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Abstract
Combining Translation Memory (TM) with Statistical Machine Translation (SMT) together
has been demonstrated to be beneficial. In this paper, we present a discriminative framework
which can integrate TM into SMT by incorporating TM-related feature functions. Experi-
ments on English–Chinese and English–French tasks show that our system using TM feature
functions only from the best fuzzy match performs significantly better than the baseline phrase-
based system on both tasks, and our discriminative model achieves comparable results to those
of an effective generative model which uses similar features. Furthermore, with the capacity of
handling a large amount of features in the discriminative framework, we propose a method to
efficiently use multiple fuzzy matches which brings more feature functions and further signifi-
cantly improves our system.

1 Introduction

Translation Memory (TM) has been widely used to assist human translators. It provides the
most similar source sentence in the database together with the target translation as the reference
to a human for post-editing. As TM stores legacy translations, it can give high quality and
consistent translations for repetitive materials. However, it performs badly when there are no
highly similar matches in TM.

In contrast, Statistical Machine Translation (SMT) automatically learns several models,
such as the translation model (from parallel data) and language model (from the target side of
the parallel corpus as well as other monolingual data), and uses them to translate a new sentence.
The translation is produced by maximizing a weighted combination of these models. Given a
large amount of data, SMT can generate better results for unseen sentences than TM. However,
unless sentence-caching is utilised, it treats a seen sentence (such as a sentence in the training
data) as unseen.

Clearly, TM and SMT complement one another on matched and unmatched segments,
so both are receiving increasing attention from translators and researchers, who would like
to combine TM and SMT together to obtain better translation quality with methods such as
system recommendation (He et al., 2010a,b) or using fragments from TM in SMT (Biçici and
Dymetman, 2008; Koehn and Senellart, 2010; Ma et al., 2011; Wang et al., 2013)

This paper is focused on integrating TM into SMT to improve translation quality. We
present a discriminative framework which directly integrates TM-related feature functions into
SMT. In this paper, we change features extracted from TM which are defined in a generative
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model (Wang et al., 2013) to feature functions and add them into the phrase-based transla-
tion model. Experiments on English–Chinese and English–French tasks show that our method
achieves comparable results with Wang et al. (2013), and is significantly better than the baseline
phrase-based system. In addition, we present a method to incorporate multiple fuzzy matches
into our system, which brings further significant improvement.

In the rest of this paper, we first introduce related work on TM and SMT combination
(Section 2). Then Section 3 details our discriminative framework, TM features and the approach
of using multiple fuzzy matches. Then, we provide experiments to examine our method (Section
4) and give a conclusion together with avenues for future work in Section 5.

2 Related Work

As shown in experiments (e.g. Koehn and Senellart (2010) and Wang et al. (2013)), TM can
give better translation than SMT for highly matched segments; SMT is more reliable than TM
for other segments. Because of such complementariness, combining TM and SMT together has
been explored by some researchers in recent years.

He et al. (2010a) present a recommendation system which uses an SVM (Cortes and Vap-
nik, 1995) binary classifier to select a translation from the outputs of TM and SMT with the
selected translation being more suitable to post-editing. They take TER (Snover et al., 2006)
score as the measure of post-editing effort and use it to create training instances for SVM. He
et al. (2010b) extend this work by re-ranking the N-best list of SMT and TM. However, these
works are focused on sentence-level selection and thus the matched phrases in TM are not used
so well.

For an input sentence, even though it does not have an exact match in the TM, there are
some matched phrases which could provide useful hints for translation. Biçici and Dymetman
(2008) present a dynamic TM approach which dynamically adds the longest matched non-
continuous phrase and its translation in the TM to the phrase table. They show a significant
improvement over both SMT and TM. However their baseline SMT system seems to perform
badly (Koehn and Senellart, 2010), in which case their claims need to be considered with cau-
tion. Koehn and Senellart (2010) and Ma et al. (2011) use TM in a pipeline manner: first, iden-
tifying the matched part from the best match in the TM and merging their translation with the
input; then, forcing SMT to translate the unmatched part of the input sentence. One drawback
of these methods is that they do not distinguish whether a match is good or not at phrase-level.

Wang et al. (2013) propose a deep integration method by using TM information during
decoding. For a phrase pair applied to an input sentence, this method extracts features from the
best match in the TM, and uses pre-trained generative models to estimate one or more prob-
abilities, and then adds them into the phrase-based system for scoring a translation. These
pre-trained models are built using a factored language model (Bilmes and Kirchhoff, 2003)
over sequences of features. Their experiments show significant improvement over TM, SMT
and pipeline approaches. However, their work requires a rather complex process to obtain train-
ing instances for these pre-trained models, and needs to define the generative relation between
different features.

3 Our Method

In this section, we present a generalized discriminative framework which can integrate TM into
SMT at decoding time. Under this framework, we add features from Wang et al. (2013) into
the phrase-based model as TM feature functions. In addition, we describe how to use multiple
fuzzy matches efficiently to improve translation quality.
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3.1 Discriminative Framework
Generally, in a state-of-the-art statistical translation framework like Moses (Koehn et al., 2007),
the direct translation probability is given by a discriminative framework, as shown in Equation
(1):

P (e | f) =
exp{

∑M
m=1 λmhm(e, f)}∑

e′ exp{
∑M

m=1 λmhm(e′, f)}
(1)

where hm(e, f) denotes the mth feature function for target e and source f , λm is the weight of
this feature function, and M is the number of feature functions considered.

This framework works well on pre-defined features, such as the translation model fea-
tures and language model features, which are based on target e and source f . However, as is
well-known, once these features have been induced, the training data (which can be a data) is
disregarded in decoding. In our work, we want to maintain the possibility of consulting such
TM source-target segments (with exact and fuzzy matches) at runtime.

In this paper, we argue that given a foreign sentence f , the probability of its translation e is
conditioned on foreign sentence f and TMD: P (e | f,D). WhenD is unavailable, it falls back
to P (e | f). Thus the discriminative model in Equation (1) could be generalized to Equation
(2):

P (e | f,D) =
exp{

∑M
m=1 λmhm(e, f,D)}∑

e′ exp{
∑M

m=1 λmhm(e′, f,D)}
(2)

From this, we obtain the rule in Equation (3):

e = argmax
e′
{P (e′ | f,D)}

' argmax
e′
{P (e′ | f,Df )}

' argmax
e′
{

M∑
m=1

λmhm(e′, f,Df )}

(3)

When hm(e′, f,Df ) = log p(e′), this is known as the language model feature; and when
hm(e′, f,Df ) = log p(f | e), this is known as the translation model feature. From Equa-
tion (3) we can see that, for an input sentence f , instead of using the whole TM D, we only use
one or more of the matches Df in D.

In this paper, we integrate TM into a phrase-based SMT model. In decoding, the foreign
input sentence f is segmented into a sequence of I phrases f

I

1, and each foreign phrase f i is
translated into a target phrase ei. Thus, a TM-related feature function can be seen as the sum of
I feature functions which are based on phrase pairs, as in Equation (4):

h(e, f,Df ) = h(eI1, f
I

1, Df
I
1
)

'
I∑

i=1

h(ei, f i, Df
I
1
)

(4)

where h(ei, f i, Df
I
1
) gives a value measured on the phrase pair (ei, f i) and TM matches D

f
I
1
.

3.2 Fuzzy Matching
In this paper, TM-related features are extracted from the matches in the TM. For retrieving
matches, we use a word-based string edit distance (Koehn and Senellart, 2010) to measure the
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click to select the policy        you want to edit    .

Danji  Yi  Xuanze  Yao  Bianji  De  Celue  .

click to select the policy that you want to delete .

SPL_5 SEP_N

SCM_high NLN_2_2

TCM_high

TCM_low

CSS_left

LTC_original

LTC_left

CPM_AdjacentSame

CPM_AdjacentSame

Source (f) :

TM Source (tmf):

TM Target (tme):

that you want to deleteSource Phrase (pf):

Yao ShanchuTarget Phrase (pe):

you want to editTM Source Phrase (ptmf):

Yao BianjiTM Target Phrase 1 (ptme1):

Yao Bianji DeTM Target Phrase 2 (ptme2):

selectPrevious Source Phrase (pf):

XuanzePrevious Target Phrase (pe):

Z_8

Figure 1: An example of extracting TM features. Target Chinese words are replaced by their
corresponding Latin characters. The italic words in parentheses are the notions used in Section
3.3.

similarity between the input sentence and a TM instance, as in Equation (5):

FMS = 1− edi distance(input, tm source)

max(| input |, | tm source |)
(5)

During the calculation of the fuzzy match score, we also obtain a sequence of operations,
including insertion, match, substitution and deletion, to convert the input sentence into a TM
instance. Such operations are useful for finding the TM correspondence of a source phrase.

3.3 Translation Memory Features
In this paper, we change features from Wang et al. (2013) to TM feature functions, and add
them into our phrase-based system. The value of each feature function on a sentence pair is the
sum of values from features extracted on phrase pairs, as in Equation (4).

Given an input sentence f and its best match (tmf, tme) in the TM, for each phrase pair
(pf, pe) applied to f , we first find its corresponding TM source phrase ptmf in tmf based on
operations for calculating edit-distance. Then with the help of word alignment between tmf
and tme, we identify one or more TM target phrases ptmeJ1 in tme by extending them with
unaligned words. Then we extract the following features for the phrase pair (pf, pe). Figure 1
shows an example:

• Feature set Z i indicates which match in the TM is used for source phrase pf . We split
fuzzy match score into 11 bins: [0, 0.1), [0.1 ,0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 0.5), [0.5,
0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), [0.9, 1.0), [1.0], which correspond to 11 features:
Z 0 · · ·Z 10. For example, in Figure 1, FMS(f, tmf) = 0.818, so it goes into bin
[0.8,0.9), and we add a value 1 to the feature Z 8.
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• Feature set SCM s represents the matching status between pf and ptmf . If ptmf is un-
available, we add the value 1 to the feature SCM non; if FMS(pf, ptmf) < 0.5, we add
the value 1 to the feature SCM low; if FMS(pf, ptmf) > 0.5, we add the value 1 to
the feature SCM high; and if FMS(pf, ptmf) = 0.5, we add the value 1 to the feature
SCM medium.

• Feature set SPL i measures the length of pf . For example, if length(pf) = 4, we add
the value 1 to the feature SPL 4. In this paper, we set maximum phrase length 7 in our
system, so there are 7 features in this set.

• Feature set SEP b is the indicator of whether pf is the punctuation at the end of sentence
f or not. If yes, we add the value 1 to the feature SEP Y ; otherwise, we add the value 1
to the feature SEP N .

• Feature set TCM s is the matching status between pe and ptmeJ1 . If ptmeJ1 is un-
available, we add the value 1 to the feature TCM non; otherwise, for each ptmei ∈
ptmeJ1 : if FMS(pe, ptmei) < 0.5, we add the value 1 to the feature TCM low;
if FMS(pe, ptmei) > 0.5, we add the value 1 to the feature TCM high; and if
FMS(pe, ptmei) = 0.5, we add the value 1 to the feature TCM medium.

• Feature set NLN x y models the matching status of context between pf and ptmf , where
x denotes the number of matched source neighbours (left and right words) and y denotes
how many of those neighbours are aligned to target words. If ptmf is unavailable, we just
add the value 1 to the feature NLN non. Taking Figure 1 as an example, the left words of
source phrase “that you want to delete” and TM source phrase “you want to edit” are the
same and their right words are also the same, so x = 2. As both left and right words are
aligned to target words, y = 2, so we add the value 1 to the feature NLN 2 2. In total,
there are 6 different < x, y > tuples.

• Feature set CSS s describes the status of ptmeJ1 . If ptmeJ1 is unavailable, we add the value
1 to the feature CSS non; if J = 1, we add the value 1 to the feature CSS single; if
J > 1 and all phrases in ptmeJ1 are generated by extending only the left side, we add
the value 1 to the feature CSS left; if J > 1 and all phrases in ptmeJ1 are generated by
extending only the right side, we add the value 1 to the feature CSS right; if J > 1 and
phrases in ptmeJ1 are generated by extending both sides, we add the value 1 to the feature
CSS both;

• Feature set LTC s is the indicator of whether a phrase ptmei in ptmeJ1 is the longest or
not. If ptmeJ1 is unavailable, we add the value 1 to the feature LTC non; if ptmei is
the phrase without being extended by unaligned words, we add the value 1 to the feature
LTC original; if ptmei is only extended on its left side and has the longest left side,
we add the value 1 to the feature LTC left; if ptmei is only extended on its right side
and has the longest right side, we add the value 1 to the feature LTC right; if ptmei is
extended on both sides and is the longest on both sides, we add the value 1 to the feature
LTC both; if ptmei is the one extended but not the longest one, we add the value 1 to the
feature LTC medium;

• Feature set CPM s models the reordering information. if ptmf is unavailable, we add the
value 1 to the feature CPM non. Otherwise, let (pf, pe) denote the last phrase pair ap-
plied to sentence f and assume the translation is generated from left-to-right. Furthermore,
let (ptmf, ptmeI

1
) denote the matched TM phrase pair for (pf, pe). When both ptme

i
and

ptmej are available:
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– if ptmej is on the right of and adjacent to ptme
i
,

∗ if the left boundary words of pe and ptmej are the same and the right bound-
ary words of pe and ptme

i
are also the same, we add the value 1 to the feature

CPM AdjacentSame.
∗ otherwise, we add the value 1 to the feature CPM AdjacentSubstitute.

– if ptmej is on the right of but not adjacent to ptme
i
, we add the value 1 to the feature

CPM LinkedInterlived.

– if ptmej is not on the right of ptme
i
,

∗ if ptmej and ptme
i

overlap, we add the value 1 to the feature
CPM LinkedCross.

∗ otherwise, we add the value 1 to the feature CPM LinkedReversed.

When ptme
i

is unavailable and ptmej is available, we need to find the last available TM

phrase pair used in the input, let it be (ptmf, ptme
N
1 ), for phrase ptmen in ptmeN1 :

– if ptmej is on the right of ptmen, we add the value 1 to the feature
CPM SkipForward.

– if ptmej is not on the right of ptmen,

∗ if ptmej and ptmen overlap, we add the value 1 to the featureCPM SkipCross.
∗ otherwise, we add the value 1 to the feature CPM SkipReversed.

In Figure 1, the previous phrase pair is<“select”,“Xuanze”>, and its corresponding phrase
pair in the TM is indicated by a rectangle. Taking TM target phrase 1 as an example, it is
to the right of and adjacent to the previous TM target phrase “Xuanze” and has the same
left boundary word with the target phrase “Yao Shanchu”. Furthermore, the right boundary
words of the previous target phrase “Xuanze” and previous TM target phrase “Xuanze” are
the same, so we use the feature CPM AdjacentSame.

3.4 Multiple Fuzzy Matches
In Section 3.3, only the best fuzzy match is used to extract features. Although we were able
to find a correspondence in the TM for each source phrase, sometimes this correspondence is
actually not the same as the source phrase, as shown in Figure 1. Thus we propose a method to
use multiple fuzzy matches to cover as many source phrases as possible.

In this paper, besides the best match, for each source phrase we also find a TM instance
which contains this phrase and has the highest fuzzy match score with the input sentence. We
call such a TM instance span-match. Figure 2 shows an example of finding multiple matches.

Different to the best match which is estimated over the whole sentence and thus does not
bias to any particular source phrase, span-match provides us with information about how a
specific source phrase is used and thus may be helpful in selecting the proper target candidate.
In addition, note that for a source sentence, the number of span-matches used is not fixed and
has no limitation, so our method does not need to be optimized on such parameters.

When multiple fuzzy matches are considered, for each phrase pair applied to the input
sentence during decoding, we extract features for it not only from the best match but also
from the span-match of the source phrase. Features from span-match are the same as those
defined in Section 3.3, except SPL i and SEP s are excluded as they are the same as fea-
tures from the best match. In addition, CPM s are not used on span-match as the current
source phrase may be not using the same span-match as the last phrase. We distinguish fea-
tures from the best match and the span-match by adding additional information, such as feature

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1:  MT Researchers      Vancouver, BC       © The Authors 254



click to select the policy you want to edit .

click to select the policy that you want to delete .Source:

TM Source 1:

click to select the existing policy that you want have replaced .TM Source 2:

in the policies pane , click the specific policy that you want to delete .TM Source 3:

1

2
3

Figure 2: An example of finding multiple matches.

EN-ZH sentences words(EN) words (ZH)
train 86,602 1,148,126 1,171,313
dev 762 10,599 10,791
test 943 16,366 16,375

EN-FR sentences words(EN) words (FR)
train 765,922 20,604,865 22,401,839
dev 1,902 67,403 73,743
test 1,919 71,228 78,177

Table 1: Summary of English–Chinese (EN-ZH) and English–French (EN-FR) corpus

BFM SCM high, which is from the best match, and SPAN SCM high, which is from the
span-match. In addition, we also define two more features:

• Feature NO SPAN MATCH means we cannot find a span-match for current source
phrase.

• Feature IS SPAN BEST means this span match is equal (the same fuzzy match score) to
the best match.

4 Experiment

4.1 Data
Our English-Chinese data set is a translation memory from Symantec, as shown in Table 1.
Our English–French data is from the publicly available JRC-Acquis corpus.1 Sentences are
tokenized with scripts in Moses. We randomly select 3000 sentence pairs as dev data and 3000
as test data. We filter sentence pairs longer than 80 words in the training data and 100 words in
the dev and test data. We also keep the length ratio less than or equal to 3 in all data sets. Table
1 also shows a summary of English–French corpus.

4.2 Baseline
On both language-pairs, we take the phrase-based model in Moses with default settings as
our baseline. Word alignment is performed by GIZA++ (Och and Ney, 2003), with heuristic
function grow-diag-final-and (Koehn et al., 2003). We use SRILM (Stolcke, 2002) to train
a 5-gram language model on the target side of the training data with modified Kneser-Ney

1http://ipsc.jrc.ec.europa.eu/index.php?id=198
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Feature Set Feature name
Z i Z 0, Z 1, Z 2, Z 3, Z 4, Z 5, Z 6, Z 7, Z 8, Z 9, Z 10
SCM s SCM non, SCM high, SCM low, SCM medium
SPL i SPL 1, SPL 2, SPL 3, SPL 4, SPL 5, SPL 6, SPL 7
SEP

¯
SEP Y, SEP N

TCM s TCM non, TCM high, TCM low, TCM medium
NLN x y NLN 2 2, NLN 2 1, NLN 2 0, NLN 1 1, NLN 1 0, NLN 0 0
CSS s CSS non, CSS single, CSS left, CSS right, CSS both
LTC s LTC non, LTC original, LTC left, LTC right, LTC both, LTC medium
CPM s CPM AdjacentSame, CPM AdjacentSubstitute, CPM LinkedInterlived,

CPM LinkedCorss, CPM LinkedReversed, CPM SkipForward,
CPM SkipReversed

Table 2: The list of TM features extracted on the best match in our system.

discounting (Chen and Goodman, 1996). Minimum Error Rate Training (MERT) (Och, 2003)
is used to tune weights.2 However, when TM features are incorporated, the number of features
grows to more than 50 (Table 2 show the features used in our system when only best match
is considered). As MERT is known to be weak when the number of features grows (Durrani
et al., 2013), we use MIRA (Cherry and Foster, 2012) instead to tune weights in this case. We
set the maximum iteration of MIRA to be 25. Case-insensitive BLEU (Papineni et al., 2002) is
used to evaluate the translation results. Bootstrap resampling (Koehn, 2004) is also performed
to compute statistical significance with 1000 iterations.

We implement Wang et al. (2013)’s method in Moses for comparison. This method needs
first to train three models3 with the factored language model toolkit (Kirchhoff et al., 2007) over
the feature sequence of phrase pairs. To obtain such phrase pairs for training, we do cross-folder
translation on two language pairs. For the English–Chinese task, we split the training data into
50 parts and build 50 systems with the above settings by taking each part as test data and the
rest as training data. Systems are tuned via the devset for the task. For the English–French task,
we do 10-cross folder training. After training the systems, forced decoding (Schwartz, 2008)
is used to generate the corresponding phrase segmentation on the test data. Then features are
extracted on those phrase correspondences.4

We also implement our method in Moses. In this paper, training data is taken as the TM
data, so phrase rules from the TM are already included during translation. After the SMT
models are trained, word alignment of the TM is also produced as a by-product.

4.3 Experiment Results

Table 3 shows our experiment results on two language pairs. We found that our system with
TM features achieves comparable results (+0.24/+0.31 on the dev set and +0.17/-0.01 on the test
set) with Wang et al. (2013) and both systems are significantly better than the baseline. After

2On our baseline system, MERT performs slightly better than MIRA.
3Three probabilities in model III which brings best performance in their paper:

p(TCM | SCM,NLN,LTC, SPL, SEP,Z)

p(LTC | CSS, SCM,NLN,SEP,Z)

p(CPM | TCM,SCM,NLN,Z)

4In the experiment, we only use two systems for feature extraction for the English–French task as the training data
is significantly large.
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systems EN–ZH EN–FR
dev test dev test

Phrase-based SMT 52.88 44.63 61.65 61.75
+Wang’s model 54.47 45.72 62.45 62.44
+TM feature 54.71 45.89 62.76 62.43

+multiple fuzzy matches 55.48* 46.75* 63.38* 63.10*

Table 3: BLEU [%] on English–Chinese (EN-ZH) and English–French (EN-FR) data. Bold
figures mean that the result is significantly better than the baseline phrase-based model at p ≤
0.01 level. * indicates that multiple fuzzy matches significantly improves the system with TM
features at p ≤ 0.01 level.

Ranges Sentence Words(EN) Words/Sentence
[0.8, 1.0) 198 3,239 16.4
[0.6, 0.8) 195 2,876 14.7
[0.4, 0.6) 318 5,358 16.8
(0.0, 0.4) 223 4,784 21.5

(a) English–Chinese

Ranges Sentence Words(EN) Words/Sentence
[0.9, 1.0) 313 10,166 32.5
[0.8, 0.9) 258 7,297 28.3
[0.7, 0.8) 216 6,128 28.4
(0.6, 0.7) 156 5,195 33.3
[0.5, 0.6) 171 5,832 34.1
[0.4, 0.5) 168 5,754 34.3
[0.3, 0.4) 277 11,157 40.3
(0.0, 0.3) 360 19,699 54.7

(b) English–French

Table 4: Composition of test subsets based on fuzzy match scores on English–Chinese and
English–French data.

multiple fuzzy matches are incorporated, our system shows further significant improvement
(+0.76/+0.62 on dev and +0.86/+0.67 on test).

In addition, we are also interested in the performance of the systems on different fuzzy
match ranges. Table 4 shows statistics on subsets of test data based on fuzzy match ranges on
English–Chinese and English–French data. We see that sentences with a lower fuzzy match
score (0.0-0.4) are longer.

The BLEU scores [%] for different fuzzy match ranges are shown in Figure 3. It is easy to
see that our system with multiple fuzzy matches achieves best performance over most ranges.
Especially on the English–Chinese task, when both Wang’s model and the TM features are
ineffective on the range (0.0,0.4) and [0.4,0.6), multiple fuzzy matches improve the system to
give the best translation on both language pairs. However, in the highest range, Wang et al.
(2013)’s method gives the best results. It seems that our system does not bias to high-scoring
fuzzy match range and treat all ranges fairly.
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Baseline
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+TM Features+Multi-match

Figure 3: BLEU [%] for different fuzzy match ranges on two language pairs. The baseline is
the phrase-based SMT system. The other three systems integrate different TM information into
the baseline.
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5 Conclusion

In this paper, we present a discriminative framework which can integrate TM into SMT. Under
this framework, we add TM feature functions, which model the relation between the source
sentence and TM instances, into a phrase-based SMT. In experiments on English–Chinese and
English–French tasks, our method performs significantly better than the baseline phrase-based
system. Furthermore, we present a method to efficiently use multiple fuzzy matches. Experi-
ments show that this addition significantly improves our system.

Although in this paper most features are from Wang et al. (2013), our method is much
simpler yet shows comparable results to their work. In addition, our method can be more easily
extended with further features and integrated into other translation models, such as hierarchical
phrase-based and syntax-based models. These are avenues for future work. Furthermore, as
our method is SMT-centric, in the future we would also like to extend it to get the best of both
worlds (SMT and TM) and .
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