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Abstract

Smoothing is a central issue in lan-
guage modeling and a prior step in dif-
ferent natural language processing (NLP)
tasks. However, less attention has been
given to it for bilingual lexicon extrac-
tion from comparable corpora. If a first
work to improve the extraction of low
frequency words showed significant im-
provement while using distance-based av-
eraging (Pekar et al., 2006), no investi-
gation of the many smoothing techniques
has been carried out so far. In this pa-
per, we present a study of some widely-
used smoothing algorithms for language
n-gram modeling (Laplace, Good-Turing,
Kneser-Ney...). Our main contribution is
to investigate how the different smoothing
techniques affect the performance of the
standard approach (Fung, 1998) tradition-
ally used for bilingual lexicon extraction.
We show that using smoothing as a pre-
processing step of the standard approach
increases its performance significantly.

1 Introduction

Cooccurrences play an important role in many
corpus based approaches in the field of natural-
language processing (Dagan et al., 1993). They
represent the observable evidence that can be
distilled from a corpus and are employed for a
variety of applications such as machine transla-
tion (Brown et al., 1992), information retrieval
(Maarek and Smadja, 1989), word sense disam-
biguation (Brown et al., 1991), etc. In bilingual
lexicon extraction from comparable corpora,
frequency counts for word pairs often serve as
a basis for distributional methods, such as the
standard approach (Fung, 1998) which compares
the cooccurrence profile of a given source word, a

vector of association scores for its translated cooc-
currences (Fano, 1961; Dunning, 1993), with the
profiles of all words of the target language. The
distance between two such vectors is interpreted
as an indicator of their semantic similarity and
their translational relation. If using association
measures to extract word translation equivalents
has shown a better performance than using a
raw cooccurrence model, the latter remains the
core of any statistical generalisation (Evert, 2005).

As has been known, words and other type-rich
linguistic populations do not contain instances
of all types in the population, even the largest
samples (Zipf, 1949; Evert and Baroni, 2007).
Therefore, the number and distribution of types
in the available sample are not reliable estimators
(Evert and Baroni, 2007), especially for small
comparable corpora. The literature suggests two
major approaches for solving the data sparseness
problem: smoothing and class-based methods.
Smoothing techniques (Good, 1953) are often
used to better estimate probabilities when there
is insufficient data to estimate probabilities ac-
curately. They tend to make distributions more
uniform, by adjusting low probabilities such as
zero probabilities upward, and high probabilities
downward. Generally, smoothing methods not
only prevent zero probabilities, but they also
attempt to improve the accuracy of the model as a
whole (Chen and Goodman, 1999). Class-based
models (Pereira et al., 1993) use classes of similar
words to distinguish between unseen cooccur-
rences. The relationship between given words is
modeled by analogy with other words that are
in some sense similar to the given ones. Hence,
class-based models provide an alternative to the
independence assumption on the cooccurrence
of given words w1 and w2: the more frequent
w2 is, the higher estimate of P (w2|w1) will be,
regardless of w1.
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Starting from the observation that smoothing es-
timates ignore the expected degree of association
between words (assign the same estimate for all
unseen cooccurrences) and that class-based mod-
els may not structure and generalize word cooc-
currence to class cooccurrence patterns without
losing too much information, (Dagan et al., 1993)
proposed an alternative to these latter approaches
to estimate the probabilities of unseen cooccur-
rences. They presented a method that makes
analogies between each specific unseen cooccur-
rence and other cooccurrences that contain similar
words. The analogies are based on the assump-
tion that similar word cooccurrences have simi-
lar values of mutual information. Their method
has shown significant improvement for both: word
sense disambiguation in machine translation and
data recovery tasks. (Pekar et al., 2006) em-
ployed the nearest neighbor variety of the previ-
ous approach to extract translation equivalents for
low frequency words from comparable corpora.
They used a distance-based averaging technique
for smoothing (Dagan et al., 1999). Their method
yielded a significant improvement in relation to
low frequency words.

Starting from the assumption that smoothing
improves the accuracy of the model as a whole
(Chen and Goodman, 1999), we believe that
smoothed context vectors should lead to bet-
ter performance for bilingual terminology extrac-
tion from comparable corpora. In this work we
carry out an empirical comparison of the most
widely-used smoothing techniques, including ad-
ditive smoothing (Lidstone, 1920), Good-Turing
estimate (Good, 1953), Jelinek-Mercer (Mercer,
1980), Katz (Katz, 1987) and kneser-Ney smooth-
ing (Kneser and Ney, 1995). Unlike (Pekar et al.,
2006), the present work does not investigate un-
seen words. We only concentrate on observed
cooccurrences. We believe it constitutes the most
systematic comparison made so far with differ-
ent smoothing techniques for aligning translation
equivalents from comparable corpora. We show
that using smoothing as a pre-processing step of
the standard approach, leads to significant im-
provement even without considering unseen cooc-
currences.

In the remainder of this paper, we present in
Section 2, the different smoothing techniques. The
steps of the standard approach and our extended

method are then described in Section 3. Section
4 describes the experimental setup and our re-
sources. Section 5 presents the experiments and
comments on several results. We finally discuss
the results in Section 6 and conclude in Section 7.

2 Smoothing Techniques

Smoothing describes techniques for adjusting the
maximum likelihood estimate of probabilities to
reduce more accurate probabilities. The smooth-
ing techniques tend to make distributions more
uniform. In this section we present the most
widely used techniques.

2.1 Additive Smoothing
The Laplace estimator or the additive smoothing
(Lidstone, 1920; Johnson, 1932; Jeffreys, 1948)
is one of the simplest types of smoothing. Its
principle is to estimate probabilities P assuming
that each unseen word type actually occurred once.
Then, if we have N events and V possible words
instead of :

P(w) =
occ(w)

N
(1)

We estimate:

Paddone(w) =
occ(w) + 1

N + V
(2)

Applying Laplace estimation to word’s cooc-
currence suppose that : if two words cooccur to-
gether n times in a corpus, they can cooccur to-
gether (n + 1) times. According to the maximum
likelihood estimation (MLE):

P(wi+1|wi) =
C(wi,wi+1)

C(wi)
(3)

Laplace smoothing:

P∗(wi+1|wi) =
C(wi,wi+1) + 1

C(wi) + V
(4)

Several disadvantages emanate from this
method:

1. The probability of frequent n-grams is under-
estimated.

2. The probability of rare or unseen n-grams is
overestimated.
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3. All the unseen n-grams are smoothed in the
same way.

4. Too much probability mass is shifted towards
unseen n-grams.

One improvement is to use smaller added count
following the equation below:

P∗(wi+1|wi) =
δ + C(wi,wi+1)

δ|V|+ C(wi)
(5)

with δ ∈]0, 1].

2.2 Good-Turing Estimator

The Good-Turing estimator (Good, 1953) pro-
vides another way to smooth probabilities. It states
that for any n-gram that occurs r times, we should
pretend that it occurs r∗ times. The Good-Turing
estimators use the count of things you have seen
once to help estimate the count of things you have
never seen. In order to compute the frequency of
words, we need to compute Nc, the number of
events that occur c times (assuming that all items
are binomially distributed). Let Nr be the num-
ber of items that occur r times. Nr can be used to
provide a better estimate of r, given the binomial
distribution. The adjusted frequency r∗ is then:

r∗ = (r + 1)
Nr+1

Nr
(6)

2.3 Jelinek-Mercer Smoothing

As one alternative to missing n-grams, useful in-
formation can be provided by the corresponding
(n-1)-gram probability estimate. A simple method
for combining the information from lower-order
n-gram in estimating higher-order probabilities is
linear interpolation (Mercer, 1980). The equation
of linear interpolation is given below:

Pint(wi+1|wi) = λP(wi+1|wi) + (1− λ)P(wi) (7)

λ is the confidence weight for the longer n-
gram. In general, λ is learned from a held-out
corpus. It is useful to interpolate higher-order n-
gram models with lower-order n-gram models, be-
cause when there is insufficient data to estimate a
probability in the higher order model, the lower-
order model can often provide useful information.
Instead of the cooccurrence counts, we used the

Good-Turing estimator in the linear interpolation
as follows:

c∗int(wi+1|wi) = λc∗(wi+1|wi) + (1− λ)P(wi) (8)

2.4 Katz Smoothing
(Katz, 1987) extends the intuitions of Good-
Turing estimate by adding the combination of
higher-order models with lower-order models. For
a bigram wi

i−1 with count r = c(wi
i−1), its cor-

rected count is given by the equation:

ckatz(w
i
i−1) =

{
r∗ if r > 0
α(wi−1)PML(wi) if r = 0

(9)

and:

α(wi−1) =
1−

∑
wi:c(w

i
i−1)>0 Pkatz(w

i
i−1)

1−
∑

wi:c(w
i
i−1)>0 PML(wi−1)

(10)

According to (Katz, 1987), the general dis-
counted estimate c∗ of Good-Turing is not used for
all counts c. Large counts where c > k for some
threshold k are assumed to be reliable. (Katz,
1987) suggests k = 5. Thus, we define c∗ = c
for c > k, and:

c∗ =
(c + 1)

Nc+1

Nc
− c

(k+1)Nk+1

N1

1− (k+1)Nk+1

N1

(11)

2.5 Kneser-Ney Smoothing
Kneser-Ney have introduced an extension of ab-
solute discounting (Kneser and Ney, 1995). The
estimate of the higher-order distribution is created
by subtracting a fixed discount D from each non-
zero count. The difference with the absolute dis-
counting smoothing resides in the estimate of the
lower-order distribution as shown in the following
equation:

r =


Max(c(wi

i−n+1)−D,0)∑
wi

c(wi
i−n+1

)
if c(wi

i−n+1) > 0

α(wi−1
i−n+1)Pkn(wi|wi−1

i−n+2) if c(wi
i−n+1) = 0

(12)

where r = Pkn(wi|wi−1
i−n+1) and α(wi−1

i−n+1) is
chosen to make the distribution sum to 1 (Chen
and Goodman, 1999).

3 Methods

In this section we first introduce the different steps
of the standard approach, then we present our ex-
tended approach that makes use of smoothing as a
new step in the process of the standard approach.
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3.1 Standard Approach

The main idea for identifying translations of terms
in comparable corpora relies on the distributional
hypothesis 1 that has been extended to the bilin-
gual scenario (Fung, 1998; Rapp, 1999). If many
variants of the standard approach have been pro-
posed (Chiao and Zweigenbaum, 2002; Hervé
Déjean and Gaussier, 2002; Morin et al., 2007;
Gamallo, 2008)[among others], they mainly differ
in the way they implement each step and define its
parameters. The standard approach can be carried
out as follows:

Step 1 For a source word to translate ws
i , we first

build its context vector vws
i
. The vector vws

i

contains all the words that cooccur with ws
i

within windows of n words. Lets denote by
cooc(ws

i , w
s
j ) the cooccurrence value of ws

i

and a given word of its context ws
j . The pro-

cess of building context vectors is repeated
for all the words of the target language.

Step 2 An association measure such as the point-
wise mutual information (Fano, 1961), the
log-likelihood (Dunning, 1993) or the dis-
counted odds-ratio (Laroche and Langlais,
2010) is used to score the strength of corre-
lation between a word and all the words of its
context vector.

Step 3 The context vector vws
i

is projected into
the target language vt

ws
i
. Each wordws

j of vws
i

is translated with the help of a bilingual dic-
tionary D. If ws

j is not present in D, ws
j is

discarded. Whenever the bilingual dictionary
provides several translations for a word, all
the entries are considered but weighted ac-
cording to their frequency in the target lan-
guage (Morin et al., 2007).

Step 4 A similarity measure is used to score each
target word wt

i , in the target language with
respect to the translated context vector, vt

ws
i
.

Usual measures of vector similarity include
the cosine similarity (Salton and Lesk, 1968)
or the weighted Jaccard index (WJ) (Grefen-
stette, 1994) for instance. The candidate
translations of the word ws

i are the target
words ranked following the similarity score.

1words with similar meaning tend to occur in similar con-
texts

3.2 Extended Approach
We aim at investigating the impact of differ-
ent smoothing techniques for the task of bilin-
gual terminology extraction from comparable cor-
pora. Starting from the assumption that word
cooccurrences are not reliable especially for small
corpora (Zipf, 1949; Evert and Baroni, 2007)
and that smoothing is usually used to counter-
act this problem, we apply smoothing as a pre-
processing step of the standard approach. Each
cooc(ws

i , w
s
j ) is smoothed according to the tech-

niques described in Section 2. The smoothed
cooccurrence cooc∗(ws

i , w
s
j ) is then used for cal-

culating the association measure between ws
i and

ws
j and so on (steps 2, 3 and 4 of the standard ap-

proach are unchanged). We chose not to study
the prediction of unseen cooccurrences. The lat-
ter has been carried out successfully by (Pekar
et al., 2006). We concentrate on the evaluation
of smoothing techniques of known cooccurrences
and their effect according to different association
and similarity measures.

4 Experimental Setup

In order to evaluate the smoothing techniques, sev-
eral resources and parameters are needed. We
present hereafter the experiment data and the pa-
rameters of the standard approach.

4.1 Corpus Data
The experiments have been carried out on two
English-French comparable corpora. A special-
ized corpus of 530,000 words from the medical
domain within the sub-domain of ’breast cancer’
and a specialize corpus from the domain of ’wind-
energy’ of 300,000 words. The two bilingual cor-
pora have been normalized through the follow-
ing linguistic pre-processing steps: tokenization,
part-of-speech tagging, and lemmatization. The
function words have been removed and the words
occurring once (i.e. hapax) in the French and
the English parts have been discarded. For the
breast cancer corpus, we have selected the doc-
uments from the Elsevier website2 in order to
obtain an English-French specialized comparable
corpora. We have automatically selected the doc-
uments published between 2001 and 2008 where
the title or the keywords contain the term ’cancer
du sein’ in French and ’breast cancer’ in English.
We collected 130 documents in French and 118 in

2www.elsevier.com
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English. As summarised in Table 1, The compara-
ble corpora comprised about 6631 distinct words
in French and 8221 in English. For the wind en-
ergy corpus, we used the Babook crawler (Groc,
2011) to collect documents in French and English
from the web. We could only obtain 50 documents
in French and 65 in English. As the documents
were collected from different websites according
to some keywords of the domain, this corpus is
more noisy and not well structured compared to
the breast cancer corpus. The wind-energy corpus
comprised about 5606 distinct words in French
and 6081 in English.

Breast cancer Wind energy
TokensS 527,705 307,996
TokensT 531,626 314,551

|S| 8,221 6,081
|T | 6,631 5,606

Table 1: Corpus size

4.2 Dictionary

In our experiments we used the French-English
bilingual dictionary ELRA-M0033 of about
200,000 entries3. It contains, after linguistic pre-
processing steps and projection on both corpora
fewer than 4000 single words. The details are
given in Table 2.

Breast cancer Wind energy
|ELRAS | 3,573 3,459
|ELRAT | 3,670 3,326

Table 2: Dictionary coverage

4.3 Reference Lists

In bilingual terminology extraction from special-
ized comparable corpora, the terminology refer-
ence list required to evaluate the performance
of the alignment programs is often composed of
100 single-word terms (SWTs) (180 SWTs in
(Hervé Déjean and Gaussier, 2002), 95 SWTs in
(Chiao and Zweigenbaum, 2002), and 100 SWTs
in (Daille and Morin, 2005)). To build our ref-
erence lists, we selected only the French/English
pair of SWTs which occur more than five times in
each part of the comparable corpus. As a result

3ELRA dictionary has been created by Sciper in the Tech-
nolangue/Euradic project

of filtering, 321 French/English SWTs were ex-
tracted (from the UMLS4 meta-thesaurus.) for the
breast cancer corpus, and 100 pairs for the wind-
energy corpus.

4.4 Evaluation Measure
Three major parameters need to be set to the
standard approach, namely the similarity measure,
the association measure defining the entry vec-
tors and the size of the window used to build the
context vectors. (Laroche and Langlais, 2010)
carried out a complete study of the influence of
these parameters on the quality of bilingual align-
ment. As a similarity measure, we chose to use
Weighted Jaccard Index (Grefenstette, 1994) and
Cosine similarity (Salton and Lesk, 1968). The en-
tries of the context vectors were determined by the
log-likelihood (Dunning, 1993), mutual informa-
tion (Fano, 1961) and the discounted Odds-ratio
(Laroche and Langlais, 2010). We also chose a 7-
window size. Other combinations of parameters
were assessed but the previous parameters turned
out to give the best performance. We note that
’Top k’ means that the correct translation of a
given word is present in the k first candidates of
the list returned by the standard approach. We use
also the mean average precision MAP (Manning
et al., 2008) which represents the quality of the
system.

MAP (Q) =
1

|Q|

|Q|∑
i=1

1

mi

k∑
mi=1

P (Rik) (13)

where |Q| is the number of terms to be trans-
lated, mi is the number of reference translations
for the ith term (always 1 in our case), and P (Rik)
is 0 if the reference translation is not found for the
ith term or 1/r if it is (r is the rank of the reference
translation in the translation candidates).

4.5 Baseline
The baseline in our experiments is the standard
approach (Fung, 1998) without any smoothing of
the data. The standard approach is often used for
comparison (Pekar et al., 2006; Gamallo, 2008;
Prochasson and Morin, 2009), etc.

4.6 Training Data Set
Some smoothing techniques such as the Good-
Turing estimators need a large training corpus to

4http://www.nlm.nih.gov/research/umls
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estimate the adjusted cooccurrences. For that pur-
pose, we chose a training general corpus of 10 mil-
lion words. We selected the documents published
in 1994 from the ’Los Angeles Times/Le Monde’
newspapers.

5 Experiments and Results

We conducted a set of three experiments on two
specialized comparable corpora. We carried out a
comparison between the standard approach (SA)
and the smoothing techniques presented in Sec-
tion 2 namely : additive smoothing (Add1), Good-
Turing smoothing (GT), the Jelinek-Mercer tech-
nique (JM), the Katz-Backoff (Katz) and kneser-
Ney smoothing (Kney). Experiment 1 shows the
results for the breast cancer corpus. Experiment 2
shows the results for the wind energy corpus and
finally experiment 3 presents a comparison of the
best configurations on both corpora.

5.1 Experiment 1

Table 3 shows the results of the experiments on
the breast cancer corpus. The first observation
concerns the standard approach (SA). The best
results are obtained using the Log-Jac parame-
ters with a MAP = 27.9%. We can also no-
tice that for this configuration, only the Addi-
tive smoothing significantly improves the perfor-
mance of the standard approach with a MAP =
30.6%. The other smoothing techniques even de-
grade the results. The second observation con-
cerns the Odds-Cos parameters where none of
the smoothing techniques significantly improved
the performance of the baseline (SA). Although
Good-Turing and Katz-Backoff smoothing give
slightly better results with respectively a MAP =
25.2 % and MAP = 25.3 %, these results are not
significant. The most notable result concerns the
PMI-COS parameters. We can notice that four of
the five smoothing techniques improve the perfor-
mance of the baseline. The best smoothing is the
Jelinek-Mercer technique which reaches a MAP =
29.5% and improves the Top1 precision of 6% and
the Top10 precision of 10.3%.

5.2 Experiment 2

Table 4 shows the results of the experiments on
the wind energy corpus. Generally the results
exhibit the same behaviour as the previous ex-
periment. The best results of the standard ap-
proach are obtained using the Log-Jac parameters

SA Add1 GT JM Katz Kney
P1 15.5 17.1 18.7 21.5 18.7 05.3

PM
I-

C
os

P5 31.1 32.7 32.0 38.3 33.9 13.4
P10 34.5 37.0 37.0 44.8 38.0 15.2
MAP 22.6 24.8 25.6 29.5 25.9 09.1

P1 15.8 16.1 16.8 14.6 17.1 09.0

O
dd

s-
C

os

P5 34.8 33.6 34.2 33.0 33.9 19.6
P10 40.4 41.7 39.8 38.3 40.1 25.2
MAP 24.8 24.4 25.2 23.3 25.3 14.1

P1 20.2 22.4 14.6 14.6 14.6 16.2

L
og

-J
ac

P5 35.8 40.5 27.7 26.7 26.7 29.9
P10 42.6 44.2 34.2 33.3 33.0 33.9
MAP 27.9 30.6 21.4 21.2 21.2 22.9

Table 3: Results of the experiments on the ”Breast
cancer” corpus (except the Odds-Cos configura-
tion, the improvements indicate a significance at
the 0.05 level using the Student t-test).

SA Add1 GT JM Katz Kney

P1 07.0 14.0 14.0 21.0 16.0 09.0

PM
I-

C
os

P5 27.0 32.0 31.0 37.0 30.0 17.0
P10 37.0 42.0 43.0 51.0 44.0 28.0
MAP 17.8 23.6 22.9 30.1 24.2 14.1

P1 12.0 17.0 12.0 12.0 12.0 06.0

O
dd

s-
C

os

P5 31.0 35.0 31.0 32.0 28.0 16.0
P10 38.0 44.0 36.0 39.0 35.0 21.0
MAP 21.8 26.5 19.8 20.8 19.7 11.1

P1 17.0 22.0 13.0 13.0 13.0 14.0

L
og

-J
ac

P5 36.0 38.0 27.0 27.0 27.0 29.0
P10 42.0 50.0 37.0 38.0 38.0 39.0
MAP 25.7 29.7 20.5 21.3 21.3 22.9

Table 4: Results of the experiments on the ”Wind
Energy” corpus (except the Odds-Cos configura-
tion, the improvements indicate a significance at
the 0.05 level using the Student t-test).

with a MAP = 25.7%. Here also, only the Ad-
ditive smoothing significantly improves the per-
formance of the standard approach with a MAP
= 39.7%. The other smoothing techniques also
degrade the results. About the Odds-Cos param-
eters, except the additive smoothing, here again
none of the smoothing techniques significantly im-
proved the performance of the baseline. Finally
the most remarkable result still concerns the PMI-
COS parameters where the same four of the five
smoothing techniques improve the performance of
the baseline. The best smoothing is the Jelinek-
Mercer technique which reaches a MAP = 30.1%
and improves the Top1 and and the Top10 preci-
sions by 14.0%.
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5.3 Experiment 3

In this experiment, we would like to investigate
whether the smoothing techniques are more effi-
cient for frequent translation equivalents or less
frequent ones. For that purpose, we split the breast
cancer reference list of 321 entries into two sets
of translation pairs. A set of 133 frequent pairs
named : High-test set and a set of 188 less fre-
quent pairs called Low-test set. The initial refer-
ence list of 321 pairs is the Full-test set. We con-
sider frequent pairs those of a frequency higher
than 100. We chose to analyse the two configu-
rations that provided the best performance that is :
Log-Jac and Pmi-Cos parameters according to the
Full-test, High-test and Low-test sets.

Figure 1 shows the results using the Log-
Jac configuration. We can see that the additive
smoothing always outperforms the standard ap-
proach for all the test sets. The other smoothing
techniques are always under the baseline and be-
have approximately the same way. Figure 2 shows
the results using the PMI-COS configuration. We
can see that except the Kneser-Ney smoothing, all
the smoothing techniques outperform the standard
approach for all the test sets. We can also notice
that the Jelinek-Mercer smoothing improves more
notably the High-test set.

6 Discussion

Smoothing techniques are often evaluated on their
ability to predict unseen n-grams. In our exper-
iments we only focused on smoothing observed
cooccurrences of context vectors. Hence, the pre-
vious evaluations of smoothing techniques may
not always be consistent with our findings. This
is for example the case for the additive smooth-
ing technique. The latter which is described as
a poor estimator in statistical NLP, turns out to
perform well when associated with the Log-Jac
parameters. This is because we did not consider
unseen cooccurences which are over estimated by
the Add-one smoothing. Obviously, we can imag-
ine that adding one to all unobserved cooccur-
rences would not make sense and would certainly
degrade the results. Except the add-one smooth-
ing, none of the other algorithms reached good
results when associated to the Log-Jac configu-
ration. This is certainly related to the properties
of the log-likelihood association measure. Addi-
tive smoothing has been used to address the prob-

lem of rare words aligning to too many words
(Moore, 2004). At each iteration of the standard
Expectation-Maximization (EM) procedure all the
translation probability estimates are smoothed by
adding virtual counts to uniform probability dis-
tribution over all target words. Here also additive
smoothing has shown interesting results. Accord-
ing to these findings, we can consider the addi-
tive smoothing as an appropriate technique for our
task.

Concerning the Odds-Cos parameters, although
there have been slight improvements in the add-
one algorithm, smoothing techniques have shown
disappointing results. Here again the Odds-ratio
association measure seems to be incompatible
with re-estimating small cooccurrences. More in-
vestigations are certainly needed to highlight the
reasons for this poor performance. It seems that
smoothing techniques based on discounting does
not fit well with association measures based on
contingency table. The most noticeable improve-
ment concerns the PMI-Cos configurations. Ex-
cept Kneser-Ney smoothing, all the other tech-
niques showed better performance than the stan-
dard approach. According to the results, point-
wise mutual information performs better with
smoothing techniques especially with the linear
interpolation of Jelinek-Mercer method that com-
bines high-order (cooccurrences) and low-order
(unigrams) counts of the Good-Turing estima-
tions. Jelinek-Mercer smoothing counteracts the
disadvantage of the point-wise mutual information
which consists of over estimating less frequent
words. This latter weakness is corrected first by
the Good-Turing estimators and then by consider-
ing the low order counts. The best performance
was obtained with λ = 0.5.

Smoothing techniques attempt to improve the
accuracy of the model as a whole. This particu-
larity has been confirmed by the third experiment
where we noticed the smoothing improvements for
both reference lists, that is the High-test and Low-
test sets. This latter experiment has shown that
smoothing observed cooccurrences is useful for all
frequency ranges. The difference of precision be-
tween the two test lists can be explained by the fact
that less frequent words are harder to translate.

In statistical NLP, smoothing techniques for n-
gram models have been addressed in a number
of studies (Chen and Goodman, 1999). The ad-
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Figure 1: A set of three figures on the breast cancer corpus for the Log-Jac configuration : (a) Full-test
set ; (b) High-test set; and (c) Low-test set.
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Figure 2: A set of three figures on the breast cancer corpus for the PMI-COS configuration : (a) Full-test
set ; (b) High-test set; and (c) Low-test set.

ditive smoothing that performs rather poorly has
shown good results in our evaluation. The Good-
Turing estimate which is not used in isolation
forms the basis of later techniques such as Back-
off or Jelinek-Mercer smoothing, two techniques
that generally work well. The good performance
of Katz and JM on the PMI-Cos configura-
tion was expected. The reason is that these two
methods have used the Good-Turing estimators
which also achieved good performances in our
experiments. Concerning the Kneser-Ney algo-
rithm, surprisingly this performed poorly in our
experiments while it is known to be one of the
best smoothing techniques. Discounting a fixed
amount in all counts of observed cooccurrences
degrades the results in our data set. We also im-
plemented the modified Knener-ney method (not
presented in this paper) but this also performed
poorly. We conclude that discounting is not an
appropriate method for observed cooccurrences.
Especially for point-wise mutual information that
over-estimates low frequencies, hense, discount-

ing low cooccurrences will increase this over-
estimation.

7 Conclusion

In this paper, we have described and compared
the most widely-used smoothing techniques for
the task of bilingual lexicon extraction from com-
parable corpora. Regarding the empirical results
of our proposition, performance of smoothing on
our dataset was better than the baseline for the
Add-One smoothing combined with the Log-Jac
parameters and all smoothing techniques except
the Kneser-ney for the Pmi-Cos parameters. Our
findings thus lend support to the hypothesis that
a re-estimation process of word cooccurrence in a
small specialized comparable corpora is an appro-
priate way to improve the accuracy of the standard
approach.
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