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Abstract

The training data for statistical machine translation are gathered from various sources represent-
ing a mixture of domains. In this work, we argue that when translating dialects representing
varieties of the same language, a manually assigned data source is not a reliable indicator of
the dialect. We resort to automatic dialect classification to refine the training corpora according
to the different dialects and build improved dialect specific systems. A fairly standard classifier
for Arabic developed within this work achieves state-of-the-art performance, with classification
precision above 90%, making it usefully accurate for our application. The classification of the
data is then used to distinguish between the different dialects, split the data accordingly, and
utilize the new splits for several adaptation techniques. Performing translation experiments on
a large scale dialectal Arabic to English translation task, our results show that the classifier gen-
erates better contrast between the dialects and achieves superior translation quality than using
the original manual corpora splits.

1 Introduction

Training data for statistical machine translation (SMT) are extracted from various sources repre-
senting different domains (e.g., newswire, webforums, ...). The source of the data (encapsulated
by meta-information) can be utilized to perform domain adaptation using different techniques.
For example, mixture modeling of grammars trained on different sources of data (Foster and
Kuhn, 2007), or provenance features using different sources of data (Chiang et al., 2011).

The meta-information based corpora split may contain further domain granularities. In
this work, we tackle the case where the corpora contain a mixture of dialects. Dialects refer to
varieties of a language, differing by vocabulary, morphology, grammar, etc. In this scenario,
the meta-information split is rendered unreliable, and better splitting is required to achieve
improvements using standard adaptation methods.
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We start with developing an automatic dialect classifier for the purpose of refining the
corpora splits. The classifier is applied on an Arabic dialect identification task, where we distin-
guish between the Egyptian Arabic (ARZ) and Modern Standard Arabic (MSA) dialects. MSA
is the standard written form of Arabic while ARZ and other dialectal forms are mainly used
for speech. Due to the prevalence of MSA in written form, most of the corpora collected for
training SMT systems contain a majority of MSA data. Nevertheless, dialectal data has a strong
presence in on-line content such as weblogs, forums and user commentary. Applying an auto-
matic dialect classifier on corpora designated as dialectal shows that a large portion of the data
is actually MSA, making dialectal identification essential for a successful utilization of the data.

Next, we extensively experiment with applying the classifier output for domain-adaptation,
and compare using the classifier output to using meta-information based data splits. Various
adaptation methods are investigated, including: domain-specific SMT tuning, mixture model-
ing, and the so called provenance features. Applying the developed methods on a competitive
dialectal Arabic to English translation task, where the Arabic data contains a mixture of dialects,
our results show that using the classifier output improves over the meta-information based splits.
We also show that some adaptation methods can hurt the performance, and a combination of
techniques is required to guarantee improvements. Finally, we perform simple system selection
of the dialect-specific SMT systems and show that we can achieve gains for all dialects.

The paper is structured as follows. We review related work in Section 2. The automatic
dialect classifier is introduced in Section 3 and the adaptation methods in Section 4. The ex-
perimental setup is described in Section 5. Classification and translation results along with an
analysis are discussed in Section 6 and Section 7 correspondingly. Lastly, we conclude with
few suggestions for future work in Section 8.

2 Related Work

Various adaptation techniques have been suggested in the past for SMT. The techniques use
either meta-information to define the different corpora, e.g., (Foster and Kuhn, 2007; Chiang
et al., 2011) or automatic clustering methods, e.g., (Eidelman et al., 2012; Sennrich, 2012a),
and focus on training data splitting. We differ from previous work by using automatic dialect
classification to refine the splitting of the training data. Furthermore, we use the classifier to
split the tuning and test sets, build dialect specific systems and combine them using system
selection based on the dialect classification.

Interest in techniques for handling varieties of a language has been growing in the last
few years. In 2014, two workshops will be held dealing with resources, techniques and tools
specialized for language varieties, LT4CloseLang1 at EMNLP and VarDial2 at COLING. The
discriminating similar languages (DSL) shared task (Tan et al., 2014) offers an opportunity for
consistent comparison of different classification methods. The DSL evaluation is done mainly
on European languages. In this work, we focus on dialectal varieties of the Arabic language.
Nevertheless, the methods developed are generic and can be applied to other languages. Zbib
et al. (2012) discuss machine translation of Arabic dialects. Using human annotated dialectal
data, they achieve improvements over a general SMT system. We differ from their work by
using automatic dialect classification for SMT. Previous work on dialect classification discussed

1http://www.c-phil.uni-hamburg.de/view/Main/LTforCloseLang2014
2http://corporavm.uni-koeln.de/vardial/
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the definition of the problem, and built automatic classifiers (Zaidan and Callison-Burch, 2011;
Elfardy and Diab, 2013; Zaidan and Callison-Burch, 2014). Ideas for applying the classifier for
SMT were discussed but not implemented. In this work, we implement a competitive dialect
classifier which is then successfully applied for SMT and shows strong improvements over
a competitive baseline. To the best of our knowledge, this work presents the first successful
application of automatic dialect classification for SMT.

3 Dialect Classification

The task of dialect classification attempts to identify the dialect of a given sentence. In this work,
we use a supervised sentence-level dialect classifier to designate sentences as MSA or ARZ.
Sentences with ARZ content or structure are identified as ARZ, otherwise they are marked
as MSA (Zaidan and Callison-Burch, 2014). The classifier is trained on the Arabic Online
Commentary Set (AOC) (Zaidan and Callison-Burch, 2011). The data consists of commentary
by online readers of Arabic newspapers with a high degree of dialectical content, together with
human-annotated labels indicating the dialect of each sentence. The data had been obtained by
a crowd-sourcing effort. In the current paper, we focus on the MSA-ARZ 3 split of the data. The
split contains 25K sentences and 650K words, where around half of the sentences are annotated
as MSA and half as ARZ.

To implement the automatic sentence classifier, we use a linear SVM framework, i.e.,
the open source LIBLINEAR toolkit (Hsieh et al., 2008; Fan et al., 2008). The trainer can
easily handle a large number of instances and features. As the objective function, we use L1
regularized L2-loss support vector classification4. We set the penalty term C = 0.5. To classify
a sentence tn1 = t1...tn, we compute a linear score s(tn1 ) as follows:

s(tn1 ) =

d∑
s=1

ws ·
n∑
i=1

φs(ci, ti) (1)

where φs(ci, ti) is a binary feature function which takes into account the context ci of token
ti. The weight vector w ∈ Rd is a high-dimensional vector obtained during training. In our
experiments, we classify a tokenized sentence as being Egyptian Dialectal (ARZ) if s(tn1 ) > 0.

The feature functions we use include token (word-level) unigram and bigram, Part-of-
Speech unigram and dictionary based features. The features are combined according to Eq. 1.
We described the used classifier and features in more detail in (Tillmann et al., 2014).

4 Adaptation Methods

In this section, we introduce different approaches to domain adaptation that will be utilized to
generate dialect-specific SMT systems.

3Note that we denote Egyptian Arabic with ARZ instead of the EGY label used by (Zaidan and Callison-Burch,
2011). ARZ is the standard ISO language code for Egyptian Arabic.

4In the LIBLINEAR toolkit settings, we use solver type 5 with default termination criterion.
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4.1 SMT tuning

We carry out a weight vector λM1 = λ1...λM tuning of a standard log-linear SMT model:

q(eI1, f
J
1 ) =

M∑
m=1

λmhm(eI1, f
J
1 ), (2)

where (eI1, f
J
1 ) are target and source sentences of length (I, J) correspondingly, and hM1 are

feature functions.

We use pairwise ranking optimization (PRO) (Hopkins and May, 2011) to tune the scaling
factors. Instead of optimizing the log-linear model probability, PRO directly optimizes the
final translation quality. To perform adaptation using PRO tuning, the development set can be
varied to represent different domains. We experiment with using different development sets
obtained from different domains, as well as using the dialect classifier to obtain dialect specific
development sets. The scaling factors obtained for a specific tuning set will represent an adapted
system for the domain of the tuning set.

4.2 Mixture tuning

Mixture modeling is a technique for combining several models using weights assigned to the
different components. Domain adaptation could be achieved using mixture modeling when the
weights are related to the proximity of the components to the domain being translated. As we
generate several translation models differing by the training corpora domain, interpolating these
models could yield further improvements. In this work, we focus on mixture modeling using
linear interpolation.

Linear interpolation is a commonly used framework for combining different SMT models
(Foster and Kuhn, 2007). Given n phrase models pn1 = p1...pn, and λn1 interpolation weights,
linear interpolation is defined as follows:

p(f̃ |ẽ;λ) =
∑
i

λi · pi(f̃ |ẽ) (3)

In this work, the interpolation weights are optimized over a development set which represents a
specific domain. We use the phrase model perplexity as an objective function:

λ̂ = argmin
λ

−∑
(f̃ ,ẽ)

1

N
log p(f̃ |ẽ;λ)

 (4)

(f̃ , ẽ) are phrase pairs extracted from the development set using standard phrase extraction
methods (symmetrized word alignment and heuristic phrase extraction). We use the L-BFGS
optimization technique as done by (Sennrich, 2012b). Note that we apply linear interpolation
to all extracted rules (including phrase, hierarchical, and tree-to-string rules).

4.3 Provenance features

Chiang et al. (2011) suggest provenance features for improving SMT performance. Instead of
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Meta-info. Automatic dialect classification
Corpus #Sent #Ar tok dialect ARZ(%) MSA(%)

Train

Forums 299K 4.1M ARZ 183K (61%) 116K (39%)
Broadcast 169K 3.9M MSA 18K (11%) 151K (89%)
Newswire 885K 24.9M MSA 29K (3%) 856K (97%)
Other 726K 5M MIX 184K (25%) 542K (75%)
All 2.1M 37.9M MIX 415K (20%) 1 663K (80%)

Tune
DEV12 1 209 17 702 ARZ 507 (42%) 702 (58%)
P1R6 2 715 52 206 ARZ 1481 (55%) 1 234 (45%)
DEV10-wb 968 42 092 MSA 49 (5%) 919 (95%)

Dev
DEV12 1 510 27 134 ARZ 584 (39%) 926 (61%)
P1R6 1 137 17 991 ARZ 739 (65%) 398 (35%)
DEV10-wb 1 059 42 563 MSA 46 (4%) 1 013 (96%)

Table 1: BOLT parallel training data by genre, meta-information dialect and automatic dialect
classification results. MIX may contain additional Arabic dialects. The number of sentences
(#Sent) and Arabic tokens (#Ar Tok) are given. We report the percentage of sentences classified
as ARZ or MSA for each of the corpora listed.

training one model on the whole data, they suggest to condition the models on the provenance,
i.e., the meta-information (genre, collection) of the corpus the data is coming from.

In this work, we use IBM Model 1 lexical smoothing as provenance features. Splitting the
training data into n sub-corpora zn1 , we introduce 2 ·n provenance features (for standard and in-
verse Model 1 directions) into the log-linear framework of SMT. - The log-linear weights of the
provenance features are optimized as part of the PRO tuning of the whole set of SMT features.
Adaptation is then achieved by tuning the weights of the features to improve performance on a
target dialect tuning set.

5 Experimental Setup

5.1 Training corpora

We evaluate our dialect adaptation methods empirically in the context of the BOLT Phase 2
Dialectal-Arabic-to-English task5. The dialect chosen for Phase 2 is Egyptian Arabic (ARZ).
The BOLT program goes beyond previous projects, shifting the focus from translating struc-
tured standardized text, such as Modern Standard Arabic (MSA) newswire, to a user generated
noisy text such as Arabic dialect forums or sms. Translating Arabic dialects is a challenging
task due to the scarcity of training data and the lack of common orthography causing a larger
vocabulary size and higher ambiguity. Due to the scarcity of the ARZ training data, MSA re-
sources are being utilized for the project. In such a scenario, an important research question
arises on how to use the MSA data in the most beneficial way to translate the given dialect.

The training data for the BOLT Phase 2 program is summarized in Table 1. The table
includes information about domain, dialect and size (automatic classification results are dis-
cussed in Section 6.1). Preprocessing includes Arabic tokenization and segmentation based on

5http://www.nist.gov/itl/iad/mig/upload/BOLT_phase2_MT_evalplan_v8.pdf
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(Lee et al., 2003). English preprocessing includes lowercasing and punctuation tokenization.

The Forums data was collected from Egyptian webforums, therefore it is written mainly in
the ARZ dialect. Broadcast data was collected and transcribed manually from various Arabic
TV sources. In the broadcast domain speakers usually use MSA but sometimes also switch
(for a short phrase) to dialectal speech. The newswire data is mostly written in MSA. We tune
and test the SMT systems using 3 sets: DEV12 is extracted from LDC2012E30-BOLT Phase
1 DevTest Source and Translation V4, and has 1 reference, P1R6 from LDC2012E124-BOLT
Phase 1 Translation Training Data R6 (1 reference), and DEV10-wb from LDC2010E30 GALE
Phase 5 DevTest NW & WB Translations V3.0 (4 references). Note that the sets include two
parts, a tune part which is used mainly for PRO tuning and a held-out development part which
is used for testing and will be displayed in the results. Most of the BOLT training data is
available through the linguistic data consortium (LDC) and is regularly part of the NIST open
MT evaluation 6. For language model training purposes, we use an additional 8 billion words
(4B words from the LDC gigaword corpus and 4B words collected from web resources).

5.2 Translation system

We use an in-house implementation of a chart-based decoder (Zhao and Al-Onaizan, 2008).
The decoder utilizes phrase, hierarchical, and tree-to-string rules to perform derivations. For
the tree-to-string grammar, the source side of the parallel training data is parsed and word-
alignment is performed. Tree-to-string rules together with their probabilities are then automati-
cally learned from the data (Liu et al., 2006). Reordering patterns can be learned from linguistic
labels assigned to chunks by combining parsing and alignment information. For Example, the
rule [X,VP][X,VB][X,NP] → [X,NP][X,VB] rewrites a VP with two constituents VB and NP
into an NP VB order in the target. The tree-to-string grammar bounds the search space to the
available reordering patterns. However, if the correct word order cannot be generated by the
tree-to-string grammar, the system resorts to hierarchical or phrase based rules to extend the
coverage.

The hypothesis score is defined by the standard log-linear model combination, which in-
cludes in this case count-based features for phrase, glue, hierarchical and tree-to-string rules.
Additional standard models such as length penalty and lexical smoothing are also incorporated
into the decoder. All MT experiments are optimized with PRO to minimize the combined error
measure of BLEU (Papineni et al., 2002) and TER (Snover et al., 2006), (TER-BLEU)/2.

6 Classification Results

In this section, we present classification accuracies as well as classification results on the
SMT training data. We train a dialect classifier as suggested in Section 3. The clas-
sifier performance is presented in Table 2. The table includes two sets of experiments,
a 10-fold cross validation using the MSA-ARZ portion of the Arabic Online Commen-
tary (AOC) data, and the performance on DEV12 (tune part in Table 1) when training
the classifier on the whole AOC data. The performance is measured in terms of accu-
racy (fraction of sentences correctly tagged) and dialect precision and recall, e.g., for ARZ:

6For a list of the NIST MT12 corpora, see http://www.nist.gov/itl/iad/mig/upload/OpenMT12_
LDCAgreement.pdf
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ARZ MSA
Set Acc P R F P R F
cross-validation 89.1 91.1 85.7 88.3 87.5 92.2 89.8
DEV12 87.8 92.8 83.0 87.6 83.4 93.0 88.0

Table 2: Arabic dialect classification results: predicting MSA vs. ARZ. Accuracy (Acc), preci-
sion (P), recall (R) and F-measure (F) are given in percentages [%].

precision = # ARZ correctly tagged
# ARZ tagged , recall = # ARZ correctly tagged

# ARZ reference

The classifier achieves high precision results on the ARZ portion of the sets. This is impor-
tant for the adaptation experiments as we are mostly interested in adapting the systems towards
the ARZ dialect. As most of the training data is MSA, having a correctly classified portion of
ARZ data will help gain more improvements when adapting towards the ARZ domain.

In comparison to state-of-the-art, Elfardy and Diab (2013) report 85.3% accuracy for their
best setup on a similar 10-fold cross-validation experiment. Zaidan and Callison-Burch (2014)
report 87.9% accuracy on a similar setup. Our results show an improvement of 1.2% absolute
over the best reported results on this task.

6.1 Classifier analysis

In this section, we run the classifier over the BOLT data and measure its dialectal degree, and
whether the dialectal degree corresponds to the labeled provenance of the data. Classification
statistics are presented in Table 1, where we report the number and percentage of sentences
classified as ARZ or MSA. The ARZ forum data contains a majority of ARZ sentences, but
quite a few sentences are MSA such as greetings and quotations from Islamic resources (Quran,
Hadith ...). The broadcast conversation data is mainly MSA, but sometimes the speaker switches
to dialectal usage for a short phrase and then switches back to MSA. Lastly, the newswire data
has a vast majority of MSA sentences. We conclude that the data contains a mixture of dialects,
and a more refined splitting using the dialect classification information could help improve
adaptation methods.

Classifications examples from the BOLT data are given in Table 3. In the first document
fragment, the user starts with MSA sentences, then switches to ARZ marked by the ARZ in-
dicator ú



ÎË@ and using the prefix H. before a verb which is not allowed in MSA. The user then

switches back to MSA. The classifier is able to classify these sentences correctly. The second
text fragment shows some sentences from the newswire corpus that are mis-classified. The first
sentence contains the word ø



X which corresponds to the letter ’d’ in the abbreviation ’tdk’.

The word is contained in one of our ARZ dictionaries such that the corresponding binary based
feature fires and triggers a mis-classification. In this context, the word is part of an abbreviation
which is split in the Arabic text. In the other examples, only a few of the binary features fire
and features that correspond to Arabic prefixes tend to support a classification as ARZ.
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Classification result Arabic English

correct

MSA . XðXQË@ð ¨ñ
	

�ñÖÏ @
�

H@Q
�
¯ A

	
K @ i read the topic and the replies .

MSA �
èñÊg

�
èQº

	
¯ ¨ñ

	
�ñÖÏ @ the topic is great !

ARZ Èñ
�
®K
 H. ú



ÎË @ pB@ ©Ó A

	
K @ ð i agree with the brother who said

MSA �
ék. Ag É¿ ú




	
¯ ÑêÓ 	áK
YË@ islam is significant in all

incorrect

ARZ é» ø



X ú



�
G

�
HXA

�
¯ Y

�
¯ ð t d k ... led

ARZ �
éÖ


ßCË@ H. É

�
®

	
JË @ Z @Q�.

	
g ñj

	
JK
 ð transport experts blame

ARZ . ø



È è ÈA
�
¯ AÓ Q»

	
Y

�
K ©J
¢

�
��@ B i ca n’t remember what he told me

Table 3: Automatic classification examples. The classes ARZ and MSA, Arabic source and
English target sentences are given. Dialectal words are in bold.

DEV12 P1R6 DEV10
Tuning set (T-B)/2 (T-B)/2 (T-B)/2
baseline 15.35 15.02 0.73
TUNE.MSA 15.52 15.15 0.73
TUNE.ARZ 15.58 15.05 1.15

Table 4: PRO tuning adaptation: The baseline is tuned using P1R6+DEV10, the TUNE.MSA
and TUNE.ARZ sets are based on the classifier output over the concatenation of all tuning sets.

7 Translation Results

The baseline SMT system used in this work is based upon a tree-to-string decoder as described
in Section 5.2. To create the rule tables, we use the concatenation of three word alignments,
namely, HMM, IBM model 4 and maximum entropy aligner to maximize performance (Tu
et al., 2012). The PRO tuning is done using the concatenation (P1R6+DEV10-wb).tune, as it
performed best among all possible combinations.

Next, we experiment with the various adaptation methods suggested in Section 4. We
focus on the comparison between using splits based on the meta-information and splits based
on the automatic classifier output (Table 1).

7.1 SMT tuning

Tuning an SMT system using a domain-specific tuning set can adapt the scaling factors towards
the target domain. For example, a bigger word-penalty scaling factor will encourage shorter
sentences. Using meta-information based tuning sets, we found that the best combination is to
use P1R6+DEV10-wb for tuning. To experiment with tuning sets based on dialect classifica-
tion, we concatenate all tuning sets into TUNE=DEV12+P1R6+DEV10-wb. We then split the
concatenated tuning set into an ARZ and an MSA part based on the classifier output and denote
these splits TUNE.ARZ and TUNE.MSA respectively.

A comparison between the baseline system and the tuning using the classifier-based splits
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Tune set Forum Broadcast Newswire Other All

Meta-info. P1R6+DEV10 0.23 0.26 0.34 0.06 0.12
DEV12+P1R6 0.40 0.15 0.05 0.03 0.37

Classifier TUNE.ARZ 0.62 0.11 0.03 0.06 0.17
TUNE.MSA 0.09 0.23 0.19 0.03 0.46

Table 5: Optimal mixture weights for different tuning sets. The tuning sets are constructed
using meta-information or the classifier output.

over the dev sets is given in Table 4. From the results, we note that tuning towards MSA does
not hurt the results on DEV10-wb-dev, with a slight degradation on the ARZ dev sets. Tuning
towards ARZ degrades the results on the ARZ dev sets and a bigger degradation is observed
on the DEV10 set. Examining the scaling factors for the ARZ tuning set, almost no change is
observed (in comparison to the baseline). We hypothesize that without domain-specific models,
tuning towards a target domain is not effective. In the following experiments, we introduce
more adaptation into the system and re-apply the PRO adaptation.

7.2 Mixture tuning

In this section, we experiment with optimizing the linear mixture weights towards a specific
dialect as presented in Section 4.2. The optimization is done using phrase perplexity as the
objective function. As components for the mixture, we use the meta-information split from
Table 1. As tuning sets, we evaluate the performance of the meta-information based sets versus
using the classifier. Note that we do not split the training corpora further according to dialects
here, but concentrate on the tuning of the mixture weights instead.

The resulting optimal weights from the L-BFGS optimization are presented in Table 5.
Note that we use All data (a concatenation of all corpora) as an additional corpus to ensure
optimal translation results. The first block of weights is based on meta-information tuning
sets. We experiment with the baseline SMT system tuning set as-well-as a supposedly ARZ
tuning set (DEV12+P1R6). P1R6+DEV10-wb contains mostly MSA sentences, therefore the
Newswire corpus is assigned the highest weight. When using the DEV12+P1R6 tuning set, the
weight shifts to the Forums and All data, as they are the corpora most similar to the tuning set.

For the classifier split tuning sets, when tuning on TUNE.ARZ, weight is shifted to the Fo-
rums based model. Tuning on the MSA part TUNE.MSA, the weight shifts back to Broadcast,
Newswire and All data, which contain a majority of MSA sentences. To summarize, we note
that mixture tuning is producing expected results, and using the classifier splits assigns higher
weights to the corresponding dialect. Therefore, the classifier based mixture tuning is more
reliable and generates better contrast between the corpora. Next, we use the weights based on
the classifier splits to create interpolated rule tables and build SMT systems using those tables.

The SMT results of different mixture modeling experiments are summarized in Table 6.
Performing linear interpolation of the rule tables using uniform weights (linear.uniform) al-
ready achieves gains over the baseline. Note that PRO retuning using the baseline tuning set
(P1R6+DEV10) is performed, unless stated otherwise. Linear interpolation with weights op-
timized on the MSA set (the weights associated with TUNE.MSA in Table 5), linear.MSA,
achieves further gains on the MSA DEV10-wb-dev set, with a loss on the ARZ sets as expected.
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DEV12 P1R6 DEV10
System (T-B)/2 (T-B)/2 (T-B)/2
baseline 15.35 15.02 0.73
linear.uniform 15.17 14.89 0.59
linear.MSA 15.36 15.05 0.33
+pro.MSA 15.35 15.31 0.13

linear.ARZ 15.04 14.60 1.14
+pro.ARZ 15.22 14.67 1.41

system selection 15.22 14.67 0.15

Table 6: Mixture tuning adaptation: linear interpolation using uniform weights (linear.uniform),
ARZ and MSA optimized weights are compared. +pro.Dialect indicates PRO tuning adaptation.

Performing PRO tuning using TUNE.MSA over the linear.MSA system achieves further gains
on the MSA set. The total gain over the baseline is -0.6% (T-B)/2 for DEV10-wb-dev. The
resulting system is adapted for MSA sentences and performs well under this condition.

To build a system targeting the ARZ dialect, we repeat the same procedure as for MSA.
We start with linear interpolation using ARZ optimized mixture weights (linear.ARZ), which
achieves -0.3% and -0.4% improvements over DEV12-dev and P1R6-dev correspondingly. Loss
is observed on the MSA set as expected. Adding the PRO tuning using the ARZ classified
sentences hurts the results in this case, with a 0.2% degradation on DEV12-dev.

Finally we experiment with selecting hypotheses from the output of the MSA optimized
system (linear.MSA+pro.MSA) and the ARZ optimized one (linear.ARZ+pro.ARZ). The idea is
to use the MSA optimized system for MSA classified sentences and the ARZ optimized system
for ARZ sentences. Using this selection, we might see improvements on the whole dev sets, as
it might be the case that the ARZ system improved on the ARZ sentences and got much worse
on the MSA sentences, masking the gains on the whole dev set. The system selection retains
the gains on the MSA data, but not on the ARZ sets. We conclude that the ARZ system in this
case did not improve on the ARZ part of the data. Next, we add domain specific models to the
SMT system, giving more flexibility for PRO to overweight dialect specific features and target
the ARZ dialect.

7.3 Provenance features

To compare meta-information based and classifier based corpora splits for provenance features,
we devise two provenance setups: 1) m1Manual, manual splitting with 4 corpora, Forums,
Broadcast, Newswire and Other to train Model 1 models in standard and inverse directions (8
additional features in the decoder), 2) m1Class, classifier based splitting, Forums, Broadcast
and Other corpora are split into MSA and ARZ parts using the classification, the Newswire
corpus is kept intact as it is mostly MSA (14 additional features in the decoder).

The results using the provenance features on top of the dialectal optimized systems are
given in Table 7. From the results, we note that adding provenance features achieves further
improvements, and using m1Class has a slight edge over the m1Manual provenance features.
In this case, the system selection (from (lin+pro).MSA+m1Class and (lin+pro).ARZ+m1Class)
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DEV12 P1R6 DEV10
System (T-B)/2 (T-B)/2 (T-B)/2
baseline 15.35 15.02 0.73
(lin+pro).MSA 15.35 15.31 0.13

+m1Manual 15.39 15.10 0.21
+m1Class 15.35 15.05 0.19

(lin+pro).ARZ 15.22 14.67 1.41
+m1Manual 15.46 14.78 1.94
+m1Class 15.41 14.61 1.98

System selection
m1Class 15.07 14.52 0.31

Table 7: Adaptation based on provenance
features: systems with provenance features
derived from manual splits (m1Manual)
and classifier-based splits (m1Class) are
compared.

DEV12 P1R6
System (T-B)/2 (T-B)/2

MSA subset
(lin+pro).MSA 14.33 12.03

+m1Manual 14.41 11.65
+m1Class 14.39 11.59

(lin+pro).ARZ 14.32 12.21
ARZ subset

(lin+pro).ARZ 16.79 15.84
+m1Manual 16.60 15.98
+m1Class 16.29 15.82

(lin+pro).MSA 17.16 16.77

Table 8: Provenance adaptation for the
MSA and ARZ subsets of the dev sets. The
dev sets are split using the automatic clas-
sification.

is performing well, combining the best of both systems. Comparing the baseline to the system
selection, we achieve 0.3% improvement over DEV12, 0.5% over P1R6 and 0.4% over DEV10.

To analyze the results further, we split the DEV12 and P1R6 dev sets into the correspond-
ing dialectal parts, and measure the effect of adding provenance features over these parts. In
such a case, we expect that ARZ optimized systems will improve over the ARZ part, while
MSA optimized systems will improve over the MSA part. The results are summarized in Ta-
ble 8. Note that in this table we are using subsets of the dev sets. Concentrating on the MSA part
of the dev sets, we note that adding the provenance features is improving mainly on P1R6, with a
slight gain for classifier based provenance (m1Class) over meta-information based (m1Manual).
As a contrast, the ARZ optimized system is performing poorly on the MSA parts of the dev sets.
The picture is similar for the ARZ part of the dev sets, this time the main improvement is on the
DEV12 set, with a bigger gain for m1Class over m1Manual, 0.3% (T-B)/2.

7.4 Translation examples

In this section, we perform manual translation error analysis. Translation examples are given
in Table 9. The examples show that the system selection of dialectal optimized systems (sel.)
improves over the baseline (base). The first two examples are ARZ sentences while the last is
an MSA one. These examples were selected to demonstrate the difficulty of dialectal language
translation and to show how a dialect classifier can remedy the problems encountered.

In the first sentence, the word �
éJ
K. QªË@ means ‘Arab’ but only in ARZ it could also mean

‘car’. The sentence is classified correctly, and the ARZ optimized system is able to generate
the correct lexical meaning of the word. Similarly, in the second example, the word ù

�
®K. means

‘has become’ in MSA and ‘is’ in ARZ. The ARZ system generates a better translation. The
third sentence is an MSA sentence, where the baseline has a reordering error of ‘controls’
being generated before ‘professional’, and the word ú



«@Q

�
K (consider) is dropped. The MSA

optimized system generates a better reordering as-well-as a better lexical choice. We conclude
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src �
éJ
K. QªË@

�
èQ�
� ú




�
æJ.k.

�
èY»

ref you mentioned the car
base this way you brought the biography of the arab
sel. why did you bring the biography of the car
src øñ

�
¯@ ð Y

�
�@ H. A

�
®« ù

�
®K. èX

ref that punishment is harder and tougher
base this has become stronger and stronger punishment
sel. this punishment is harder and stronger
src �

éJ

	
JêÖÏ @ ¡�. @ñ

	
�Ë@ ú



«@Q

�
K

	
à@

	
àðX

ref without taking into account professional standards
base without that controls that professional
sel. without that they consider professional rules

Table 9: Sample sentences. The source, reference, baseline hypothesis and system selection
(sel.) hypothesis are given.

that ignoring the effects of dialectal data in MT makes the task even more ambiguous, and
dialectal identification is crucial to lessen the ambiguity and improve the lexical choice.

8 Conclusions and Future Work

In this work, we implement and successfully apply an automatic dialect classifier for SMT.
The classifier is applied on the BOLT task, where we compare meta-information based data
splits versus using the classifier output. The various splits are utilized for three adaptation
methods: PRO tuning adaptation, mixture adaptation and provenance features. For mixture
adaptation, our results show that the classifier based splits generate better contrast between the
different training corpora weights, where more emphasis is placed on the ARZ forums data
when using the ARZ tuning set based on the classifier output compared to the ARZ tuning set
based on meta-information. For PRO tuning adaptation, we conclude that using the classifier
splits without additional dialect specific models is not helpful and can degrade the performance.
When adding the provenance features, a system selection of ARZ and MSA optimized systems
improves over the baseline by 0.5% on the ARZ dev set.

In future work, it would be interesting to measure the effect of the classifier quality for
the adapted SMT systems. For mixture modeling, we started experimenting with training data
splitting by the classifier to create dialect specific rule tables and perform rule table interpola-
tion. A problem occurs when optimizing the mixture weights, where some of the ARZ splits
were assigned lower weights than the MSA counterparts when optimizing towards ARZ. We
hypothesize that this result is obtained due to many unknown phrase pairs in the ARZ tables
which are rather small in size. Smoothing for unknown phrase pairs should be applied when
more splits are used and sparseness becomes a problem. Many other techniques for adaptation
using dialect classification could be experimented with in future work. For example, phrase
level classification, or using the classifier scores as a feature in the SMT decoder.
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