
A Probabilistic Feature-Based Fill-up for SMT

Jian Zhang zhangj@computing.dcu.ie
Liangyou Li liangyouli@computing.dcu.ie
Andy Way away@computing.dcu.ie
Qun Liu qliu@computing.dcu.ie

The CNGL Centre for Global Intelligent Content,School of Computing,Dublin City University,
Ireland

Abstract

In this paper, we describe an effective translation model combination approach based on the
estimation of a probabilistic Support Vector Machine (SVM). We collect domain knowledge
from both in-domain and general-domain corpora inspired bya commonly used data selection
algorithm, which we then use as features for the SVM training. Drawing on previous work
on binary-featured phrase table fill-up (Nakov, 2008; Bisazza et al., 2011), we substitute the
binary feature in the original work with our probabilistic domain-likeness feature. Later, we
design two experiments to evaluate the proposed probabilistic feature-based approach on the
French-to-English language pair using data provided at WMT07, WMT13 and IWLST11 trans-
lation tasks. Our experiments demonstrate that translation performance can gain significant
improvements of up to +0.36 and +0.82 BLEU scores by using ourprobabilistic feature-based
translation model fill-up approach compared with the binaryfeatured fill-up approach in both
experiments.

1 Introduction

Like many machine-learning problems, Statistical MachineTranslation (SMT) is a data-
dependent learning approach. The prerequisite is large amounts of training data in order to
generate statistical models. In general, the training datahas to be sentence-aligned and bilin-
gual. Some heuristic approaches are often used when deconstructing the training data into
phrase-level representations, and the statistical modelsare computed based on the phrase prob-
ability distributions. The generated models are then combined in a log-linear model (Och and
Ney, 2002). A basic SMT system may consist of a translation model and a language model,
where the translation model provides a target-language translatione for a source-language sen-
tencef, and the language model ensures the fluency of the target-language translatione.

One challenge which rises above others in SMT is that the translation performance de-
creases when there are dissimilarities between the training and the testing environments. This
type of challenge is often defined as “domain adaptation” in previous work. The underlying
reasons that caused domain adaptation challenge are many, but the obvious one is that SMT
system training is a complicated data-dependent processing pipeline. It often involves many
efforts from various steps, for example, the phrase pair extraction step needs to be consistent
with the preceding word alignment step, with one assumptionmade being that the context of the
extracted phrases is irrelevant. In addition, the trainingsentences are only implicitly visible and
become unnecessary once the phrase table is built. In this paper, we try to address the problem

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1:  MT Researchers      Vancouver, BC       © The Authors 96



of phrase-table extraction in a phrase-based SMT training environment, and propose a proba-
bilistic feature-based translation model fill-up approachby creating an inheritance relationship
between the extracted phrase pairs and the corresponding bilingual sentence pairs.

Domain adaptation for SMT is a well studied research field. Recently, many new ideas
have been introduced, mainly regarding the data adaptationand model adaptation. Most work
on data adaptation for SMT focuses on making efficient use of the training data. Lü et al. (2007)
use information-retrieval techniques on a transductive-learning framework to increase the count
of important in-domain training instances, which results in phrase-pair weights being favourable
to the development set. Biçici and Yuret (2011) employ a feature decay algorithm which can be
used in both active learning and transductive learning settings. The decay algorithm is used to
increase the variety of the training set by devaluing features that have already been seen from
a training set. In recent studies, a cross-entropy difference method has seen increasing interest
for the problem of SMT data selection (Moore and Lewis, 2010;Axelrod et al., 2011). The
training dataset is ranked using cross-entropy differencefrom some language models trained
on in-domain or general-domain sentences. Then a thresholdis set to select thepseudoin-
domain sentences. The intuition is to find sentences as closeto the target domain and as far
from the average of the general-domain as possible. Later, Mansour et al. (2011) argue that
“An LM does not capture the connections between the source and target words, and scores the
sentences independently”, and linearly interpolate IBM model 1 (Brown et al., 1993) into the
cross-entropy difference framework. The translation performance is improved on both Arabic-
to-English and English-to-French translation tasks compared with the standalone cross-entropy
difference approach.

Applying adaptation techniques to the statistical models,especially to the translation
model, is another popular approach used in domain adaptation for SMT. Some research fol-
lows the path of adding in new features into the phrase table.Chen et al. (2013) add vector
similarity into the phrase table and use it as a tuning- and decoding-time feature. The similar-
ity is computed by comparing the vectorized representationof phrase pairs extracted from the
development set and the training set. Eidelman et al. (2012)achieve translation performance
improvement by including a lexical weight topic feature into the translation model. The topic
model used in their work is built based on the source side of the training sentences. There is
also work which focuses on translation model combination. Foster and Kuhn (2007) and Koehn
and Schroeder (2007) combine the translation models in a log-linear model at tuning and decod-
ing time. Sennrich (2012) proposes an approach to interpolate the translation models based on
perplexity minimization. Haddow and Koehn (2012) focus on the extracting and scoring steps
when building a phrase table for SMT. One of the conclusions is that while out-of-domain data
can improve the translation coverage for rare words, it may be harmful for common in-domain
words. This suggests that the translations which contain a lot of in-domain evidence should be
kept.

2 Related Work

The translation model fill-up approach was introduced into SMT by Nakov (2008). In his work,
the phrase tables are merged by keeping all the phrase pairs unchanged from the in-domain
phrase table, and only adding in the phrase pairs from the general-domain phrase tables that are
not contained at the in-domain phrase table, as in (1):

Fill− up{PT } = {PT in} ∪ {PT out − PT in} (1)

wherePT in andPT out are the in-domain and general-domain phrase table, respectively, and
{PT out − PT in} is therelative complementof PT out in PT in, with the original SMT trans-
lation model features from each merging phrase tables preserved. Furthermore, a new feature
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value (1 or 0.5) is allocated to each phrase pair in the mergedphrase table to indicate its prove-
nance.

Bisazza et al. (2011) modify the feature value of Nakov (2008) by interpreting it differently.
A scaling factor, such as 1(= exp(0)) and 2.718(= exp(1)), is used to define the provenance
of each phrase pair in the phrase table. The fill-up model (Bisazza et al., 2011)TF is defined as
in (2):

∀(f̃ , ẽ) ∈ T1 ∪ T2 :

φ(f̃ , ẽ) =

{

(φ1(f̃ , ẽ), exp(0)) if(f̃ , ẽ) ∈ T1

(φ2(f̃ , ẽ), exp(1)) otherwise

(2)

Bisazza et al. (2011) also extend the fill-up approach into the SMT reordering model and
provide a study of pruning options. The experiments show that the fill-up approach is not only
able to produce comparable translation performance with log-linear combinations of translation
models, but is also an approach which increases the efficiency of minimum error rate training.

3 Probabilistic Feature-based Fill-up

In this paper, we follow the previous studies (Nakov, 2008; Bisazza et al., 2011), and propose
a probabilistic feature-based translation model fill-up approach for SMT. The assumption we
make for our approach is that the domain information of a training sentence pair is inheritable
by the extracted phrase pairs, and such an assumption is often valid in the traditional data
selection research for SMT training. Data selection is often applied when in-domain training
data is small and expensive to collect, but where a large amount of general-domain training
data is nonetheless available. However, Haddow and Koehn (2012) point out that it might be
heavy-handed if a 1-0 cutoff is used for SMT data selection, as the general-domain data can
still have a contribution to the translation system. We believe that a probabilistic feature-based
fill-up approach can be factored in as a soft-handed data-selection approach. Like Bisazza et al.
(2011), we extend the original fill-up algorithm (Nakov, 2008), but instead of assigning firmness
provenance feature values to the phrase table, we train a machine-learning algorithm to give
a probability measurement with respect to the domain information to each training sentence
pair. Then we use the assumption that the domain informationof a training sentence pair is
inheritable by the extracted phrase pairs to make such a domain-likeness feature applicable to
the phrase table. The probability scale ensures the domain-likeness feature is elastic, but also
under control at tuning and decoding time.

One concern is that a phrase pair in a translation table can beextracted from a number of
different training sentence pairs depending on the alignment applied and the extraction heuristic
used. Accordingly, those training sentence pairs will be estimated to different domain-likeness
feature values by the machine-learning algorithm used. We define the following three simple
heuristics to address this issue:

• Min: the feature value uses the minimum domain-likeness estimations from the extracted
sentence pairs. The motivation for this is if a phrase pair isextracted from a sentence pair
which has a lot of evidence to be excluded from the target domain, such a phrase pair
should not be classified as in-domain even if other strong in-domain indicators are present.

• Arithmetic Mean: use the arithmetic mean of all the domain-likeness estimations.
There is no bias to any sentence pair since each will still be able to contribute the final
feature value.

• Geometric Mean: use the geometric mean value to describe the central tendency of all
domain-likeness estimations.
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In the rest of this paper, we describe the machine-learning algorithm used to assign the
domain-likeness value in the merged phrase table, and then we introduce the feature set used
to train the said learning algorithm in Section 4. Then we describe our experiments to evaluate
our probabilistic feature-based translation model fill-upapproach and make comparisons with
the previous fill-up studies using the basic settings1 in Section 5. Later in the paper, we make
comparisons between the proposed approach with previous work on data selection (Axelrod
et al., 2011) in Section 6, and provide our observations regarding the probabilistic domain-
likeness feature distribution on the merged phrase table inSection 7. Finally, we give our
conclusion together with avenue for future work in Section 8.

4 Support Vector Machines

4.1 SVM Algorithm

SVM is a well-known machine-learning algorithm often applied to classification or regression
tasks. In classification, SVM maps a testing instance into a hyperplane which optimally sepa-
rates the training data, and then outputs the predicted class label of the testing instance belongs
to, the(soft margin)objective function is defined as (Cortes and Vapnik, 1995; Chang and Lin,
2011) in (3):

min
w,b,ξ

1
2w

Tw + C
l
∑

i=1

ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, y ∈ {1,−1}

(3)

wherew is the weight vector,C is a tunable trade-off parameter indicating a punishment for
misclassified decisions,l is the number of training instances,ξi is known as the slack variable,
andφ is the kernel function mapping training instances into a high-dimensional space.

The underlying reason for using a kernel function in SVM is that the training instances in
some situations are linearly non-separable and we need to improve the separability by projecting
them into a high-dimensional space. In our experiments we use the Radial Basis Function (RBF)
kernel for SVM training and predicting, defined as in (4):

exp{−γ|u− v|2} (4)

The gamma parameterγ is a tunable variable which adjusts the width of RBF.
As SVM predicts class labels only, Chang and Lin (2011) extend the approach proposed

by Wu et al. (2004) to give a probability estimation for everyprediction. In our work, we use
the predicted probability to indicate the domain-likenessestimation.

4.2 SVM Feature Set

It is worth recalling that our probabilistic feature-basedfill-up approach is based on the assump-
tion that the domain information of a training sentence paircan be inherited by the extracted
phrase pairs, and such an assumption is often applied in SMT data selection algorithms for do-
main adaptation. In our case, if we are able to assign a probabilistic domain-likeness value to
each training sentence, then to include them as a new decoding feature into the fill-up phrase
table is effortless. Thus, we can transfer our objective into assigning the domain-likeness esti-
mation to the SMT training sentences.

The cross-entropy, which is defined as in (5):

H(pLM ) = −
1

n

n
∑

i=1

logpLM(wi|w1, ..., wi−1) (5)

1The fill-up (Bisazza et al., 2011) provides several pruning options. There is also a cascaded fill-up method appli-
cable for more than one general-domain phrase model. We do not make comparisons for these cases.
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has been used as a strong domain indicator in much adaptationresearch (Klakow, 2000; Gao
et al., 2002; Moore and Lewis, 2010; Axelrod et al., 2011). Inequation (3),n is the number
of wordsw in a sentence. However, in our work, we use the transformation of cross-entropy,
known as perplexity, which is defined as in (6),

Perplexity = 2H(pLM ) (6)

We take inspiration from the previous works in Axelrod et al.(2011), and design three sets
of SVM training features for each SMT training sentence pair

• Source Domain Features: the domain evidence shown from the source side of the training
data. We use the perplexity value computed from the in- and general-domain language
models in this feature set.

• Target Domain Features: the domain evidence shown from the target side of the training
data. We use the perplexity value computed from the in- and general-domain language
models in this feature set.

• Domain Distance Features: a feature set similar to the language model data-selection
approach in Axelrod et al. (2011). We use both the source-side perplexity difference and
the target-side perplexity difference in this feature set.

5 Experiment

5.1 Corpora

The experiments in this paper use data from WMT07, WMT13 and IWLST11 translation tasks.
We choose our experiments on the French-to-English language pair. We first perform some
standard data cleaning steps, including tokenization, punctuation normalization, replacement
of special characters, lower casing and long sentence removal ( <0 or>80 ), resulting in the
preprocessed data summarized in Table 1. We use scripts provided within Moses 1.0 translation
system framework (Koehn et al., 2007)2 for all cleaning steps.

Corpus Train Tune Test
News Commentary (nc 2007) 42,884 1,064 (nc-devtest200) 2,007 (news-test2007)

Europarl (ep 2007) 1,257,436 n/a n/a

TED (ted 11) 106,642 934 (dev2010) 1,664 (tst2010)

news-commentary-v9 (nc v9) 181,274 n/a n/a

Table 1: SMT training corpus statistics

There are two fill-up experiments designed to evaluate our approach, defined asprob-fill-
up heuristic(in-domain,general-domain), such asprob-fill-up heuristic(nc2007,ep2007)and
prob-fill-up heuristic(ted11,ncv9), whereheuristic refers to the heuristics stated in Section
3 of this paper. The experimental design is to assess our approach in both of the following
situations: (i) general-domain dataset being significant larger than the in-domain data, and (ii)
the two datasets being similar in size, as seen in Table 1.

2http://www.statmt.org/moses/
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5.2 SVM training

We uses the R language packagee1071(Dimitriadou et al., 2009)3 to train the SVM algorithm,
where thee1071in R language is an interface to the libsvm (version 2.6) (Chang and Lin, 2011)
implementation. SVM training is a supervised learning process so having labeled training data
available is essential. The label is either in-domain or general-domain for the SVM training
instance in our case.

A set of high-quality training data for tasks like classification is a luxury in machine-
learning, and such datasets often cannot be obtained automatically. The in-domain labeled
SVM training data can be obtained directly from the SMT training set, but the general-domain
data is mixed with in- and out-of-domain instances. One solution is to rank the general-domain
instances with respect to the known in-domain information,and then mark the most distant
partition instances as the opposite of the in-domain class for SVM training. Such a solution
can create a clear boundary in the SMT training set, but thereis a danger of causing the SVM
training data to be of low variance and high bias. The reason for this is that a similar amount of
SVM training instances from both labeled classes are suggested to be used in order to set up a
fair training condition. However, in the domain-adaptation context, where only a small amount
of in-domain instances and a large amount of general-domaininstances are available, we are
restricted to selecting only a limited number of SVM training instances. The size limitation and
the ranking selection used may lead the SVM training instances to be of low variance and high
bias. In addition, we also have the prior knowledge of the predicting instances available before
the SVM is trained, but it is unfortunate that such knowledgeis ignored. In fact, the SVM in
our case prefers to be trained on the two classes of instancesthat represents the average of the
general-domain dataset and the in-domain dataset. Then theprobability prediction produced by
such an SVM can indicate the distance of a predicting instance from those two classes. Thus, we
simply randomly selectM number of general-domain and in-domain sentences as SVM training
instances in our experiments.

To extract features for the selected SVM training data, we randomly select an equal number
(sizeN) of sentences from the in- and the general-domain dataset and train ann-gram language
model, wheren = {2. . . 5}, then extract the perplexity features for eachn setting. The language
model training at this step uses the same restrictions as in Moore and Lewis (2010), where a to-
ken is treated as an instance of<UNK> unless it appears at least twice at the in-domain training
dataset. We keepT number of SVM training sentences to tune the parameters in equations (3)
and (4). We test the accuracy of the trained SVM using the corresponding SMT development
data. The data used for SVM training, language model training and SVM tuning are summa-
rized in Table 2. The SVM-tuned parameters are presented in Table 3. We use the open source
IRSTLM toolkit (Federico et al., 2008) for language model training and KenLM (Heafield,
2011) to compute the sentence perplexity.

Experiment M N T
prob-fill-up(nc 2007,ep2007) 42,884 40,000 2,884

prob-fill-up(ted11,ncv9) 50,000 45,000 5,000

Table 2: SVM data statistics, whereM,N andT are the data sizes (in sentences) used for training,
tuning and testing, respectively.

3http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm
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Experiment C γ Accuracy
prob-fill-up(nc 2007,ep2007) 16 0.125 0.8139

prob-fill-up(ted11,ncv9) 2 0.03125 0.8565

Table 3: SVM-tuned parameters valuesC andγ, whereC is the trade-off parameter in equation
(3), andγ adjusts the width of RBF in equation (4).

5.3 Translation System Training

All SMT systems in our experiments are trained using the phrase-based SMT with Moses 1.0
framework. The reordering model is not included in our translation system since we are inter-
ested only in measuring the system effects coming from translation models. We use the word
aligner MGIZA++ (Gao and Vogel, 2008) for word alignment in both translation directions, and
then symmetrize the word alignment models using the heuristic of grow-diag-final-and. We use
all five default Moses 1.0 translation model features. The translation systems are tuned with
minimum error rate training (Och, 2003) using case-insensitive BLEU (Papineni et al., 2002) as
the optimization measure. A 5-gram language model is trained with the open source IRSTLM
toolkit using all the available target sentences in each of the fill-up experiment scenarios. We
use the Moses default language model toolkit KenLM at the tuning and decoding time.

5.4 Results

We set our baseline systems to be the fill-up system of Bisazzaet al. (2011) (fill-up(experiment)),
which has been integrated within the Moses 1.0 framework. Tables 4 and 5 report our results us-
ing case-insensitive BLEU on the corresponding test sets. We use† to indicate where the prob-
abilistic feature-based fill-up approach systems (prob-fill-up heuristic(experiment)) achieve sig-
nificant improvement (Koehn, 2004) compared with the baseline systems at the levelp = 0.01
level with 1000 iterations.

System Test (news-test2007)

fill-up(nc 2007,ep2007) 28.01

prob-fill-up Min(nc 2007,ep2007) 28.03

prob-fill-up-ArithmeticMean(nc2007,ep2007) 28.21

prob-fill-up-GeometricMean(nc2007,ep2007) 28.37†

Table 4:prob-fill-up heuristic(nc2007,ep2007)experiment BLEU scores on testing data, the
significance testing at the levelp = 0.01 level with 1000 iterations.

The result of theprob-fill-up heuristic(nc2007,ep2007)experiment in Table 4 shows that
the probabilistic feature-based fill-up systems using three heuristics for domain-likeness cal-
culation can improve the translation performance over the baseline system. The system using
the central tendency heuristic for the domain-likeness estimation outperforms the other, obtain-
ing 0.36 absolute BLEU score and 1.3% relative improvement over the baseline system, and
p = 0.01 significant improvement.

In our second experiment as seen in Table 5, the geometric mean calculation produces a
strong BLEU score, +0.39 (1.3% relative) higher in contrastwith the baseline system. However,
the arithmetic mean calculation achieves the best result inthis experiment with a 31.64 BLEU
score (2.66% relative) on the test set. Both of the above two systems in our last experiment
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System Test (tst2011)

fill-up(ted 11,ncv9) 30.82

prob-fill-up Min(ted 11,ncv9) 30.73

prob-fill-up ArithmeticMean(ted11,ncv9) 31.64†

prob-fill-up GeometricMean(ted11,ncv9) 31.21†

Table 5:prob-fill-up heuristic(ted11,ncv9) experiment BLEU scores on testing data, the sig-
nificance testing at the levelp = 0.01 level with 1000 iterations.

qualify as statistically significant improvements over thebaseline system atp = 0.01 level. The
prob-fill-up Min(ted 11,ncv9)system underperforms the baseline system by about 0.1 absolute
BLEU score difference.

Overall, our approach is able to significantly improve upon the baseline translation perfor-
mance in both of the designed testing scenarios.

6 Data selection

In this section, we compare our probabilistic feature-based fill-up approach with the data selec-
tion approach proposed in Axelrod et al. (2011). In general,data selection is one of the standard
approaches used in SMT training when out-of-domain or general-domain data is available. It is
often required to train many SMT systems in order to find the most appropriate proportion of
general-domain data to include and obtain the best performance from it. In this experiment, we
first rank the general-domain corpus according to the sum of in- and out-of-domain perplexity
difference normalized by the corresponding sentence length, defined as in (7), with the ranking
in reverse order:

PPL−DIFF =
[PPLI src(S) − PPLO src(S)]

length(S)
+

[PPLI tgt(T ) − PPLO tgt(T )]

length(T )
(7)

whereSandT are the source and target sentences, respectively. The language models described
in Section 5.2 are used to compute perplexities. The topp proportion of the ranked general-
domain corpus is selected, and concatenated with the in-domain corpus. The concatenation
is then used to train the data selection systems. We employ the same experimental settings
described in Section 5.3 for this experiment, with the word alignments computed in advance
using the combination of all in- and general-domain data. The tuning and test datasets described
in Table 1 are also taken in order to compare with the experiment results described in Section
5.4.

Figures 1 and 2 illustrate the effects of the selection proportion on the BLEU score of
SMT systems. As we might expect, additional general-domaintraining instances can benefit
SMT performance, with 20% ofep 2007 and 65% ofnc v9 selection, obtaining 27.28 and
31.73 BLEU scores, respectively. In addition, it is harmfulto include a large proportion of
general-domain data, which can overtake the in-domain dataand cause target-domain bias. In
contrast, the proposed probabilistic feature-based fill-up approach is able to efficiently use all
of the general-domain data, achieving significantly bettertranslation results (Table 4) on the
(nc 2007,ep2007)dataset and comparable translation results (Table 5) on the(ted 11,ncv9)
dataset.
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Figure 1: BLEU scores with differentp proportion of data selection on(nc 2007,ep2007)
dataset.
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Figure 2: BLEU scores with differentp proportion of data selection on(ted 11,ncv9)dataset.
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7 Domain-likeness Distribution

In this section, we study the distribution of the domain-likeness feature added into the final
merged phrase table. The main difference between our approach with the previous fill-up meth-
ods is the interpretation of the additional features employed. A learned probabilistic domain-
likeness feature is used by our approach, while a binary provenance indicator is applied in
previous work. It is easy to establish that the in-domain part of the produced phrase tables
is identical in our and previous work, and that the total number of phrase entries is also the
same. Thus, we mainly focus on the general-domain phrase entries in this section. We take the
prob-fill-up heuristic(ted11,ncv9)experiment in the previous section as the case study.

The prob-fill-up heuristic(ted11,ncv9) experiment mergespt(ted11) and pt(nc v9)
phrase tables. 5,790,068 in-domain phrase entries frompt(ted11) are kept, and 12,915,649
general-domain phrase entries frompt(nc v9) are used to fill-up. 236,779 of the phrase entries
from pt(nc v9) conflict with the phrase entries inpt(ted11), and are neglected in the final pro-
duced phrase table. The final merged phrase table contains 18,468,938 phrase entries in the
prob-fill-up heuristic(ted11,ncv9) experiment, where the standalone phrase table using the
concatenated ted11 and ncv9 corpus produces 18,339,548 phrase pairs.

Interval Group # of phrases # of phrases # of phrases
Min Arithmetic Mean Geometric Mean

0.95˜ 1.00 1,301,571 1,301,803 1,301,820
0.90˜ 0.95 29,085 29,197 29,209
0.85˜ 0.90 20,117 20,229 20,254
0.80˜ 0.85 16,272 16,335 16,366
0.75˜ 0.80 15,565 15,625 15,675
0.70˜ 0.75 14,041 14,164 14,352
0.65˜ 0.70 12,816 12,966 13,747
0.60˜ 0.65 12,635 12,889 13,595
0.55˜ 0.60 12,536 12,938 13,759
0.50˜ 0.55 11,562 13,121 21,299
0.45˜ 0.50 14,673 15,930 33,106
0.40˜ 0.45 13,596 15,539 20,530
0.35˜ 0.40 16,060 43,168 22,923
0.30˜ 0.35 17,022 26,438 34,956
0.25˜ 0.30 20,564 29,720 34,802
0.20˜ 0.25 24,397 47,674 43,848
0.15˜ 0.20 31,233 56,000 55,217
0.10˜ 0.15 45,590 81,080 79,150
0.05˜ 0.10 88,412 146,956 140,063
0.00˜ 0.05 5,916,294 5,722,269 5,709,370

Table 6: Filteredprob-fill-up heuristic(ted11,ncv9)phrase table entry counts with intervals of
0.05 according to SVM-assigned domain-likeness feature value.

To demonstrate the distribution of the phrase pairs in the merged phrase table, we first
group the phrase entries in the merged phrase tables (filtered using the corresponding test set)
with intervals of0.05 according to the domain-likeness feature value. We can observe in Table
6 that the SVM predictions fall mostly into the 0.00˜ 0.05 or 0.95̃ 1 intervals. We think
that the prediction follows the natural composition of the general-domain dataset, so the com-
position can be described as consisting of some of the targetunrelated sentences, some of the
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Figure 3: The distribution ofMin,Arithmetic Mean andGeometric Mean phrase pairs
contribution comparison: X-axis represents the range from0.10 to 1.00. Y-axis represents the
percentage of phrase entries to the overall testing data filtered phrase table.

mixed domain sentences and some of the in-domain sentences.The range between 0.05˜ 0.95
also draws our attention. All three heuristic functions create similar numbers of phrase entries
for each interval group at the upper bound range: 0.70˜ 1.00. This may be evidence that
there is only 0.92 BLEU score difference between the best- and worst-performed probabilistic
feature-based fill-up systems in Table 5 since the upper bound range is the closest to the target
translation domain. Later, theGeometric Mean system acts more aggressively and there is a
dramatic increase in the quality of phrase pairs at the intervals of 0.45˜ 0.50. We think that
this interval is the most uncertain region in the general-domain dataset given the knowledge
inferred by the corresponding heuristic functions. A similar increase also can be found in the
Arithmetic Mean system at the intervals of 0.35˜ 0.40, but the increasing curve is sharper
compared with the growth inGeometric Mean. The lower bound range in Table 6 is in a very
mixed situation.

The graph in Figure 3 compares for the interval grouped rangebetween 0.10 to 1.00, the
percentage of phrase entries contributing to the overall phrase table. It shows that the general-
domain training sentences can provide different levels of utility, and can be beneficial (in the
case of probability feature value>0.5) or harmful (in the case of probability feature value<0.5)
to the merged phrase table. Haddow and Koehn (2012) also found that general-domain training
data can benefit the translation table most when it is just allowed to add entries, but also that
the scores from the general-domain may be harmful to translation quality. Previous work tries
to address this question by defining a fairness feature valueto all phrase pairs extracted from
the general-domain training sentences. However, such a fairness feature value may cause the
potential in-domain phrase entries to be treated unjustly.Using a probabilistic feature value rep-
resenting domain-likeness can distinguish between the extracted phrase pairs and also provides
a soft-handed approach for phrase-table merging.
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8 Conclusion and Future Work

In this paper, we addressed the inaccurate assumption introduced at the phrase extraction step
for phrase-based SMT training. We extended the fill-up phrase-table merging approach by
assigning a domain-likeness probabilistic feature. We described the rationale behind our prob-
abilistic feature-based fill-up approach and explained ourintuitions regarding the SVM feature
set. We also designed two experimental scenarios, showing that our fill-up approach is a soft-
handed dynamic approach and can significantly improve translation performance in both exper-
iments compared to previous fill-up studies. However, the approach shown in this paper is still
preliminary and can be extended further. We have not carriedout experiments regarding any
implication between the SVM performance and the SMT translation performance; our SVM
features are purely inspired by the previous data selectionstudies and can also be more elegant.
In future work, we would like to carry out such studies. We would also like to experiment on
a reordering model fill-up and introduce more domain-oriented SVM training features. The
proposed probabilistic feature-based fill-up approach canalso be viewed as a domain adapta-
tion approach, where bilingual in-domain training sentences are unavailable, but where a large
amount of general-domain bilingual training sentences is easy to obtain. We can train the SVM
algorithm to assign the domain-likeness feature using the source and the target monolingual in-
and general-domain data to the general-domain only phrase table. Thus the general-domain-
only phrase table can gain some domain knowledge at decodingtime.
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