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Abstract

We present a study on linguistic con-
trast and commonality in English scien-
tific discourse on the basis of a mono-
lingually comparable corpus. The focus
is on selected scientific disciplines at the
boundaries to computer science (compu-
tational linguistics, bioinformatics, digital
construction, microelectronics). The data
basis is the English Scientific Text Cor-
pus (SCITEX) which covers a time range
of roughly thirty years (1970/80s to early
2000s). In particular, we investigate the
disciplinary diversification/relatedness of
scientific research articles in terms of reg-
ister. Our results are relevant for research
on multilingually comparable corpora as
used in machine translation and related re-
search, since they shed new light on the
notion of ‘comparablity’.

1 Introduction: Motivation and Goals

In the context of statistical machine translation,
comparable corpora are typically bilingual, the-
matically similar corpora being utilized to extract
translation equivalents to enrich translation mod-
els. These have proved to be useful, especially for
technically specialized texts or for low resource
languages where parallel corpora are rare (Chiao
and Zweigenbaum (2002); Babych et al. (2007)).

The overarching goal of the paper is to provide
evidence that the notion of comparability com-
monly used in that context is rather coarse and
misses important aspects of linguistic variation.
We report on a set of experiments in which a
monolingually comparable corpus is studied. The
corpus contains specialized, technical texts from
nine scientific disciplines, related to each other by
“interdisciplines” (such as computer science - lin-
guistics - computational linguistics) (cf. Section 2

for details). Our study establishes the linguistic
differences and commonalities between the disci-
plines considered on the basis of the concept of
register, i.e., language variation according to situ-
ational context. Situational context is convention-
ally described in terms of field, tenor and mode of
discourse (Quirk et al., 1985). It has been shown
in numerous corpus-linguistic studies that particu-
lar situational settings have specific linguistic cor-
relates at the level of lexico-grammar in the sense
of clusters of lexico-grammatical features that oc-
cur non-randomly (see notably the work by Biber
and colleagues, e.g., Biber (1988, 1993); Biber
et al. (1999); Biber (2006, 2012)). Collectively,
the linguistic features associated with field, tenor
and mode then give rise to registers. More specif-
ically, field of discourse relates to the topic of a
discourse and is realized lexico-grammatically in
functional verb classes (e.g., activity, communica-
tion, etc.) with corresponding arguments (e.g., Ac-
tor, Goal, Medium, etc.) and adjunct types (e.g.,
Time, Place, Manner, etc.). Tenor of discourse re-
lates to the roles and attitudes of the participants in
a discourse and is realized lexico-grammatically
in mood, modality as well as stance expressions.
Mode of discourse relates to the presentational
function of language and is realized in Theme-
Rheme and Given-New constellations. A register
is then characterized by particular distributions of
lexico-grammatical features according to a given
contextual configuration.

Apart from exhibiting differences in field, tenor
and mode, scientific texts are associated with par-
ticular discourse “styles” such as technicality, ab-
stractness or informational density, which may
again be linguistically realized in different ways
and to different degrees across disciplines. Fur-
thermore, in a highly dynamic social domain, such
as the scientific one, both registers and discourse
styles are relatively versatile and subject to change
(cf. Ure (1971, 1982)). This may, for instance,
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affect conventional phraseology. Finally, register
and stylistic features may be distributed unevenly
across document parts, thus giving rise to varia-
tion according to document structure. In order to
arrive at a comprehensive picture of the linguistic
construal of disciplinarity, we thus need to con-
sider the linguistic encodings according to register
and the linguistic realization of discursive styles as
well as take into account the inherently dynamic
nature of scientific discourse.

Relating this back to the notion of comparabil-
ity, the concept of register may thus provide the
basis for a fine-grained description of comparabil-
ity, as it acknowledges the multi-dimensional na-
ture of linguistic variation.

Our methodology is informed by three sources:
corpus linguistics, linguistic theory and data min-
ing. Standard corpus methods are employed for
the quantification of instances of linguistic fea-
tures that are considered to be relevant indicators
of variation across scientific disciplines and may
be expected to significantly contribute to differ-
ences in language use across disciplines. The the-
oretical basis is provided by Systemic Functional
Linguistics (SFL; Halliday (2004)). The reason
for choosing SFL to inform analysis is its model
of association of contextual variables with lexico-
grammatical domains (cf. above on the notion of
register).

In contrast to other corpus-based studies on reg-
ister, our goal is not to uncover dimensions of vari-
ation or to discover text classes (as e.g. in Biber et
al’s work). The texts in our corpus are taken from
38 journals from nine disciplines (for details see
Section 2) and the text classes are thus extrinsi-
cally defined. We can then think of analysis as a
task of text classification, where we test whether
the extrinsically defined classes have distinctive
linguistic correlates and if so, how well the classes
are distinguished linguistically and which features
contribute most to their distinction. To this end,
we employ data mining techniques, in particular
automatic text classification (see Section 3 for de-
tails). A similar approach to the one developed
here, also working on linguistic variation in the
scientific domain, has been proposed earlier by
Argamon et al. (2008). There is related work
in translation studies by Baroni and Bernardini
(2006) and Volansky et al. (2011), which uses au-
tomatic text classification to describe the specific
properties of translations (‘translationese’). The

earliest work, to our knowledge, combining SFL
with text classification is Whitelaw and Patrick’s
work on spam detection (Whitelaw and Patrick,
2004).

2 Corpus

2.1 Corpus Design and Pre-processing
We have built a corpus composed of English sci-
entific research articles — the English Scientific
Text Corpus (SCITEX; cf. Teich and Fankhauser
(2010) and Degaetano-Ortlieb et al. (forthcom-
ing)) — that covers nine scientific domains and
amounts to approx. 34 million tokens, drawn from
38 sources. SCITEX contains full journal arti-
cles from two time periods, the 1970s/early 1980s
(SASCITEX) and the early 2000s (DASCITEX). We
selected at least two different journals for each dis-
cipline in both time slices. As our focus is on se-

Figure 1: Scientific disciplines in the SCITEX cor-
pus

lected scientific domains at the boundaries to com-
puter science and some other discipline, SCITEX

has a three-way partition: (1) A-subcorpus: com-
puter science, (2) B-subcorpus: computational lin-
guistics, bioinformatics, digital construction and
microelectronics, and (3) C-subcorpus: linguis-
tics, biology, mechanical engineering and elec-
trical engineering, as shown in Figure 1. In the
present paper, we are mainly interested in the lin-
guistic evolution of the inter-/transdisciplinary do-
mains represented by the B-subcorpus, as these
are the ones that have emerged in the given time
frame (1970s/80s to present). We term these do-
mains contact disciplines, since they have come
about through contact between two existing dis-
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ciplines (here: computer science and another es-
tablished discipline represented in the A and C
subcorpora, which we term seed disciplines). The
main question we are interested in is whether the
seed and contact disciplines have clearly distin-
guishable linguistic correlates in terms of register.

The text sources for SCITEX are full academic
articles in the form of PDF files. These files were
converted to plain text using an existing commer-
cial software including optical character recogni-
tion (OCR).

In further processing we follow the common
practices in corpus linguistics by (a) accounting
for relevant metadata (e.g., author, title, jour-
nal, year of publications) and document structure
(e.g., abstract, conclusion), and (b) using stan-
dard tools for preprocessing (e.g., tokenization,
tagging, lemmatization, etc.). For corpus query,
we employ the Corpus Query Processor (CQP)
(CWB; Evert, 2004) which works on the basis of
regular expressions. Utilities of CQP allow for the
extraction of distributional information according
to the annotated metadata and document structure.

3 Methods of Analysis

We carry out a diachronic analysis comparing the
two time slices (1970s/80s vs. 2000s) represented
in the SCITEX corpus, aiming to provide answers
to the following questions:

1. How well are the individual disciplines dis-
tinguished?

2. How distinct are the contact disciplines from
their seed disciplines?

Thus, analysis involves comparisons along the
temporal and the disciplinary dimensions.

The hypothesis we have about the outcomes of
our analysis is that disciplines will be better dis-
tinguished from one another over time, including
the contact disciplines, reflecting a process of di-
versification within scientific writing over time.

3.1 Feature Selection
In the first step of analysis we need to determine
which features to investigate. These should be fea-
tures that bring out relevant and significant con-
trasts along the dimensions considered (time, dis-
cipline). For the choice of features potentially
distinguishing individual (scientific) registers, we
draw on SFL’s model of register variation in which
the contextual parameters of field, tenor and mode

are associated with particular lexico-grammatical
domains. Since we want to cover all three con-
textual parameters, we choose at least one fea-
ture for each. For field, we analyze functional
verb classes as well as PoS-patterns that are poten-
tially terminology-forming (e.g. noun-noun struc-
tures); for tenor, we analyze modal verbs and for
mode we analyze theme type as well as conjunc-
tive cohesive relations. As another feature, we an-
alyze n-grams on the basis of PoS combinations
(rather than words), since we have seen in a previ-
ous study that they may be involved in processes
of conventionalization (Kermes and Teich, 2012).

Additionally, on an abstract level, scientific
writing is a highly informational production that is
characterized by technicality, information density
and abstractness (cf. Halliday and Martin (1993)).
Among the linguistic features realizing these prop-
erties are a relatively low type-token ratio (techni-
cality), a relatively high lexical density and low
grammatical intricacy (information density) and
the frequent use of nominal categories (nouns, ad-
jectives) (abstractness).

Table 1 displays the features considered in the
analysis together with their associated contextual
variables and/or abstract discourse properties they
instantiate. Features are extracted from the cor-
pus with CQP. For example, simple queries com-
bine part-of-speech and concrete lemmas (e.g.,
[pos=”MD” & lemma=”must|should”]; for modal
verbs). More complex queries work with posi-
tional attributes, linguistic annotations and lists
(e.g., < s >[conj & lemma!=$modal-adverbs]... as
part of the extraction of textual Theme, which is
realized in English as the first constituent in the
clause).

3.2 Feature Evaluation
We employ statistical and machine learning meth-
ods to measure (a) how much individual features
contribute to a possible distinction and (b) how
well corpora are distinguished by these features.
We employ classification techniques by using fea-
ture ranking (Information Gain) to determine the
relative discriminatory force of features, and su-
pervised machine learning (decision trees and sup-
port vector machines) to distinguish between the
scientific registers in SCITEX. For these steps we
use the WEKA data mining platform (Witten and
Eibe, 2005).
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contextual parameter/ feature category feature subcategory
abstract discourse property

FIELD

term patterns NN-of-NN, N-N, ADJ-N

verb classes

activity (e.g., make, show)
aspectual (e.g., start, end)
causative (e.g., let, allow)
communication (e.g., note, describe)
existence (e.g., exist, remain)
mental (e.g., see, know)
occurrence (e.g., change, grow)

TENOR modality
obligation/necessity (e.g., must)
permission/possibility/ability (e.g., can)
volition/prediction (e.g., will)

MODE

theme
experiential theme (e.g, The algorithm...)
interpersonal theme (e.g., Interestingly...)
textual theme (e.g., But...)
additive (e.g., and, furthermore)

conjunctive adversative (e.g., nonetheless, however)
cohesive relations causal (e.g., thus, for this reason)

temporal (e.g., then, at this point)
TECHNICALITY type-token ratio STTR

lexical vs. function words no. of lexical PoS categories

INFORMATION DENSITY

lexical density lexical items per clause/sentence

grammatical intricacy
clauses per sentence
wh-words per sentence
sentence length

ABSTRACTNESS PoS distribution no. of nominal vs. verbal categories

CONVENTIONALIZATION n-grams on PoS basis 2-to-6-grams overall/per section
length of sections tokens per section

Table 1: Features used in analysis

4 Results and Interpretation

Our analysis addresses the question of how dis-
tinctive the subcorpora in SCITEX are comparing
the productions of the 1970/80s with those of the
early 2000s. Considering the diachronic perspec-
tive, we expect to encounter a clearer separation of
individual disciplines overall reflecting a process
of diversification within scientific writing.

The analysis has two parts: First, we calculate
Information Gain of the top twenty features, to see
which features are the most discriminatory ones
across disciplines. Second, we apply automatic
classification, to see how well the subcorpora are
distinguished on the basis of these features.

Table 2 shows the twenty most discriminatory
features for the 70/80s across all subcorpora. The
five highest ranking features are associated with
field (NN: IGain 0.39, LEX: IGain 0.36, commu-
nication verbs: IGain 0.31) and mode (WL: IGain
0.33, LEX/C: IGain 0.32). In the mid range, we
find some tenor features and in the lower range
some other field features as well as document
structure features.

When we compare these results with the ones
for the early 2000s (see Table 3), three main ob-
servations can be made. First, features become

much more pronounced, the IGain values rising
substantially for the top 20 features (1970s/80s
are in the range of 0.23 to 0.39, 2000s are in
the range of 0.31 to 3.1). This includes the nine
features that are identical across SASCITEX and
DASCITEX: existence and communication verbs
as well as adj-n term pattern for field, obliga-
tion modals for tenor, word and sentence length
as well as lexical words per clause for mode, bi-
grams for conventionalization, and length of main
part for document structure, all become more pro-
nounced in DASCITEX (higher IGains) and thus
contribute more to the distinction between disci-
plines. The second observation is that while in
SASCITEX only bi-grams ranges among the top 20
features, in DASCITEX we encounter an increase
in the contribution of gram-based features to the
DASCITEX-internal distinction.1 This may point
to the greater role of conventionalized language in
the distinction between disciplines over time. Ter-
minological studies based on n-grams might indi-
cate a thematic comparability of disciplines. Con-
sider one of the key concepts in computer science,
‘algorithm’. The distribution (per million) across
the nine disciplines in DASCITEX varies greatly:

1Note again that in our analysis, n-grams are based on
parts-of-speech, not words.
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feature IGain contextual parameter discourse property
NN 0.3931 field technicality, abstractness
LEX 0.3647 field technicality
communication 0.3119 field
mental 0.2526 field
existence 0.2372 field
ADV 0.2282 field abstractness
adj-n pattern 0.2253 field technicality
volition 0.3184 tenor
permission 0.2709 tenor
MD 0.2679 tenor
obligation 0.249 tenor
WL 0.3326 mode information density
LEX/C 0.3238 mode information density
SL 0.2974 mode information density
clauses/S 0.287 mode information density
additive 0.2574 mode
WH/S 0.2504 mode information density
bi-grams 0.2382 conventionalization
main 0.2301 document structure
introduction 0.2257 document structure

Table 2: Feature ranking for the 70/80s (SASCITEX): Top 20 features

feature IGain contextual parameter discourse property
existence 0.3987 field
activity 0.3677 field
communication 0.3636 field
STTR 0.3582 field technicality
adj-n pattern 0.3441 field technicality
obligation 0.3548 tenor
LEX/C 3.0803 mode information density
SL 0.5567 mode information density
WL 0.51 mode information density
experiential-theme 0.344 mode
causal 0.3302 mode
main 0.5324 document structure
abstract 0.4981 document structure
n-grams main 0.4925 conventionalization
bi-grams 0.3886 conventionalization
n-grams 0.3706 conventionalization
n-grams abstr 0.3609 conventionalization
n-grams 4 0.3287 conventionalization
n-grams 3 0.3209 conventionalization
n-grams intro 0.3115 conventionalization

Table 3: Feature ranking for the early 2000s (DASCITEX): Top 20 features

computer science (3427), microelectronics (1965),
bioinformatics (1913), digital construction (1735),
computational linguistics (1124), electrical engi-
neering (955), mechanical engineering (129), bi-
ology (59) and linguistics (51). When we look at
the top frequent token n-grams in which algorithm
participates, we find, for example, ‘approximation
algorithm’ which is mostly shared between com-
puter science, the contact discipines and electrical
engineering, ‘learning algorithms’ appears prac-
tically everywhere, and ‘alignment algorithm’ is
almost only mentioned in computational linguis-
tics and bioinformatics (with a few occurrences
in computer science and one in biology). The
stylistics across the disciplines is also notewor-

thy: pure stylistic tri-grams, such as the highly
frequent ‘in order to’, ‘the number of’, ‘based on
the’, ‘as shown in’, etc., are also good discrimi-
nators between different disciplines (cf. Kermes
and Teich (2012)). Finally, at the levels of con-
textual and discourse properties, it can be noted
that features associated with information density
become better discriminators between disciplines
in the 2000s having high IGain values, while tenor
features step back decreasing in number, tending
towards greater uniformity (only one tenor feature
(obligation modals) in the top 20 features in the
2000s compared to four in the 70s/80s).

To see how these data are reflected according to
disciplines, we perfom classification for both cor-
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A B1 B2 B3 B4 C1 C2 C3 C4 total accuracy in %
A 108 2 11 25 1 0 4 6 45 202 53.47
B1 3 22 22 19 7 26 4 9 13 125 17.60
B2 10 21 142 55 30 8 60 60 71 457 31.07
B3 16 24 52 121 32 7 17 37 55 361 33.52
B4 1 4 32 27 91 4 36 45 32 272 33.46
C1 2 24 16 8 1 154 4 6 4 219 70.32
C2 3 6 70 16 22 2 358 30 28 535 66.92
C3 10 10 60 45 44 6 37 137 39 388 35.31
C4 52 25 60 49 39 2 25 24 248 524 47.33

A: Computer Science, B1: Computational Linguistics, B2: Bioinformatics, B3: Digital Construction, B4: Microelectronics,

C1: Linguistics, C2: Biology, C3: Mechanical Engineering, C4: Electrical Engineering

Table 4: Confusion matrix with decision tree for the 70/80s (SASCITEX)

A B1 B2 B3 B4 C1 C2 C3 C4 total accuracy in %
A 156 0 3 4 0 1 1 0 37 202 77.23
B1 1 26 23 11 7 27 3 12 15 125 20.80
B2 2 2 274 47 13 4 32 37 46 457 59.96
B3 8 1 72 156 21 3 16 24 60 361 43.21
B4 0 1 14 8 158 1 49 26 15 272 58.09
C1 2 11 12 0 0 183 0 5 6 219 83.56
C2 2 0 28 4 12 0 463 9 17 535 86.54
C3 3 4 53 18 22 2 40 213 33 388 54.90
C4 30 2 41 25 12 1 24 12 377 524 71.95

A: Computer Science, B1: Computational Linguistics, B2: Bioinformatics, B3: Digital Construction, B4: Microelectronics,

C1: Linguistics, C2: Biology, C3: Mechanical Engineering, C4: Electrical Engineering

Table 5: Confusion matrix with SVM for the 70/80s (SASCITEX)

A B1 B2 B3 B4 C1 C2 C3 C4 total accuracy in %
A 201 1 0 9 7 1 0 2 9 230 87.39
B1 4 97 4 19 1 8 1 0 3 137 70.80
B2 5 0 269 14 6 0 18 6 1 319 84.33
B3 5 3 8 168 8 0 6 30 14 242 69.42
B4 2 2 10 17 156 0 8 9 1 205 76.10
C1 1 11 6 3 0 90 0 0 0 111 81.08
C2 0 0 7 2 2 1 335 3 1 351 95.44
C3 4 1 7 23 6 0 15 229 18 303 75.58
C4 18 2 3 42 7 0 4 34 113 223 50.67

A: Computer Science, B1: Computational Linguistics, B2: Bioinformatics, B3: Digital Construction, B4: Microelectronics,

C1: Linguistics, C2: Biology, C3: Mechanical Engineering, C4: Electrical Engineering

Table 6: Confusion matrix with SVM for the early 2000s (DASCITEX)

pora (SASCITEX and DASCITEX), first, with deci-
sion trees, as they are based on Information Gain,
and second, with support vector machines (SVMs),
as they are used for text categorization tasks with
many relevant features achieving very good results
(cf. Joachims (1998)). Classification is performed
on all features with 10 fold cross-validation. Ta-
ble 4 shows the confusion matrix for all subcor-
pora for the 70/80s and classification accuracy for
each subcorpus achieved by decision tree. The
overall accuracy is 44.79% only, the correctly clas-
sified texts lying on the main diagonal of the ma-
trix.

The confusion matrix produced by SVM is
shown in Table 5, with an overall accuracy of

65.07%. Apart from computational linguistics
(B1), accuracy goes up by about 10% for digi-
tal contruction (B3) and linguistics (C1) and about
25-30% for the other subcorpora compared to de-
cision tree. Accuracy with SVM for the contact
disciplines (B1-B4) ranges from 20-60% and is
much lower than the accuracy achieved for the
seed disciplines (A and C1-C4) with around 54-
86%. Thus, the contact disciplines are not clearly
separated from the seed disciplines. Considering,
for instance the triple A-B1-C1, we can see that
more texts belonging to computational linguistics
(B1) are classified into linguistics (C1) than into
computational linguistics (27 texts in C1 vs. 26 in
B1), i.e., texts in B1 seem to be quite similar to
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B1 vs A B2 vs A B3 vs A B4 vs A
WL 0.629 WL 0.501 WL 0.399 LEX 0.883
STTR 0.509 LEX 0.355 LEX 0.331 WL 0.763
LEX 0.372 causal 0.334 n-grams 6 0.265 STTR 0.574
ADJ 0.261 n-grams 6 0.306 STTR 0.258 causal 0.560
VV 0.230 STTR 0.303 clauses/S 0.202 NN 0.458
n-grams 6 0.205 n-grams 4 0.284 adj-n-n 0.168 additive 0.440
causal 0.187 temporal 0.283 causal 0.160 temporal 0.433
types 0.174 n-grams 5 0.282 NN 0.13 mental 0.416
adj-c-adj-n 0.145 ADJ 0.273 n-grams 4 0.118 commun. 0.379
introduction 0.129 causative 0.197 ADJ 0.114 n-grams 4 0.364

B1 vs C1 B2 vs C2 B3 vs C3 B4 vs C4
clauses/S 0.230 NN 0.269 LEX/S 0.260 LEX 0.469
ADV 0.204 MD 0.264 main 0.146 VV 0.311
LEX/C 0.196 WH 0.198 n-grams main 0.132 WL 0.309
NN 0.179 permission 0.178 introduction 0.127 main 0.153
WH/S 0.122 volition 0.166 causative 0.114 NN 0.148
LEX 0.120 WL 0.147 exper-theme 0.113 introduction 0.142
occurrence 0.119 SL 0.145 obligation 0.087 LEX/S 0.115
commun. 0.112 WH/S 0.137 n-grams intro 0.086 n-grams main 0.096
MD 0.110 LEX 0.104 aspectual 0.081 causal 0.093
n-grams abstr 0.108 LEX/C 0.098 LEX/C 0.077 n-grams intro 0.088

A: Computer Science, B1: Computational Linguistics, B2: Bioinformatics, B3: Digital Construction, B4: Microelectronics,

C1: Linguistics, C2: Biology, C3: Mechanical Engineering, C4: Electrical Engineering

Table 7: Feature ranking with IGain for the 70/80s (SASCITEX): Top 20 features contact vs seed disci-
plines

B1 vs A B2 vs A B3 vs A B4 vs A
WL 0.694 WL 0.701 WL 0.567 WL 0.791
STTR 0.631 main 0.680 causal 0.488 STTR 0.615
SL 0.441 STTR 0.678 STTR 0.385 VV 0.289
types 0.402 n-grams main 0.634 temporal 0.347 main 0.233
causal 0.237 causal 0.621 n-grams 4 0.345 causal 0.230
n-grams 6 0.217 n-grams 4 0.577 n-grams 0.319 LEX 0.21
n-n 0.192 n-grams 0.552 n-grams 5 0.318 mental 0.196
adj-n 0.171 abstract 0.537 n-grams main 0.282 temporal 0.190
adversative 0.128 bi-grams 0.521 LEX 0.280 n-of-n 0.189
adj-c-adj-n 0.125 introduction 0.487 bi-grams 0.262 aspectual 0.144

B1 vs C1 B2 vs C2 B3 vs C3 B4 vs C4
occurrence 0.264 SL 0.566 WL 0.156 VV 0.436
adj-adj-n 0.193 abstract 0.518 VV 0.139 WL 0.410
ADV 0.189 n-grams abstr 0.505 obligation 0.100 LEX/C 0.329
ADJ 0.137 main 0.412 LEX/C 0.100 ADV 0.243
NN 0.128 introduction 0.353 n-grams 5 0.097 n-grams 3 0.181
types 0.123 n-grams main 0.344 MD 0.088 LEX/S 0.162
LEX/C 0.123 n-grams intro 0.321 ADJ 0.075 activity 0.154
main 0.118 WH 0.204 aspectual 0.064 n-grams 0.147
commun. 0.107 MD 0.202 SL 0.061 STTR 0.135
abstract 0.107 WH/S 0.192 LEX/S 0.059 abstract 0.127

A: Computer Science, B1: Computational Linguistics, B2: Bioinformatics, B3: Digital Construction, B4: Microelectronics,

C1: Linguistics, C2: Biology, C3: Mechanical Engineering, C4: Electrical Engineering

Table 8: Feature ranking with IGain for the early 2000s (DASCITEX): Top 20 features contact vs seed
disciplines

texts in C1 in terms of the features investigated.
In order to check the separation of disciplines

over time, we need to compare classification re-
sults across SASCITEX and DASCITEX. We again
apply SVM, which returns an overall accuracy of
78.17%.2 Comparing the values for the individual

2Decision tree performed poorly again in comparison

subcorpora across SASCITEX and DASCITEX, we
can observe that accuracies are now much higher
for all subcorpora. Considering the contact disci-
plines, they have clearly gained distinctiveness in
the 2000s in comparison to the 1970/80s, as texts
in B1-B4 are classified correctly 69% to 84% of

achieving an accuracy of 57.24% only.
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the time (instead of 20-60% in the 1970/80s).
In summary, the classification results match the

results obtained by feature ranking, which have
shown that the top 20 features increased discrim-
inatory force over time. This is reflected by a
higher classification accuracy overall and for the
subcorpora.3 The discriminatory force of features
in the 1970s/80s instead, was not strong enough to
clearly separate disciplines.

To see whether there are any particular features
involved in the differentiation of the contact dis-
ciplines in particular vis à vis computer science
on the one hand and the other seed disciplines
on the other hand, we inspect the confusion ma-
trix as well as the IGains of each B vs. A and
each B vs. the respective C, both for SASCITEX

and DASCITEX. In the comparison to computer
science (A), we can see that the confusion ma-
trixes produced with SVM (cf. Table 5 and 6)
show few texts that are misclassified from the con-
tact disciplines (Bs) into computer science (A) for
both time slices. Thus, the features employed dis-
tinguish Bs from A quite well. Considering the
IGain values (see Table 7 and 8 for the top 10 fea-
tures), besides computational linguistics (B1; rel-
atively low classification accuracy of 20% in the
70/80s), the contact disciplines have the following
features in common: word length (WL), STTR,
causal verbs in the top 10 as well as four-grams,
lexical words (LEX) and temporal conjunctions in
the top 20 features. Except lexical words (LEX),
all features have a higher IGain in the 2000s. In
the comparison to the other seed discipines (Cs),
the confusion matrixes show more misclassifica-
tions of Bs into Cs. Considering the IGain val-
ues there are no tendencies uniformly applying to
the contact disciplines (Bs). They rather show
individual tendencies for each pair (B1 vs. C1,
B2 vs. C2, B3 vs. C3, B4 vs. C4). Features
that contribute to a better classification diachroni-
cally lie in the following parameters: (a) field (oc-
currence, term-patterns, ADV) for computational
linguistics (B1), (b) document structure (abstract,
main, intro), information density (SL) and conven-
tionalization (n-grams abstract) for bioinformatics
(B2), (c) information density (WL) and technical-
ity (VV) for digital construction (B3) and micro-
electronics (B4).

3There are only two exceptions: C1 (linguistics) goes
slightly down (around 2.5%), C4 (electrical engineering)
goes down by over 20% to 50.67% accuracy, i.e., it is not
really distinguishable any more.

5 Summary and Conclusions

We have looked at disciplinary linguistic diversifi-
cation in English scientific writing in terms of reg-
ister, discourse styles and document structure. The
results of our analysis provide evidence of major
motifs of development in scientific writing over
time, showing dynamicity over a time span of only
thirty years. Diversification over time is clearly
borne out for the contact disciplines but is also true
for most of the other disciplines.

Considering the contact disciplines we have
seen that (1) they can be distinguished quite well
from computer science with the same features be-
ing involved in better classification results, (2)
they show individual feature constellations in their
distinction from their seed disciplines. Moreover,
n-grams have gained discriminatory force over
time and are ranked relatively high among our fea-
tures in the 2000s subcorpus. As they are also rel-
evant in terms of terminology, they give an insight
in the relatedness of disciplines.

In terms of methods, we have combined state-
of-the-art corpus processing with techniques of
data analysis as developed in data mining. As such
techniques become more accessible to linguistic,
literary and cultural analysis, the repertoire of
methods for such analysis will be greatly enhanced
in that sounder empirical evidence can be sought
in text-based socio-cultural and historical studies
at large (cf. Jockers (2013)). The crucial factor
in employing such methods is the motivation of
the features to be used in analysis. Here, we have
deliberately not relied on word-based features but
instead mainly employed lexico-grammatical pat-
terns. While bags-of-words are strong discrim-
inators between texts/text classes, they can only
tell us something about lexical variation (e.g., as
an indicator of text topic). However, when reg-
ister or style rather than topicality are in the fo-
cus (such as e.g. the linguistic construal of techni-
cal, dense or abstract discourse or the expression
of field, tenor or mode relations), it will not be suf-
ficient to study lexical word distributions (cf. Co-
hen et al. (2010); Teich and Fankhauser (2010) for
some other studies). Instead, one needs to identify
lexico-grammatical patterns that are potential in-
dicators of the more abstract discoursive and con-
textual properties that are in focus.

The insight to be gained from our study for mul-
tilingually comparable corpora is that more elab-
orate definitions of ‘comparability’ might be re-
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quired. Our approach offers such a definition of
comparability by being firmly based on an estab-
lished model of linguistic variation, which has also
been widely applied in multilingual contexts, such
as for example, automatic text generation (see
e.g., Matthiessen and Bateman (1991); Bateman
(1997); Kruijff et al. (2000)). The parameters of
variation we employ (register: field, tenor, mode;
discourse styles; time) provide a fine-grained grid
of features involved in linguistic variation, which
can be applied to other languages as well. For ex-
ample, we can extract and analyze field features,
such as term patterns (as produced for German by
Weller et al. (2011)), tenor features, such as modal
verbs, as well as the other features investigated
using the same tools applied here (part-of-speech
tagger, CQP, R-scripts and WEKA modules) with
only little adaptations (e.g., tag sets, query formu-
lation). Overall, we would expect that applying
the concept of register to the problem of compara-
bility will enable finer-tuned comparable corpora
and thus contribute to their fuller potential for mul-
tilingual language technology.
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