, which is also composed of candidate translations.
Specifically, we take the context of tk as:

{tmax(0,k−x), · · · tk−1, tk+1, · · · tmin(length(C),k+x)} (4)

Here x is a window size. Further, for the diff(·, ·) function, we want it to be flexible to reveal
more sentence cross-relation as the strict lexical-based evaluation will be controlled by the
Seval. Therefore, we use the word-embedding technique to transform the lexical information
into vector representation and use the distance between vectors as the diff function. Specifically,
we define the diff(·, ·) as:

diff(µ, ν) = log ‖µ− ν‖ (5)

where µ and ν are two vectors and ‖ · ‖ is the Euclidean norm. To get the vector of a sentence
or a set of sentences, we use the bag-of-word approach to get the average vector of all the word
vectors contained by the sentence(s).

The f tdoc feature concerns only to the target-side translation candidates. If candidate trans-
lations are similar to their context on average in a document, the feature will be small and if
they are not, the feature will be large. On the other hand, we also need a feature to reveal the
consistency in translation that can connect the source side and target side. So we use the feature
fstdoc to reveal the consistency in translation.

fstdoc(D,C) = avg
v

{
log

∑
w count

(v,w)∈(D,C)
(v, w)

|{w|(v, w) ∈ (D,C)}|

}
(6)

Here, v is a word on source side and w is a word on target-side; (v, w) is a translated word
pair and count(·) is a count function. Exp. (6) is essentially an average of token-type log-ratio
over a source-side word v (Fig. 4): i.e., for v, we count the total times it has been translated
by

∑
w count(v, w) and count how many types of target-side words it has been translated to by

|{w|(v, w) ∈ (D,C)}|. If source-side words are consistently translated to one or a few certain
target-side words on average, the feature will grow large; if not, the feature will be small.

Besides the two document-level features we introduced, we also take the score generated
by the baseline SMT system as a sentence-level feature fsnt. Then we use an interpolation of
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source snt. 
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Figure 4: Feature of fstdoc. A source-side word v appears four times and is translated three times
to two different target-side words w1 and w2. For v, we have a ratio of log 3

2 .

the features as the score for a {C1, C2, · · ·Cl} search as follows.

score({D1, · · · , Dl},{C1, · · · , Cl}) =∑
1≤i≤l

{λsntfsnt(Di, Ci) + λtdocf
t
doc(Di, Ci) + λstdocf

st
doc(Di, Ci)}

(|λsnt|+ |λtdoc|+ |λstdoc| = 1)

(7)

3.5 Decoding and Tuning
The algorithm we used in decoding is basically a cube-pruning algorithm (Chiang, 2007) to
merge the m-best list of translation candidates together over an entire document. Within the
process of merging, the f tdoc and fstdoc are calculated. The merging needs to be conducted on the
entire document because the fstdoc can only be calculated for a given combination of sentence
candidates over the entire document.1

Because the number of lists is equal to the number of sentences in a document, which
usually becomes several tens or over a hundred, the original cube-pruning approach will not
work well because its steps only forward to the next one candidate in each list from the present
frontier, which prevents the search from generating enough combinations when there are too
many lists. For example, consider a case in which we search 100 different combinations of
sentence candidates over a document composed of 100 sentences; on average, we only touch
the 2-best candidate (the one immediately below the top one) of each sentence. To avoid the
problem, we use a wider margin B for each list in search rather than only +1 in the original
algorithm.2 The time complexity of the search for a document will be O(N2BT ), where N is
the number of sentences in a document; B is the width of the margin; and the T is the search
times. For a document with N sentences, in each search, N ·B combinations will be generated
for f tdoc and fstdoc calculation. The two feature calculations are linear to the number of sentences
in a document, i.e. O(N). Thus, we have the described time complexity.

We apply the decoding algorithm on a development set of document pairs to tune the
weights λsnt, λtdoc, and λstdoc. According to Duh et al. (2012), the tuning algorithm is a multi-
objective learning algorithm under the Pareto optimality. The method of Duh et al. (2012)
is originally used for simultaneously tuning parameter weights to optimize different sentence-
level translation measures. It has been shown that multi-objective tuning shows more robustness

1Note that we can set a window size for f tdoc
2Specifically, the change is regarding line 11 of Fig. 6 in Chiang (2007). This line is executed multiple times in our

search, with a more large enumerating margin for each list.
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than traditional single-objective tuning. In our approach, we tune the weights under the Pareto
optimality of {Seval, Deval} as follows:

argmax
λsnt,λt

doc,λ
st
doc

{Seval,+Deval} (λtdoc > 0) (8)

argmax
λsnt,λt

doc,λ
st
doc

{Seval,−Deval} (λtdoc < 0) (9)

We maximize the Seval (BLEU) because it is a measure for which the higher is the better.
However, we are not sure in the case of Deval. As mentioned, the Deval and feature f tdoc
essentially have the same interpretation, so we make the sign of Deval dependent on the sign
of λtdoc, to make the optimization meaningful. When λtdoc > 0, i.e., the distance between
a sentence and its context is to be encouraged, we maximize the Deval; if the opposite, we
minimize the Deval (i.e., maximize the −Deval).3

The multi-objective tuning will generate a Pareto frontier of multiple sets of weights rather
than a single deterministic weight setting. The difference between the linear combination and
Pareto optimality in multi-objective tuning has been discussed and compared in Duh et al.
(2012). Generally, the Pareto optimality strategy is to optimize first agnostically and a pos-
teriori let the designer choose among a set of weights. This philosophy is also reasonable in our
approach, which is a post-process applied in a baseline SMT system to introduce document-
level information. In practice, if document-level information is no available, our approach
degenerates to the baseline system (i.e. λtdoc = λstdoc = 0); otherwise, the approach produces
several sets of {λtdoc, λstdoc}, which suggests that we should pay attention to the document-level
features.

4 Experiment

4.1 Data and Settings
We tested the proposed approach on French-to-English translation because this translation task
has been handled well by state-of-the-art SMT systems. We used two different schemes. One
is on the WIT3 corpus of TED talks4 (Cettolo et al., 2012), which contains a small training set
with document-level parallel development set and test set. The other scheme is a relatively more
realistic setting: using the Europarl corpus (Koehn, 2005) for model training and an in-domain
development set for the weight tuning in the baseline SMT system. Then we selected document
pairs from the Common Crawl (CC) Corpus5 of WMT2013 for document-level development
and test set. The CC corpus has a lot of noise, with many document pairs only several sentences
long – too short for our purposes. Thus, we selected relatively high-quality document pairs,
with moderate lengths of 40–60 sentences to compose the baseline. The data used in the two
schemes and the detailed information are listed in Tables 1 and 2, respectively.

In experiments, as previously described, a baseline SMT system was built from sentence-
level parallel data (the train row in Tables 1 and 2) and tuned on sentence-level development
set (the dev. (snt.) row). We used the phrase-based statistical machine translation (PB SMT)
system of Moses6 (Koehn et al., 2007) as the baseline SMT system. In model training, we used
the grow-diag-final-and to symmetrize the output of GIZA++7 (Och and Ney, 2003). The max-
phrase-length was set to 7 and the reordering model was msd-bidirectional-fe. The language

3We always set λsnt to be positive. λtdoc and λstdoc can be either positive or negative.
4https://wit3.fbk.eu/
5http://www.statmt.org/wmt13/translation-task.html
6http://www.statmt.org/moses/
7https://code.google.com/p/giza-pp/
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Table 1: Data used in experiment.

scheme-1 scheme-2
train WIT3 Europarl
dev. (snt.) WIT3 WMT dev2006
dev. (doc.) WIT3 CC
test WIT3 CC

Table 2: Number of sentence and document pairs of corpora. The dev. (snt.) and dev. (doc) of
scheme-1are an identical set.

scheme-1 scheme-2
train 0.14M snt. 1.99M snt.
dev. (snt.) 934 snt. 2, 000 snt.
dev. (doc.) 8 doc. / 934 snt. 14 doc. / 600 snt.
test 11 doc. / 1, 664 snt. 55 doc. / 2, 500 snt.

model was an interpolated 5-gram model with modified Kneser-Ney discounting, trained by
SRILM8 (Stolcke, 2002), on each scheme’s training data. In sentence-level decoding, the ttable-
limit was 20; the stack size was 200; and the distortion-limit was 6, all of which followed the
default settings of Moses’ decoder. The feature weights of the baseline PB SMT system were
tuned by MERT (Och, 2003) to optimize the sentence-level development set BLEU (Papineni
et al., 2002). The settings in tuning and translating on sentence-level were identical.

For the document-level decoding of the proposed approach, we used the baseline system to
generate a 1000-best translation candidate list for each sentence in a document. Each translation
candidate was attached with the word alignment information in sentence-level decoding for the
fstdoc calculation. Duplicate candidates in a 1000-best list were merged to one candidate taking
the highest score9 of the baseline SMT system. For the f tdoc calculation, we used a high-quality
English word embedding used in the SENNA10 toolkit (Collobert et al., 2011).11 The word
embedding is over a vocabulary of 130, 000 words, with 50-dimension vectors.

In the document-level decoding algorithm, we set the margin in cube-pruning to [−10, 10]
to enlarge the search space. The search generated 100 document-level candidates for re-ranking.
In the f tdoc feature and the Deval calculation, we set window-size to 2. That is, the context was
defined as the two preceding and two succeeding sentences.

For weight tuning on the document level, the multi-objective tuning can be combined with
any tuning algorithm, such as MERT (Och, 2003), MIRA (Chiang, 2012), or PRO (Hopkins
and May, 2011). Our approach contains only two free weights, λtdoc and λstdoc; thus, we used a
greedy search for them in (−1.0, 1.0), with step of 0.1, to avoid any possible search errors in
the tuning phase.

We took the consistency verification approach (Xiao et al., 2011) as the comparison ap-
proach in our experiments. Similar to our approach, this approach takes advantage of the m-
best translation candidates and uses a further decoding step to polish the baseline sentence-level

8http://www.speech.sri.com/projects/srilm/
9As well as the word alignment of the highest-scoring candidate.

10http://ml.nec-labs.com/senna/
11We also tried other vectors of word embedding, such as using word2vec (https://code.google.com/

p/word2vec/) or nplm (http://nlg.isi.edu/software/nplm/) to train vectors on a data dump of
Wikipedia. However, different vectors did not affect the performance much so we just used the pre-trained vectors
of SENNA.
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translation (the re-decoding in Xiao et al. (2011)). Specifically, the approach first generates a
list of ambiguous words on the source side. Then it collects possible translations of those am-
biguous words from m-best translation candidates and selects one standard translation for each
ambiguous word. Finally, the translation model (i.e. phrase table) was filtered to ensure that it
contains only the standard translation for ambiguous words. With the filtered translation model,
a re-decoding is conducted.

In our experiment, we followed the instructions of Xiao et al. (2011), using 5-best list,
a scaling factor α of 0.01,12 and the M1 method, which leads to a better performance. A
problem is that experiments conducted in Xiao et al. (2011) were on corpora of news, and
they used a term database to select the source-side ambiguous word. Because we do not have
such a resource and our experimental schemes have more variations, we selected the source-
side ambiguous word by tf-idf score and took the top-k tf-idf words. We varied the k in the
experiment.13

4.2 Results

In Table 3, we show the test set BLEU of the baseline SMT system and the effect of the con-
sistency verification method. For scheme-1, the baseline achieve a test set BLEU of over 30,
despite the scanty training data. In Cettolo et al. (2012), the performance on the same dataset
of English-to-French is reported, which also had a test set BLEU of over 30. Because French
and English have relatively similar vocabulary and syntax, we consider the baseline of scheme-
1 reasonable. For scheme-2, the baseline’s test set BLEU is also near to 30, as we intend to
build a high baseline.14 When we test the consistency verification method, we observe that it
works on scheme-1 but not on scheme-2, and the performance worsens as when the number of
verified words increases. We attribute the phenomenon to the rigidness of the consistency veri-
fication method. As mentioned, the data used in Xiao et al. (2011) are bound to the news field.
Although the topics vary among the documents, a substantial consistency in special-term trans-
lation is required in the news field, and Xiao et al. (2011) did use a database of terms. However,
the textual data used in our experiment are more casual and variable, especially in scheme-2.
Consequently, the consistency verification method does not perform well in scheme-2.

In Tables 4 and 5, we show the experimental results of the proposed approach in scheme-1
and scheme-2, respectively. Different sets of weights on the frontier of Pareto optimality are
listed,15 with their corresponding Seval andDeval on development set and Seval on test set (i.e.,
test set BLEU). The first rows, λtdoc = 0 and λstdoc = 0 are the performance of the baseline SMT
system for scheme-1 and scheme-2. We conduct a statistical significance test via the bootstrap
method (Koehn, 2004) using bleu-kit16. For each row, + and − mean the result is better or
worse than the baseline, respectively: a single mark means the difference is on the level of
p < 0.05 and a double mark means on the p < 0.01 level. For the overall performance, in
scheme-1, the change of test set BLEU is in the range of [−0.01,+0.48] points compared to
the baseline; in scheme-2, the range of change is in [−0.26,+0.56]. Because the Pareto frontier
offers multiple weights rather than a deterministic, the change on test set BLEU we report here
is a range rather than a deterministic value.

12Xiao et al. (2011) said a proper α is in [0.005, 0.1).
13The k is used to generate a list of source-side words for verification. The list also contains unambiguous words;

hence, the types of verified source-side words are less than k in our experiment.
14The test set used in Hasler et al. (2014), which is chosen from the same CC data, has a baseline test set BLEU near

20.
15In search, we filter out the weights that noticeably worsen the development set Seval (BLEU), which are worse

than −0.5 point than the baseline.
16http://www.nlp.mibel.cs.tsukuba.ac.jp/bleu_kit/
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Table 3: Test set BLEU of baseline SMT system and consistency verification (Xiao et al., 2011)
of k = 10, 20 ,50.

scheme-1 scheme-2
baseline 31.10 29.39
top-10 31.17 28.46
top-20 31.08 28.21
top-50 30.22 27.13

Table 4: Seval and Deval on development set and Seval on test set (test set BLEU) in scheme-1.
Different λtdoc and λstdoc are generated by multi-objective tuning.

λtdoc λstdoc dev. Seval dev. Deval test BLEU
0.0 0.0 28.09 .2223 31.10
0.0 −0.2 28.10 .2224 31.09

+0.2 −0.4 27.76 .2238 31.50++

+0.2 −0.5 27.70 .2242 31.54++

+0.3 −0.3 27.69 .2243 31.50++

+0.3 −0.4 27.64 .2250 31.58++

+0.4 0.0 27.84 .2238 31.34++

+0.4 −0.1 27.70 .2242 31.41++

+0.5 −0.1 27.60 .2255 31.51++

Table 5: Seval and Deval on development set and Seval on test set (test set BLEU) in scheme-2.
Different λtdoc and λstdoc are generated by multi-objective tuning.

λtdoc λstdoc dev. Seval dev. Deval test BLEU
0.0 0.0 28.34 .1583 29.39
−0.1 −0.8 28.79 .1566 29.95++

−0.2 −0.6 28.73 .1565 29.89++

−0.3 −0.5 28.62 .1562 29.85++

−0.3 −0.6 28.38 .1549 29.71++

−0.4 −0.4 28.51 .1557 29.80++

−0.5 −0.4 28.34 .1539 29.45
−0.6 −0.1 28.44 .1556 29.76++

−0.6 −0.3 28.28 .1534 29.39
−0.7 0.0 28.43 .1553 29.67++

−0.7 −0.2 28.19 .1534 29.24
−0.9 0.0 28.11 .1532 29.13−

5 Discussion

From the experimental results, we observe that the proposed approach can generate better results
by introducing document-level features on different datasets. In Table 4, we observe that the
development set Seval in scheme-1 is actually decreased by different weights while the test set
BLEU increases. This is because we use an identical development set for sentence-level tuning
in the baseline SMT system and for the purposes of document-level tuning. Apparently, the
tuning in the baseline system tends to over-fit the development set, and the proposed approach
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Table 6: Change on the test set BLEU of sentence-level (only changed translations are counted).

unchanged increased decreased total
scheme-1 13.58% 12.32% 9.13% 35.03%
scheme-2 9.48% 13.16% 7.24% 29.88%

Table 7: Change on the test set BLEU of document-level.

unchanged increased decreased total
scheme-1 0 doc. 8 doc. 3 doc. 11 doc.
scheme-2 0 doc. 49 doc. 6 doc. 55 doc.

can release it by the Deval. In Table 5, for scheme-2, we can observe both the development set
Seval and test set BLEU increase with most of the weights. In this scheme, the training data
(including sentence-level tuning data) are quite different from the document-level development
and test set. Hence, the efficiency of the document-level features are more obvious.

Compared with the consistency verification method, our approach uses no precise lexical
features, which we rely on the baseline system to address. As a result, the proposed approach
can avoid the rigidness of consistency verification and be adaptable to variant datasets.

For a further investigation, judging by their best performance,17 we calculate the test set
BLEU for each sentence and for each document in the two schemes. The sentence-by-sentence
evaluation is shown in Table 6. We find that approximately one third of the sentences have been
changed from the baseline and only approximately one eighth of the sentences see an improved
BLEU. Figs. 5 and 6 depict the difference of BLEU of changed sentences. The document-by-
document evaluation is shown in Table 7 and depicted in Figs. 7 and 8. We can observe that
most documents in each scheme have an improvement of the BLEU score. The phenomenon
suggests that document-level information does disturb the performance of special sentences (as
the “risky” stated in Tiedemann (2010)) because the baseline SMT system has already done a
good job. However, treating the document as an evaluation unit can lead to better performance.

We show a translation example in Table 8. In the example, the French word voyage is
selected to be verified and its translation is fixed to be journey. This is not a wrong translation,
although more variations are usually required. On the other hand, the French word ville is
translated to town in the baseline and untouched by the consistency verification method, whereas
the proposed approach can select a more correct translation of city. We can see the proposed
approach to be a more flexible approach than consistency verification.

6 Conclusions and Future Work

In this paper, we introduced two document-level features to improve a sentence-level base-
line SMT system. In the proposed approach, we integrated document-level information to the
sentence-level translation using multi-objective tuning under both a sentence- and document-
level measure. Experimental results demonstrated that the approach works on different datasets
and experimental schemes.

We plan to explore more document-level features and improve the search algorithm in
future. We are considering applying the linear programming method in Koshikawa et al. (2010)
to our document-level decoding.

17λtdoc = +0.3, λstdoc = −0.4 for scheme-1; λtdoc = −0.1, λstdoc = −0.8 for scheme-2.
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Table 8: Translation example of baseline, consistency verification, and our proposed approach.

Input
le voyage doit débute et se terminer dans le même pays , mais pas forcément dans la même ville .

Reference
· travel must begin and end in the same country , but not necessarily in the same city .

Baseline
the trip must begin and end in the same country , but not necessary in the same town .

Consistency Verification
the journey must begin and end in the same country , but not necessary in the same town .

Proposed Approach
the trip must begin and end in the same country , but not necessary in the same city .
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Figure 5: Change on test set BLEU of
sentence-level translation, best output of
scheme-1, sorted by the difference (only
changed translations are illustrated).

-1.0

-0.5

0.0

0.5

1.0

D
if

fe
re

n
ce

 o
f 

B
LE

U
 

Figure 6: Change on test set BLEU of
sentence-level translation, best output of
scheme-2, sorted by the difference (only
changed translations are illustrated).
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Figure 7: Change on test set BLEU of
document-level translation, best output of
scheme-1, sorted by the difference.

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

D
if

fe
re

n
ce

 o
f 

B
LE

U
 

Figure 8: Change on test set BLEU of
document-level translation, best output of
scheme-2, sorted by the difference.
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