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ABSTRACT
Minimum error rate training is a popular method for parameter tuning in statistical machine
translation (SMT). However, the optimization objective function may change drastically at
each optimization step, which may induce MERT instability. We propose an alternative tuning
method based on an ultraconservative update, in which the combination of an expected task
loss and the distance from the parameters in the previous round are minimized with a variant
of gradient descent. Experiments on test datasets of both Chinese-to-English and Spanish-to-
English translation show that our method can achieve improvements over MERT under the
Moses system.

KEYWORDS: statistical machine translation; tuning; minimum error rate training; ultraconser-
vative update; expected BLEU.
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1 Introduction

Minimum error rate training (Och, 2003), MERT, is an important component of statistical
machine translation (SMT), and it has been the most popular method for tuning parameters
for SMT systems. One of its major contributions is the use of an evaluation metric, such as
BLEU (Papineni et al., 2002), as a direct loss function during its optimization procedure by
interchanging decoding and optimization steps in each round.

While MERT is successful in practice, it is known to be unstable (Clark et al., 2011). At the
optimization step in each round, MERT tries to repeatedly optimize a loss function defined by
the k-best candidate lists. Since new k-best lists are generated and merged with the previously
generated lists at each round, the optimization objective function may change drastically
between two adjacent rounds (Pauls et al., 2009), and the optimized weights of these two
rounds may also be far from each other.

Motivated by the above observation, this paper investigates a new tuning approach under the k-
best lists framework, instead of the lattices or hypergraphs framework as Macherey et al. (2008)
and Kumar et al. (2009), to achieve a more stable loss function between optimization steps. We
propose an expected loss-based ultraconservative update method, in which an expected loss is
minimized using an ultraconservative update strategy (Crammer and Singer, 2003; Crammer
et al., 2006). In the optimization step, we iteratively learn the weight which should not only
minimize the error rates as in MERT but also not be far from the weight learned at the previous
optimization step. Instead of using the L2 in Euclidean space to describe the distances between
the two weights as in the Margin Infused Relaxed Algorithm (MIRA), we define a new distance
metric inspired by the max-posterior probability decoding strategy in translation.

Compared with MERT, in which an exact line search is difficult to implement, our method is
easier since we employ a gradient-based algorithm, which is simple but proved to be successful
in other tasks such as tagging or parsing. Further, experiments on Chinese-to-English and
Spanish-to-English show that our method outperforms MERT.

2 MERT Revisited

MERT is the most popular method to tune parameters for SMT systems. The main idea behind
it is that it iteratively optimizes the weight such that, after re-ranking a k-best list of a given
development set with this weight, the error of the resulting 1-best list is minimal.

The whole tuning algorithm with MERT is described in Algorithm 1. It requires a development
set {〈 fi; ri〉}ni=1 with fi as the source sentence and ri as its reference, initial weight Wini t and
the maximal iterations K . It initializes some parameters in line 1: iteration index k; the current
weight Wk; the accumulated k-best list ci . For each optimization step k ≤ K, it repeatedly
performs decoding and training during the loop from line 2 to line 9: for each sentence fi , it
decodes to get tci and updates ci; it minimizes the error rates to obtain Wk+1. At the end of the
algorithm, it returns WK .

The definition of Loss in line 7 of Algorithm 1 is formalized as follows:

Losser ror

��
ri; ê( fi; W )
	n

i=1

�
, (1)
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Algorithm 1 TUNING WITH MERT
Input: {〈 fi; ri〉}ni=1; Wini t ; K
Output: W

1: k = 1; Wk =Wini t ; {ci = ;}ni=1 //initialization, ci the accumulated k-best list for fi
2: while k ≤ K do
3: for all sentence fi such that 1≤ i ≤ n do
4: Decode fi with Wk to get tci; // tci translation candidates of k-best decoding
5: ci = ci

⋃
tci;

6: end for
7: Set Wk+1 as the weight according to a Loss of error rates defined on tci and W ;
8: k++;
9: end while

10: W =WK ;

with

ê( f ; W ) = argmaxeP(e| f ; W )

= argmaxe
exp
�
W · h( f , e)
	

∑
e′ exp
�
W · h( f , e′)
	 = argmaxe
�
W · h( f , e)
	
, (2)

where h( f , e) denotes the feature vector of f and its translation e. Losser ror is usually set as
Corpus-BLEU (exactly speaking, minus BLEU). Eq. 2 describes the maximal posterior decoding
strategy.

As mentioned in Section 1, since at each optimization step a new k-best list tci is generated
and merged with ci , the optimization objective will change between two adjacent optimization
steps. This can increase the instability of MERT. In the next section, we will investigate the
strategy of ultraconservative update to address this issue.

3 Expected Loss Based Ultraconservative Update

Ultraconservative Update is an efficient way to consider the trade-off between the amount of
progress made on each round and the amount of information retained from previous rounds.
On one hand, the weight update should assure better performance to improve optimization. On
the other hand, the new weight must stay as close as possible to the weight optimized on the
last round, thus retaining the information learned on previous rounds.

3.1 Objective Function

Suppose Wk be the weight learnt from last optimization step, {〈 fi;ci; ri〉}ni=1 a translation space
obtained with Wk, where fi is a source sentence, ci is a set of translation candidates and ri is
a set of references for fi . Now we want to optimize Wk+1 using the idea of ultraconservative
update to the objective of MERT, and we obtain the following objective function:

d(W, Wk) +λLosser ror

��
ri; ê( fi; W )
	n

i=1

�
, (3)

where d(W, Wk) is a distance function of a pair of weights and it is used to penalize a weight
far away from Wk. Losser ror is the objective function of MERT as defined in Eq. 1. λ ≥ 0 is the
regularization penalty. When λ→∞ Eq. 3 goes back to the objective function of MERT.
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Because the first term d in Eq. 3 is not piecewise linear in respect to W , the exact line search
routine in MERT does not hold anymore. Generally, it is not easy to directly minimize Eq. 3.
Motivated by (Och, 2003; Smith and Eisner, 2006; Zens et al., 2007), we use the expected loss
to substitute the direct loss in Eq. 3 and we obtain the objective function as follows:

d(W, Wk) +
λ

n

n∑
i=1

∑
e∈ci

Losser ror(ri; e)Pα(e| fi; W ), (4)

with

Pα(e| fi; W ) =
exp[αW · h( fi , e)]∑

e′∈ci
exp[αW · h( fi , e′)]

,

where α > 0 is a real number, each h( fi , e) is a feature vector, and d is a distance metric defined
on a pair of weights. Losser ror(ri; e) in Eq. 4 is a sentence-wise direct loss, and in this paper
we used a variant of sentence BLEU proposed by Chiang et al. (2008) which smoothes BLEU
statistics with pseudo-document.

3.2 Distance Metric Based on Projection
Euclidean distance ( L2 norm) is usually employed as in MIRA (Watanabe et al., 2007; Chiang
et al., 2008). In this section we will specifically investigate another metric for ultraconservative
update in SMT.

In log-linear based translation models, since the decoding strategy is the maximal posterior
probability, the translation results are the same for the weight W and its positive multiplication
(see Eq. 2). Therefore, for a translation decoder, we wish that the distance of two weights
satisfies the following property: the smaller the distance between them is, the more similar the
translation results decoded with them are. However, L2 norm does not satisfy this property.
Inspired by this observation, we define the distance1 between W and W ′ as follows:

d(W, W ′) =

¨
0, either W or W ′ is 0 ,
1
2
‖ W
‖W‖ − W ′

‖W ′‖‖2, otherwise , (5)

For the sake of simplicity, if we constrain the feasible region to {W : ‖W‖= 1} and substitute
the above d in Eq. 4, we derive the following optimization problem:

min
W

�
1

2
‖W −Wk‖2 +

λ

n

n∑
i=1

∑
e∈ci

Losser ror(ri; e)Pα(e| fi; W )
�

s.t. (6)

‖W‖= 1,

where we assume ‖Wk‖ = 1 , otherwise we can normalize it instead. Since Eq. 6 is defined on the
expected loss and ultraconservative update, we call it the expected loss based ultraconservative
update, or ELBUU.

1Strictly speaking, it is not the traditional distance metric because it violates the property of positive definiteness.
For example, when one of W and W ′ is zero and the other is not, it does not hold that d(W, W ′) = 0 induces W =W ′.
However, in this paper, our attention is focused on the non-zero weights.
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3.3 Gradient Descent with Projection

We employ the gradient projection method (Horst and Tuy, 1996) to optimize Eq. 6. The
gradient projection method contains two main operations, one of which is the gradient descent
for the objective function and the other is the projection of the weight into the constraint area.
The first operation is easy to implement. For the second one, taking the derivative of Pα(e| fi; W )
with respect to W , the following equation holds:

∇W Pα(e| f ; W ) = αPα(e| f ; W )
�

h( f , e)− EPα(·| f ;W )(h( f , ·)
�

, (7)

with

EPα(·| f ;W )(h( f , ·)) =
∑

e′
Pα(e

′| f ; W ) ∗ h( f , e′),

where EPα(·| f ;W ) can be interpreted as the expectation of feature function h( f , ·) according to the
distribution of Pα(·| f ; W ). Then, the derivative of the objective function in Eq. 6 is as follows:

∆=W −Wk +
λ

n

n∑
i=1

∑
e

Losser ror(ri , e)∇W Pα(e| f ; W ). (8)

Algorithm 2 gives the pseudo-code of the gradient projection method to optimize Eq. 6. In
the Algorithm,η > 0 is the learning rate , ε > 0 is the threshold, and other notations are the
same as before. The loop (line 2-10) is the whole iteration step, which contains a gradient
descent operation in line 3 and a projection operation2 in line 4-8. At the end of this algorithm,
it returns Wk+1.

Algorithm 2 Gradient Descent with Projection
Input: Wk,λ,ε,α,η,
Output: Wk+1

1: W 0
k 6=Wk; W 1

k =Wk; t = 1;η1 = 1/η;// initialization
2: while (||W t

k −W t−1
k ||> ε) do

3: W t+1
k =W t

k −ηt∆ according to Eq. 8; // gradient operation

4: if W t+1
k 6= 0 then

5: W t+1
k =W t+1

k /||W t+1
k ||; //projection operation

6: else
7: Reset W t+1

k s.t. ||W t+1
k ||= 1;

8: end if
9: t++;ηt = 1/(η · t);

10: end while
11: Wk+1 =W t

k ;

2Actually, in our experiments, W does not arrive at the point 0 during the iteration steps.
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Methods NIST02(Dev) NIST03 NIST04 NIST05 NIST06 NIST08
MERT 30.39 26.45 29.47 26.31 25.34 19.07
ELBUU 30.06 27.36++ 29.89 27.03+ 26.30++ 19.79+

Table 1: Comparison of two tuning methods, MERT and ELBUU, on Chinese-to-English
translation tasks. + or ++ means the ELBUU method is significantly better than MERT with
confidence p < 0.05 or p < 0.01, respectively.

3.4 Tuning with ELBUU

Similar to tuning algorithm MERT, i.e. Algorithm 1, our tuning algorithm ELBUU repeatedly
performs decoding and optimization. In detail, Our ELBUU can be obtained from Algorithm 1
as follows: by inserting the Algorithm 2 to substitute for line 7 in Algorithm 1, and modifying
the returned weight as averaged weight3 at the end of the algorithm, one can obtain the ELBUU
tuning algorithm.

Our method ELBUU is similar to the MIRA in (Watanabe et al., 2007; Chiang et al., 2008),
since both of them employ a strategy of ultraconservative update. However, there are also
some differences between them. ELBUU optimizes the expected BLEU, a loss more approximate
towards Corpus-BLEU compared with the generalized hinge loss, and it utilizes the projection
distance metric instead of L2 as with MIRA. Further, ELBUU is a MERT-like batch mode which
ultraconservatively updates the weight with all training examples, but MIRA is an online one
which updates with each example (Watanabe et al., 2007) or parts of examples (Chiang et al.,
2008). The batch mode has some advantages over online mode: more accurate sentence-wise
BLEU towards Corpus-BLEU (Watanabe, 2012) and more promising experimental performance
(Cherry and Foster, 2012). Additionally, our method is similar to (Liu et al., 2012). However,
the main difference is that ours is a global training method instead of a local training method.

4 Experiments and Results

4.1 Experimental Setting

We conduct our translation experiments on two language pairs: Chinese-to-English and Spanish-
to-English. For the Chinese-to-English task, the training data is FBIS corpus consisting of about
240k sentence pairs; the development set is NIST02 evaluation data; the test set NIST05 is used
as the development test set for tuning hyperparameter λ in Eq. 6; and the test datasets are
NIST03, NIST04, NIST05, NIST06, and NIST08. For the Spanish-to-English task, all the datasets
are from WMT2011: the training data is the first 200k sentence pairs of Europarl corpus; the
development set is dev06; and the test datasets are test07, test08,test09, test10, test11.

We run GIZA++ (Och and Ney, 2000) on the training corpus in both directions (Koehn et al.,
2003) to obtain the word alignment for each sentence pair. We train a 4-gram language model
on the Xinhua portion of the English Gigaword corpus using the SRILM Toolkits (Stolcke, 2002)
with modified Kneser-Ney smoothing (Chen and Goodman, 1998). In our experiments, the
translation performances are measured by the case-insensitive BLEU4 metric (Papineni et al.,
2002) and we use mteval-v13a.pl as the evaluation tool. The significance testing is performed
by paired bootstrap re-sampling (Koehn, 2004).

3At the end of tuning, we average the weights as (Collins, 2002). The norm of the averaged weight may nolonger be
equal to 1, but it is irrelevant for testing, see discussion in Section 3.2.
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Methods dev06(Dev) test08 test09 test10 test11
MERT 28.85 19.68 21.36 23.35 23.65
ELBUU 28.67 20.23 21.72 23.90+ 24.18+

Table 2: Comparison of two tuning methods, MERT and ELBUU, on Spanish-to-English
translation tasks. + means the ELBUU method is significantly better than MERT with confidence
p < 0.05.

Distance metrics NIST02(Dev) NIST03 NIST04 NIST05 NIST06 NIST08
L2 29.95 27.09 29.65 26.79 25.98 19.54

Projection 30.06 27.36 29.89 27.03 26.30 19.79

Table 3: Comparison of two distance metrics L2 and projection on Chinese-to-English translation
tasks.

The translation system is a phrase-based translation model (Koehn et al., 2003) and we use
the open source toolkit MOSES (Koehn et al., 2007) as its implementation. In the experiments,
the default setting is used for MOSES. The baseline tuning method is the standard algorithm
MERT and the k-best-list size is set as 100 for tuning. For ELBUU, we empirically set α = 3.0 as
(Och, 2003), η = 1, ε = 10−5, K = 20, and we do not tune them further. We tune λ on NIST05
with λ = 1.0 for the Chinese-to-English translation tasks and we do not tune it again for the
Spanish-to-English translation tasks.

4.2 Results

Table 1 and Table 2 give the main results of ELBUU compared with the baseline MERT on
Chinese-to-English and Spanish-to-English translation tasks, respectively. Overall, we can see
that the proposed ELBUU achieves consistent improvements on both language pairs: ELBUU
is better than MERT, although some of the comparisons are not significant. In detail, for
Chinese-to-English tasks, ELBUU achieves improvements from 0.42 BLEU points on NIST04 to
0.96 BLEU points on NIST06; and for Spanish-to-English tasks, ELBUU also outperforms MERT
with improvements up to 0.5 BLEU points on both the test10 and test11 test sets.

Table 3 shows the performance of the distance metric defined in section 3.3, and L2 is used as its
comparison4. We also tune it on NIST05 and set it to 0.1 for the case of L2 distance. Although
the comparison results are not significant, we can see that the performance of projection
distance is slightly better than that of L2 distance.

Figure 1 shows the learning curves during tuning for Chinese-to-English translation tasks. It
shows that the performances over the test datasets do not decrease as iterations increase and
the weights can achieve stable performances within 20 iterations.

To further testify to the advantage of the ultraconservative update, we fix the k-best-list results
as those produced by MERT and compare ELBUU with MERT: when running ELBUU, we do not
perform the decoding step to generate the k-best list tci , and instead we set it as the k-best list

4The algorithm of ELBUU with L2 as its distance is the same as ELBUU with projection distance after deleting the
projection step in line 4-8 of Algorithm 2
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Figure 1: The learning curves for ELBUU as tuning algorithm on all the test sets of Chinese-to-
English translation. The horizontal axis denotes the number of iterations during tuning, and
the vertical one denotes the BLEU points.

Methods NIST05 NIST06 NIST08
MERT 26.31 25.34 19.07
ELBUU 26.65 25.85 19.41

Table 4: The comparison of ELBUU and MERT with the same k-best-list results for optimization
under the Chinese-to-English translation tasks.

exactly obtained by MERT tuning at the corresponding decoding step. Table 4 shows that the
ELBUU is slightly better than MERT. This fact also directly indicates the advantages of ELBUU
over MERT.

Conclusion and Future Work

This paper proposes a new tuning algorithm which minimizes the expected BLEU with ul-
traconservative update. By taking the progress made in previous rounds during the training
process, our method obtains significant improvements over MERT on many test sets for both
the Chinese-to-English and Spanish-to-English translation over the MOSES system. In future
work, we will investigate our method on large training data.
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