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Abstract 

Translation rule extraction is an impor-
tant issue in syntax-based Statistical Ma-
chine Translation (SMT). Recent studies 
show that rule coverage is one of the key 
factors affecting the success of syntax-
based systems. In this paper, we first 
present a simple and effective method to 
improve rule coverage by using multiple 
parsers in translation rule extraction, and 
then empirically investigate the effec-
tiveness of our method on Chinese-
English translation tasks. Experimental 
results show that extracting translation 
rules using multiple parsers improves a 
string-to-tree system by over 0.9 BLEU 
points on both NIST 2004 and 2005 test 
corpora. 

1 Introduction 

Recently various syntax-based models have been 
extensively investigated in Statistical Machine 
Translation (SMT), including models between 
source trees and target strings (Quirk et al., 2005; 
Liu et al., 2006; Huang et al., 2006), source 
strings and target trees (Yamada and Knight, 
2001; Galley et al., 2006; Shen et al., 2008), or 
source trees and target trees (Eisner, 2003; Ding 
and Palmer, 2005; Cowan et al., 2006; Zhang et 
al., 2008; Liu et al., 2009). In these models, au-
tomatic extraction of translation rules is an im-
portant issue, in which translation rules are typi-
cally extracted using parse trees on 
source/target-language side or both sides of the 
bilingual text. Exploiting the syntactic informa-

tion encoded in translation rules, syntax-based 
systems have shown to achieve comparable per-
formance with phrase-based systems, even out-
perform them in some cases (Marcu et al., 2006). 

Among all the factors contributing to the suc-
cess of syntax-based systems, rule coverage has 
been proved to be an important one that affects 
the translation accuracy of syntax-based systems 
(DeNeefe et al., 2007; Shen et al., 2008). How-
ever, these systems suffer from a problem that 
translation rules are extracted using only 1-best 
parse tree generated by a single parser, which 
generally results in relatively low rule coverage 
due to the limited scope in rule extraction (Mi 
and Huang, 2008). To alleviate this problem, a 
straightforward solution is to enlarge the scope 
of rule extraction, and obtain translation rules by 
using a group of diversified parse trees instead 
of a single parse tree. For example, Mi and 
Huang (2008) used k-best parses and forest to 
extract translation rules for improving the rule 
coverage in their forest-based SMT system, and 
achieved promising results. However, most pre-
vious work used the parse trees generated by 
only one parser, which still suffered somewhat 
from the relatively low diversity in the outputs 
of a single parser. 

Addressing this issue, we investigate how to 
extract diversified translation rules using multi-
ple parsers. As different parsers (or parsing 
models) can provide us with parse trees having 
relatively large diversity, we believe that it is 
beneficial to employ multiple different parsers to 
obtain diversified translation rules and thus en-
large the rule coverage. Motivated by this idea, 
we propose a simple and effective method to 
improve rule coverage by using multiple parsers 
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in rule extraction. Furthermore, we conduct an 
empirical study to investigate the effectiveness 
of our method on Chinese-English translation in 
a string-to-tree system. Experimental results 
show that our method improves the baseline sys-
tem by over 0.9 BLEU points on both NIST 
2004 and 2005 test corpora, even achieves a +1 
BLEU improvement when working with the k-
best extraction method. More interestingly, we 
observe that the MT performance is not very 
sensitive to the parsing performance of the pars-
ers used in rule extraction. Actually, the MT sys-
tem does not show different preferences for dif-
ferent parsers. 

2 Related Work 

In machine translation, some efforts have been 
made to improve rule coverage and advance the 
performance of syntax-based systems. For ex-
ample, Galley et al. (2006) proposed the idea of 
rule composing which composes two or more 
rules with shared states to form a larger, com-
posed rule. Their experimental results showed 
that the rule composing method could signifi-
cantly improve the translation accuracy of their 
syntax-based system. Following Galley et al. 
(2006)’s work, Marcu et al. (2006) proposed 
SPMT models to improve the coverage of phras-
al rules, and demonstrated that the system per-
formance could be further improved by using 
their proposed models. Wang et al. (2007) de-
scribed a binarization method that binarized 
parse trees to improve the rule coverage on non-
syntactic mappings. DeNeefe et al. (2007) analy-
ized the phrasal coverage problem, and com-
pared the phrasal coverage as well as translation 
accuracy for various rule extraction methods 
(Galley et al., 2006; Marcu et al., 2006; Wang et 
al., 2007). 

As another research direction, some work is 
focused on enlarging the scope of rule extraction 
to improve rule coverage. For example, (Venu-
gopal et al., 2008) and (Mi and Huang, 2008) 
extracted rules from the k-best parses and forest 
generated by a single parser to alleviate the 
problem of the limited scope of 1-best parse, and 
achieved promising results. 

Our work differs from previous work in that 
we are concerned with obtaining diversified 
translation rules using multiple different parsers 
(or parsing models) instead of a single parser (or 

parsing model). It can be regarded as an en-
hancement of previous studies. As shown in the 
following parts of this paper, it works very well 
with the existing techniques, such as rule com-
posing (Galley et al., 2006), SPMT models 
(Marcu et al., 2006) and rule extraction with k-
best parses (Venugopal et al., 2008). 

3 Translation Rule Extraction 

In this work, the issue of translation rule extrac-
tion is studied in the string-to-tree model pro-
posed by Galley et al. (2006).  We choose this 
model because it has been shown to be one of 
the state-of-the-art syntax-based models, and has 
been adopted in the most successful systems in 
NIST 2009 MT evaluation.  

Typically, (string-to-tree) translation rules are 
learned from the word-aligned bilingual text 
whose target-side has been parsed using a syn-
tactic parser. As the basic unit of translation, a 
translation rule consists of sequence words or 
variables in the source language, and a syntax 
tree in the target language having words (termi-
nals) and variables (non-terminals) at leaves. 
Figure 1 shows the translation rules extracted 
from a word-aligned sentence pair with a target-
side parse tree. 

 
Figure 1: Translation rules extracted from a 
string-tree pair. 
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Figure 2: Rule extraction using two different parsers (Berkeley Parser and Collins Parser). The 
shaded rectangles denote the translation rules that can be extracted from the parse tree generated by 
one parser but cannot be extracted from the parse tree generated by the other parser. 

 
To obtain basic translation rules, the (minimal) 

GHKM extraction method proposed in (Galley 
et al, 2004) is utilized. The basic idea of GHKM 
extraction is to compute the set of the mini-
mally-sized translation rules that can explain the 
mappings between source-language string and 
target-language tree while respecting the align-
ment and reordering between the two languages. 
For example, from the string-tree pair shown at 
the top of Figure 1, we extract the minimal 
GHKM translation rules r1-6. In addition to 
GHKM extraction, the SPMT models (Marcu et 
al., 2006) are employed to obtain phrasal rules 
that are not covered by GHKM extraction.  For 
example, rule r8  in Figure 1 is a SPMT rule that 
is not obtained in GHKM extraction. Finally, the 
rule composing method (Galley et al., 2006) is 
used to compose two or more minimal GHKM 
or SPMT rules having shared states to form lar-
ger rules. For example, rule r7 in Figure 1 is gen-
erated by composing rules r2 and r6. 

4 Differences in Coverage between Rule 
Extractions with Different Parsers 

As described above, translation rule extraction 
relies on the outputs (parse trees) of parsers. As 
different parsers generally have large diversity 
between their outputs, rule extractions with dif-
ferent parsers generally result in very different 
sets of rules. For example, Figure 2 shows the 
rule extractions on a word-aligned sentence pair 
having two target-trees generated by Berkeley 
Parser and Collins Parser, respectively. It is ob-
served that Figure 2 (a) and (b) cover different 
sets of rule due to the different target-trees used 
in rule extraction. Particularly, well-formed rules 
ra7-a9 are extracted in Figure 2 (a), while they do 
not appear in Figure 2 (b). Also, rules rb7-b9 in 
Figure 2 (b) have the similar situation. This ob-
servation gives us an intuition that there is a 
“complementarity” between the rules extracted 
using different parsers. 
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We also conduct a quantitative study to inves-
tigate the impact of using different parsers 
(Berkeley Parser and Collins Parser) on rule 
coverage. Tables 1 shows the statistics of the 
rules extracted from 370K Chinese-English par-
allel sentence pairs1 using the method described 
in Section 3. In addition to the total number of 
rules extracted, the numbers of phrasal rules and 
useful rules are also reported to indicate the rule 
coverage of a rule set. Here phrasal rule refers 
to the rule whose source-side and the yield of its 
target-side contains only one phrase each, with 
optional surrounding variables. According to 
(DeNeefe et al., 2007), the number of phrasal 
rules is a good indicator of the coverage of a rule 
set. useful rule refers to the rule that can be ap-
plied when decoding the test sentences 2 . As 
shown in Table 1, the two resulting rule sets on-
ly have about 70% overlaps (Column 4), and the 
rule coverage increases by about 20% when we 
combine them together (Column 5). This finding 
confirms that the rule coverage can be improved 
by using multiple different parsers in rule extrac-
tion. 

 # of rules # of phrasal 
rules 

# of  
useful rules

Berkeley 3,538,332 2,515,243 549,783 
Collins 3,526,166 2,481,195 553,893 
Overlap 2,542,380 1,907,521 386,983 
Union 4,522,118 3,088,920 716,693 

Table 1: Comparison of rule coverage between 
different rule sets. 

5 Translation Rule Extraction with 
Multiple Parsers 

5.1 Rule Extraction Algorithm 

Motivated by the above observations, we pro-
pose a rule extraction method to improve the 
rule coverage by using multiple parsers.  

Let <f, e, a> be a tuple of <source sentence, 
target sentence, bi-directional word alignments>, 
                                                 
1 LDC2005T10, LDC2003E07, LDC2003E14 and 
LDC2005T06 
2 In this experiment, the test sentences come from 
NIST 2004 and 2005 MT evaluation sets. It should be 
noted that due to the pruning in decoding we cannot 
count the exact number of rules that can be used dur-
ing decoding. In this work, we use an alternative – 
the number of rules matched with test sentences – to 
estimate an upper-bound approximately. 

and {P1, ..., PN} be N syntactic parsers in target-
language. The following pseudocode formulizes 
the algorithm for extracting translation rules 
from <f, e, a> using parsers {P1, ..., PN}, where 
Pi(e) returns the parse tree generated by the i-th 
parser Pi. Function GENERATERULES() com-
putes the set of rules for <f, ti, a> by using vari-
ous rule extraction methods, such as  the method 
described in Section 3. 

Multi-Parser based Rule Extraction  
Input: <f, e, a> and P = {P1, ..., PN} 
Output: rule set R 
1 Function MULTIPAREREXTRACTOIN(<f, e, a>, P )
2     for i = 1 to N do                           <  for each parser
3        ti = Pi(e)                                      <  target-tree 
4       Ri = GENERATERULES (f, ti, a) <  rule extraction 
5       R.append(Ri) 
6     return R 
7 Function GENERATERULES ( f, ti, a ) 
8     return rules extracted from <f, ti, a> 

5.2 Learning Rule Probabilities 

In multi-parser based rule extraction, more than 
one parse trees are used, and each of them is as-
sociated with a parsing confidence (e.g. genera-
tive probability of the tree). Ideally, if the parse 
trees used in rule extraction can be accurately 
weighted, the rule probabilities will be better 
estimated according to the parse weights, for 
example, the rules extracted from a parse tree 
having a low weight should be penalized accord-
ingly in the estimation of rule probabilities. Un-
fortunately, the tree probabilities are generally 
incomparable between different parsers due to 
the different parsing models used and ways of 
implementation. Thus we cannot use the poste-
rior probability of a rule’s target-side to estimate 
the fractional count (Mi and Huang, 2008; Liu et 
al., 2009), which is used in maximum-likelihood 
estimation of rule probabilities. In this work, to 
simplify the problem, we assume that all the 
parsers have the same and maximum degrees of 
confidence on their outputs. For a rule r ex-
tracted from a string-tree pair, the count of r is 
defined to be: 

1
( , )

( )
N

i
r i

c r
N
τ

== ∑                     (1) 

where ( , )r iτ is 1 if r is extracted by using the i-
th parser, otherwise 0.  
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Following Mi and Huang (2008)’s work, three 
conditional rule probabilities are employed for 
experimenting with our method. 

': ( ') ( )

( )Pr( | ( ))
( )

r root r root r

c rr root r
c r

=

=
∑

       (2) 

': ( ') ( )

( )Pr( | ( ))
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c rr lhs r
c r

=

=
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            (3) 

': ( ') ( )

( )Pr( | ( ))
( )

r rhs r rhs r

c rr rhs r
c r

=

=
∑

           (4) 

where lhs(r) and rhs(r) are the source-hand and 
target-hand sides of r respectively, and root(r) is 
the root of r’s target-tree. 

5.3 Parser Indicator Features 

For each rule, we define N indicator features (i.e. 
( , )r iτ ) to indicate a rule is extracted by using 

which parsers, and add them into the translation 
model. By training the feature weights with Min-
imum Error Rate Training (MERT), the system 
can learn preferences for different parsers auto-
matically. 

6 Experiments 

The experiments are conducted on Chinese-
English translation in a state-of-the-art string-to-
tree SMT system.  

6.1 Experimental Setup 

Our bilingual data consists of 370K sentence 
pairs (9M Chinese words + 10M English words) 
which have been used in the experiment in Sec-
tion 4. GIZA++ is employed to perform the bidi-
rectional word alignment between the source and 
target sentences, and the final word alignment is 
generated using the inter-sect-diag-grow method. 
A 5-gram language model is trained on the tar-
get-side of the bilingual data and the Xinhua 
portion of English Gigaword corpus. The devel-
opment data set comes from NIST MT 2003 
evaluation set. To speed up MERT, sentences 
with more than 20 Chinese words are removed. 
The test sets are the NIST MT evaluation sets of 
2004 and 2005.  

Our baseline MT system is built based on the 
string-to-tree model proposed in (Galley et al., 
2006). In this system, both of minimal GHKM 
(Galley et al., 2004) and SPMT rules (Marcu et 
al., 2006) are extracted from the bilingual corpus, 

and the composed rules are generated by com-
posing two or three minimal GHKM and SPMT 
rules3. We use a CKY-style decoder with cube 
pruning (Huang and Chiang, 2007) and beam 
search to decode new Chinese sentences. By de-
fault, the beam size is set to 30. For integrating 
n-gram language model into decoding efficiently, 
rules containing more than two variables or 
source word sequences are binarized using the 
synchronous binarization method (Zhang et al., 
2006; Xiao et al., 2009).  

The system is evaluated in terms of the case-
insensitive NIST version BLEU (using the 
shortest reference length), and statistical signifi-
cant test is conducted using the re-sampling me-
thod proposed by Koehn (2004). 

6.2 The Parsers 

Four syntactic parsers are chosen for the ex-
periments. They are Stanford Parser4, Berkeley 
Parser 5 , Collins Parser (Dan Bikel’s reimple-
mentation of Collins Model 2) 6  and Charniak 
Parser7. The former two are state-of-the-art non-
lexicalized parsers, while the latter two are state-
of-the-art lexicalized parsers. All the parsers are 
trained on sections 02-21 of the Wall Street 
Journal (WSJ) Treebank, and tuned on section 
22. Table 2 summarizes the performance of the 
parsers. 

Parser Recall Precision F1 
Stanford 86.29% 87.21% 86.75% 
Berkeley 90.18% 90.45% 90.32% 
Collins 89.14% 88.85% 88.99% 
Charniak 89.99% 90.28% 90.13% 

Table 2: Performance of the four parsers on sec-
tion 23 of the WSJ Treebank. 

We parse the target-side of the bilingual data 
using the four parsers individually. From the 1-
best parses generated by these parsers, we obtain 
four baseline rule sets using the method de-
scribed in Section 3, as well as the rule sets usi- 

                                                 
3 Generally a higher baseline can be obtained by 
combining more (unit) rules. However, we find that 
using more composed rules does not affect the impact 
of using multiple parsers. Thus, we choose this set-
ting in order to finish all experiments in time. 
4 http://nlp.stanford.edu/software/lex-parser.shtml 
5 http://code.google.com/p/berkeleyparser/ 
6 http://www.cis.upenn.edu/~dbikel/download.html 
7 http://www.cs.brown.edu/people/ec/#software 
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Rule Coverage BLEU4 (%)  Rule set 
# of rules # of  

phrasal rules
# of  
useful rules 

Dev. MT04 MT05 

Stanford (S) 3,679 K 2,581 K 573 K 39.36 36.02 36.98 
Berkeley (B) 3,538 K 2,515 K 549 K 39.32 36.05 36.98 
Collins (Co) 3,526 K 2,481 K 553 K 39.16 36.07 36.91 

B
as

el
in

e 

Charniak (Ch) 3,450 K 2,435 K 540 K 39.24 35.90 36.89 
S + B 4,567 K 3,105 K 726 K 39.87+ 36.57+ 37.47+ 
S + Co 4,734 K 3,202 K 752 K 39.94+ 36.57+ 37.52+ 
S + Ch 4,764 K 3,258 K 751 K 40.01+ 36.51 37.59+ 
B + Co 4,522 K 3,088 K 716 K 39.84+ 36.60+ 37.46+ 
B +  Ch 4,562 K 3,129 K 717 K 39.81+ 36.49 37.41 

2 
pa

rs
er

s 

Co + Ch 4,592 K 3,125 K 727 K 39.75 36.55+ 37.43+ 
S + B + Co 5,331 K 3,543 K 852 K 40.14++ 36.83++ 37.78++ 
S + B + Ch 5,380 K 3,590 K 854 K 40.05+ 36.82++ 37.70+ 
S + Co + Ch 5,551 K 3,663 K 877 K 40.35++ 36.70+ 37.70+ 3 

pa
rs

er
s 

B + Co + Ch 5,294 K 3,544 K 840 K 40.04+ 36.76+ 37.65+ 

4 S + B + Co + Ch 6,005 K 3,940 K 958 K 40.28++ 36.99++ 37.89++ 
Table 5: Evaluation results. + or ++ = significantly better than all the baseline systems (using single 
parser) at the 95% or 99% confidence level. 

 
 Stanford Berkeley Collins Charniak
Stanford 100% 76.72% 73.32% 74.89% 
Berkeley 76.72% 100% 75.69% 76.76% 
Collins 73.32% 75.69% 100% 74.84% 
Charniak 74.89% 76.76% 74.84% 100% 
Table 3: Agreement between different parsers. 
 
ng the multi-parser based rule extraction method.  
Before conducting primary experiments, we first 
investigate the differences between the 1-best 
outputs of the parsers. Table 3 shows the agree-
ment between each pair of parsers. Here the de-
gree of agreement shown in each cell is com-
puted by using one parser’s output as a good 
standard to evaluate the other parser’s output in 
terms of F1 score, and a higher agreement score 
(i.e. F1 score) means that the 1-best outputs of 
the two parsers are more similar to each other. 
We see that the agreement scores between dif-
ferent parsers are always below 80%. This result 
reflects a large diversity in parse trees generated 
by different parsers, and thus confirms our ob-
servations in Section 4. 

We also examine the “complementarity” be-
tween the baseline rule sets generated by using 
different parsers individually. Table 4 shows the 
results, where the degree of “complementarity” 
between two rule sets is defined as the percent-
age of the rules in one rule set that are not cov-
ered by the other rule set. It can be regarded as a 
measure of the disagreement between two rule 

sets, and a higher number indicates large “com-
plementarity”. For example, in Row 2, Column 3 
(Table 4), “25.09%” means that 25.09% rules in 
the first rule set (using Stanford Parser) are not 
covered by the second rule set (using Berkeley 
Parser). Table 4 shows that there is always a dis-
agreement of over 25% between different rule 
sets. These results indicate that using different 
parsers can lead to a relatively large “comple-
mentarity” between the rule sets.  

 Stanford Berkeley Collins Charniak
Stanford 0% 25.09% 29.91% 31.43% 
Berkeley 27.98% 0% 27.90% 29.68% 
Collins 32.84% 28.15% 0% 30.89% 
Charniak 35.70% 31.43% 32.37% 0% 
Table 4: Disagreement between the rule sets ob-
tained using different parsers individually. 

6.3 Evaluation of Translations 

We then study the impact of multi-parser based 
rule extraction on translation accuracy.  Table 5 
shows the BLEU scores as well as the rule cov-
erage for various rule extraction methods. We 
see, first of all, that the rule coverage is im-
proved significantly by multi-parser based rule 
extraction. Compared to the baseline method (i.e. 
single-parser based rule extraction), the multi-
parser based rule extraction achieves over 20% 
coverage improvements when only two parsers 
are used, even yields gains of over 50 percentage 
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points when all the four parsers are used together. 
Also, BLEU score is improved by multi-parser 
based rule extraction. When two parsers are em-
ployed in rule extraction, there is generally a 
gain of over 0.4 BLEU points on both MT04 and 
MT05 test sets. Further improvements are 
achieved when more parsers are involved. On 
both test sets, using three parsers in rule extrac-
tion generally yields a +0.7 BLEU improvement, 
and using all the parsers together yields a +0.9 
BLEU improvement which is the biggest im-
provement achieved in this set of experiment. 
All these results show that multi-parser based 
rule extraction is an effective way to improve the 
rule coverage as well as the BLEU score of the 
syntax-based MT system. 

An interesting finding is that there seems no 
significant differences in BLEU scores between 
the baseline systems (using single parsers), 
though the parsing performance of the corre-
sponding parsers is very different from each 
other. For example, the MT performance corre-
sponding to Berkeley Parser is very similar to 
that corresponding to Stanford Parser despite a 
4-point difference in F1 score between the two 
parsers. Another example is that Charniak parser 
performs slightly worse than the other three on 
MT task, though it achieves the 2nd best parsing 
performance in all the parsers. This interesting 
finding shows that the performance of syntax-
based MT systems is not very sensitive to the 
parsing performance of the parsers used in rule 
extraction. 

6.4 Preferences for Parsers 

We also investigate the preferences for different 
parsers in our system. Table 6 shows the weights 
of the parser indicator features learned by 
MERT, as well as the number of edges gener-
ated by applying the rules corresponding to dif-
ferent parsers during decoding. Both of the met-
rics are used to evaluate the contributions of the 
parsers to MT decoding. We see that though 
Stanford Parser and Berkeley Parser are shown 
to be relatively more preferred by the decoder, 
there are actually no significant differences in 
the degrees of the contributions of different 
parsers. This result also confirms the fact ob-
served in Table 5 that the MT system does not 
have special preferences for different parsers. 

 

Indicator Weight # of edges 
(Dev.) 

# of edges 
 (MT04) 

# of edges 
(MT05) 

Stanford 0.1990 7.7 M 169.2 M 101.7 M
Berkeley 0.1982 7.7 M 166.3 M 100.2 M
Collins 0.1690 6.9 M 149.9 M   93.1 M
Charniak 0.1729 7.1 M 156.5 M   97.2 M

Table 6: Preferences for different parsers. 

Though Table 6 provides some information 
about the contributions of different parsers, it 
still does not answer how often these rules are 
really used to generate final (1-best) translation. 
Table 7 gives an answer to this question. We see 
that, following the similar trend in Table 5, dif-
ferent parsers have nearly equal contributions in 
generating final translation. 

Indicator # of rules 
used in 1-best  
(Dev.) 

# of rules 
used in 1-best  
(MT04) 

# of rules 
used in 1-best  
(MT05) 

Stanford     2,410 23,513 14,357 
Berkeley     2,455 23,878 14,670 
Collins     2,309 22,654 13,815 
Charniak     2,269 22,406 13,731 

Table 7: Numbers of rules used in generating 
final (1-best) translation. 

6.5 Rule Extraction with k-best Parses 

We also conduct experiments to compare the 
effectiveness of multi-parser based rule extrac-
tion and rule extraction with k-best parses gener-
ated by a single parser. As Berkeley parser is 
one of the best-performing parsers in previous 
experiments, we employ it to generate k-best 
parses in this set of experiment. As shown in 
Figure 3, both of the methods improve the 
BLEU scores by enlarging the set of parse trees 
used in rule extraction. Compared to k-best ex-
traction, multi-parser extraction shows consiste- 

 36.8
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Figure 3: Multi-parser based rule extraction vs. 
rule extraction with k-best parses (MT05). 
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ntly better BLEU scores. Using 4 different pars-
ers, it achieves an improvement of 0.6 BLEU 
points over k-best extraction where even 50-best 
parses are used. 

Finally, we extend multi-parser based rule ex-
traction to extracting rules from the k-best parses 
generated by multiple parsers. Figure 4 shows 
the results on “S + B + Co + Ch” system. We see 
that multi-parser based rule extraction can bene-
fit from k-best parses, and yields a modest (+0.2 
BLEU points) improvement when extracting 
from 10-best parses. However, since k-best ex-
traction generally results in much slower extrac-
tion speed, it might not be a good choice to use 
k-best parses to improve our method in practice. 

 37.7
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Figure 4: Multi-parser based rule extraction & 
rule extraction with k-best parses (MT05). 

7 Discussion and Future Work 

In this work, all the parsers are trained using the 
same treebank. To obtain diversified parse trees 
for multi-parser based rule extraction, an alterna-
tive way is to learn parsers on treebanks anno-
tated by different organizations (e.g. Penn Tree-
bank and ICE-GB corpus). Since different tree-
banks can provide us with more diversity in 
parsing, we believe that our system can benefit a 
lot from the parsers that are learned on multiple 
different treebanks individually. But here is a 
problem that due to the different annotation 
standards used, there is generally an incompati-
bility between treebanks annotated by different 
organizations. It will result in that we cannot 
straightforwardly mix the resulting rule sets (or 
heterogeneous grammars for short) for probabil-
ity estimation as well as the use for decoding. To 
solve this problem, a simple solution might be 
that we transform the incompatible rules into a 
unified form. Alternatively, we can use hetero-

geneous decoding (or parsing) techniques (Zhu 
et al., 2010) to make use of heterogeneous 
grammars in the stage of decoding. Both topics 
are very interesting and worth studying in our 
future work.  

Besides k-best extraction, our method can also 
be applied to other rule extraction schemes, such 
as forest-based rule extraction. As (Mi and 
Huang, 2008) has shown that forest-based ex-
traction is more effective than k-best extraction 
in improving translation accuracy, it is expected 
to achieve further improvements by using multi-
parser based rule extraction and forest-based rule 
extraction together. 

8 Conclusions  

In this paper, we present a simple and effective 
method to improve rule coverage by using mul-
tiple parsers in translation rule extraction. Ex-
perimental results show that  

 Using multiple parsers in rule extraction 
achieves large improvements of rule cover-
age over the baseline method where only a 
single parser is used, as well as a +0.9 
BLEU improvement on both NIST 2004 
and 2005 test corpora. 

 The MT system can be further improved by 
using multiple parsers and k-best parses to-
gether. However, with the consideration of 
extraction speed, it might not be a good 
choice to use k-best parses to improve mul-
ti-parser based rule extraction in practice. 

 The MT performance is not influenced by 
the parsing performance of the parsers used 
in rule extraction very much. Actually, the 
MT system does not show different prefer-
ences for different parsers. 
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