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Abstract

This paper addresses the problem of selecting adequate training sentence pairs from a mix-of-
domains parallel corpus for a translation task represented by a small in-domain parallel corpus.
We propose a novel latent domain translation model which includes domain priors, domain-
dependent translation models and language models. The goal of learning is to estimate the
probability of a sentence pair in mix-domain corpus to be in- or out-domain using in-domain
corpus statistics as prior. We derive an EM training algorithm and provide solutions for esti-
mating out-domain models (given only in- and mix-domain data). We report on experiments in
data selection (intrinsic) and machine translation (extrinsic) on a large parallel corpus consisting
of a mix of a rather diverse set of domains. Our results show that our latent domain invitation
approach outperforms the existing baselines significantly. We also provide analysis of the merits
of our approach relative to existing approaches.

Large parallel corpora are important for training statistical MT systems. Besides size, the relevance
of a parallel training corpus to the translation task at hand can be decisive for system performance, cf.
(Axelrod et al., 2011; Koehn and Haddow, 2012). In this paper we look at data selection where we
have access to a large parallel data repository Cmix, representing a rather varied mix of domains, and
we are given a sample of in-domain parallel data Cin, exemplifying a target translation task. Simply
concatenating Cin with Cmix does not always deliver best performance, because including irrelevant
sentences might be more harmful than beneficial, cf. (Axelrod et al., 2011). To make the best of
available data, we must select sentences from Cmix for their relevance to translating sentences from Cin.

Axelrod et al. (2011) and follow-up work, e.g., (Haddow and Koehn, 2012; Koehn and Haddow,
2012), select sentence pairs in Cmix using the cross-entropy difference between in- and mix-domain lan-
guage models, both source and target sides, a modification of the Moore and Lewis method (Moore and
Lewis, 2010). In the translation context, however, often a source phrase has different senses/translations
in different domains, which cannot be distinguished with monolingual language models. The depen-
dence of translation choice on domain suggests that the word alignments themselves can better be con-
ditioned on domain information. However, in the data selection setting, corpus Cmix often does not
contain useful domain markers, and Cin contains only a small sample of in-domain sentence pairs.

In this paper we present a latent domain translation model which weights every sentence pair 〈f , e〉 ∈
Cmix with a probability P (D | f , e) for being in-domain (D1) or out-domain (D0). Our model defines
P (e, f) =

∑
D∈{D1,D0} P (D)P (e, f | D), using a latent domain variable D ∈ {D0, D1}. Using bi-

directional translation models, this leads to a domain prior P (D), domain-dependent translation models
Pt(· |·, D) and language models Plm(· | D) as in Equation 1:

P (e, f | D) =
1
2
× {Plm(e | D)Pt(f | e, D) + Plm(f | D)Pt(e | f , D)} (1)
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For efficiency we assume IBM Model I alignments a and translation tables t(·), e.g., Pt(e |f , D) ∝∑
a

∏
i t(ei |fai , D). Language models (LMs) Plm are trained separately, albeit one problem not ad-

dressed by earlier work is how to train out-domain LMs given only in- and mix-domain data?
In our model, initially both the translation and LM probabilities estimated from Cin serve as priors for

weighting sentence pairs in Cmix as being more relevant for in-domain translation than not. This initial
weighting reveals pseudo out-domain data in Cmix, which we use to train out-domain language models
as well as initialize out-domain word alignment tables.1 With these sharpened translation and language
models, training commences using a version of EM (Dempster et al., 1977). Because the potentially
relevant data in Cmix might be a superset of any in-domain data, the estimates from Cin serve merely
as initial model estimates. Metaphorically, iterative EM training resembles party invitations
on social networks (hence, the Invitation model): if initially in/out-domain sentence pairs (the hosts)
invite some sentence pairs from Cmix, in the next iteration the new pseudo in/out-domain sentences
help invite more sentence pairs. In EM, sentence pairs receive weighted, rather than absolute, invitations
from in- and out-domain models.

We present extensive experiments on a rather difficult selection task exploiting a large mix-domain
corpus of 4.61M sentence pairs. Initially we conduct intrinsic evaluation on the mix-domain corpus
where we also hide in-domain data and seek to retrieve it. Subsequently we conduct full MT experiments
over the task. The results show that our Invitation model gives far better selections as well as translation
performance than the baseline trained on the large data Cmix.

1 Invitation models of weighting and selection

By now training data selection from large mix-domain data is an accepted necessity, e.g., (Axelrod et
al., 2011; Gascó et al., 2012; Haddow and Koehn, 2012; Banerjee et al., 2012; Irvine et al., 2013).
Data selection has a different (but complementary) goal than domain adaptation, which aims at adapting
an existing out-domain system by focusing on, e.g., translation model (Koehn and Schroeder, 2007;
Foster and Kuhn, 2007; Sennrich, 2012), reordering model (Chen et al., 2013) and/or language model
adaptation (Eidelman et al., 2012). Our setting is in line with data selection approaches (Moore and
Lewis, 2010; Axelrod et al., 2011; Duh et al., 2013), and is somewhat related to phrase pair weighting
(Matsoukas et al., 2009; Foster et al., 2010). In this paper we explicitly draw attention to the special
case of a mix-domain parallel corpus consisting of a large and rather diverse set of domains.

Our model assigns to every sentence pair 〈f , e〉 ∈ Cmix a probability as in Equation 2:

P (D | f , e) =
P (f , e, D)∑

D∈{D1,D0} P (f , e, D)
(2)

P (f , e, D) =
1
2
× P (D)× {Plm(e | D)Pt(f | e, D) + Plm(f | D)Pt(e | f , D)}

Viewed as learning two latent corpora C1 and C0, the task is to assign every 〈f , e〉 ∈ Cmix an expected
count P (Dx | f , e) that it is in Cx ∈ {C0, C1}. Next we discuss the model components each in turn.

The domain-dependent translation models Pt(· |D) can be viewed as modeling the probability that e
translates as f in domain D ∈ {D0, D1}. Given f = f1, f2, . . . , fm and e = e1, e2, . . . , el, we assume
(hidden) alignments a = a1, a2, . . . , am akin to IBM Model I (Brown et al., 1993):

Pt(f ,a | e, D) =
ε

(l + 1)m

∏m

j=1
t(fj |eaj , D) (3)

Pt(f | e, D) =
∑

a
Pt(f ,a|e, D) =

ε

(l + 1)m

∏m

j=1

∑l

i=0
t(fj |ei, D). (4)

1Earlier work on data selection exploits the contrast between in-domain and mix-domain instead of (pseudo) out-domain
language models. However, the mix-domain language models trained on a mix of rather diverse set of domains could be
considered kind of wide-coverage, which makes for a rather weak contrast with the in-domain language models.
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where t(fj |eaj , D) is the domain-dependent lexical probability of fj given eaj with respect to D. One
crucial aspect about model inspired by IBM-Model-I is that Pt(f | e, D) can be estimated efficiently, as
in Equation 4. This makes the training particularly efficient as detailed in Section 2

The in-/out-domain source and target language models are not the same as in previous work, e.g.,
(Axelrod et al., 2011), which employ in-/mix-domain language models. This makes explicit the difficulty
in finding data to train out-domain language models, and we present a solution in Section 2.

The domain priors P (D1) and P (D0) represent the percentage of the pairs that are in-/ and out
domain respectively in Cmix learned by our model. Their estimate during training might be a reasonable
selection cut-off threshold. However, we found that it is not entirely clear whether these cut-off criteria
might exclude other relevant/irrelevant pairs that are not exactly in-domain. We leave this extension for
future work.2

Finally, it should be noted that the domain-dependent word alignment model, t(f |e,D) is a gener-
alization of the standard (domain-independent) word alignment model, t(f |e), in which, t(f |e,D) =

t(f |e)t(D|f,e)∑
f t(f |e)t(D|f,e) . Here, t(D|f, e) can be thought of as the latent word-relevance models, i.e., the proba-

bility that a word pair is relevant for in- (D1) or out-domain (D0). Empirical results (beyond the scope
of this work) show that training the latent in-domain alignment model, t(f |e,D1) often gives better
translation systems than training the standard (domain-independent) alignment model, t(f |e).

2 Training

With all language models trained separately, our selection model can be viewed to have two sets of
domain-dependent parameters Θ = {ΘD0 ,ΘD1}. The parameters ΘD consist of the domain-dependent
lexical parameters (e.g., tΘD(f |e,D), tΘD(e|f,D)) and the domain prior parameter (e.g., PΘD(D)).
Our training procedure seeks the parameters Θ that maximize the log-likelihood of Cmix:

L =
∑

f ,e
logPΘ(f , e) =

∑
f ,e

log
∑

D

∑
a
PΘD(a, D, f , e) (5)

Because of the latent variables a and D, there is no closed form solution and the model is fit using the
EM algorithm (Dempster et al., 1977). EM can be seen to maximize L via block-coordinate ascent on a
lower bound F(q,Θ) using an auxiliary distribution over the latent variables q(a, D|f , e)

L ≥ F(q,Θ) =
∑

f ,e

∑
D

∑
a
q(a, D | f , e) log

PΘD(a, D, f , e)
q(a, D | f , e)

(6)

where the inequality results from log being concave and Jensen’s inequality. We rewrite the Free energy
F(q,Θ) (Neal and Hinton, 1999) as follows:

F(q,Θ) =
∑

f ,e

∑
D

∑
a
q(a, D | f , e) log

PΘD(a, D, f , e)
q(a, D | f , e)

=
∑

f ,e

∑
D,a

q(a, D | f , e) log
PΘD(a, D | f , e)
q(a, D | f , e)

+
∑

f ,e

∑
D,a

q(a, D | f , e) logPΘ(f , e)

=
∑

f ,e
logPΘ(f , e)−KL[q(a, D | f , e) || PΘD(a, D|f , e)] (7)

where KL[·||·] is the KL-divergence. To find q∗(a, D|f , e) that maximizes F(q,Θ):

q∗(a, D|f , e) = argmax
q(a,D|f ,e)

F(q,Θ) = argmin
q(a,D|f ,e)

KL[q(a, D|f , e)||PΘD(a, D|f , e)]

= PΘD(a, D|f , e) = PΘD(D|f , e)PΘD(a|f , e, D). (8)

2We especially thank an anonymous reviewer who gave valuable comments related to this point.
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Here

PΘD(a|f , e, D) =
PΘD

(f ,a|e,D)

PΘD
(f |e,D) =

∏m
j=1 t(fj |eaj , D)∏m

j=1

∑l
i=0 t(fj |ei, D)

(9)

The distribution q∗(a, D|f , e) together with q∗(D|f , e) =
∑

a q
∗(a, D|f , e) = PΘD(D|f , e) can be

used to softly fill in the values of a and D respectively to estimate model parameters.

We now state our derived EM update formulas. We use the notation P (c) and t(c) for current iteration
estimates, and P (+) and t(+) for the re-estimates. We denote the expected counts that e aligns to f in
the translation (f |e) with respect to a domain D with c(f |e; f , e, D). Similarly, we denote the expected
count of (f |e) with respect to a domain D by c(D; f , e).

E-step ∀D ∈ {D0, D1} do

c(D; f , e) = P (c)(D | f , e)

c(f |e; f , e, D) = P (c)(D | f , e)
t(c)(f | e,D)∑l

i=0 t
(c)(f | ei, D)

∑m

j=1
δ(f, fj)

∑l

i=0
δ(e, ei)

M-step ∀D ∈ {D0, D1} do

t(+)(f |e,D) =

∑
f ,e c(f |e; f , e, D)∑

f

∑
f ,e c(f |e; f , e, D)

P (+)(D) =

∑
f ,e c(D; f , e)∑

D

∑
f ,e c(D; f , e)

To re-estimate P (D | f , e) we substitute the M-step estimates into Equations 3, 4 and 2. We initial-
ize translation tables t(f |e,D1) and t(e|f,D1) with non-zero estimates obtained from applying IBM
model I to in-domain corpus Cin.3 Before EM training starts we must train the LMs. The in-domain
LMs Plm(e|D1) and Plm(f |D1) are trained on the source and target sides of Cin respectively. For the
out-domain LMs Plm(e|D0) and Plm(f |D0) we need an out-domain data set to train them. It would also
be reasonable to use the set to train the out-domain tables, t(· | ·, D0). This raises an hitherto unattended
question regarding how to construct such an out-domain data set.

Inspired by burn-in in sampling, initially we isolate all LMs from our model to train the translation
models for a single EM iteration; we initialize the model with a translation table constructed on Cin

and uniform otherwise. Using the re-estimates, we score sentence pairs in Cmix with P (D1|f , e) and
select a burn-in subset of smallest scoring pairs as pseudo out-domain data which can be used to train
Plm(e|D0) and Plm(f |D0). Choosing the optimal size of this subset is difficult, but in practice, we
usually choose a subset that has similar size (number of words) to the given in-domain corpus. The
rationale behind this choice is to avoid the risk that pseudo out-domain models would dominate the in-
domain models during further training. We observe that choosing the same size for a pseudo out-domain
corpus is not guaranteed to always give optimal performance, and this point deserves further study.

Finally, once the domain-dependent LMs have been trained, the domain-dependent LM probabilities
stay fixed during EM. Crucially, it is important to scale the probabilities of the four LMs to make them
comparable: we normalize the probability that a LM assigns to a sentence by the total probability this
LM assigns to all sentences in Cmix.

3 Experimental setting

We carry out experiments in data selection (intrinsic) as well as in machine translation (extrinsic). We
build an English-Spanish mix-domain corpus consisting of a large and rather varied set of domains (a

3Note that in practice, we usually use only one iteration to train IBM Model I. To simplify the implementation, we ignore
factor ε

(l+1)m in the model (Equation 3), which serves a minor role. It should be also noted that we set a (small) threshold,
e.g., t(·|·, ·) = 0.0001 for all word pairs that do not occur in the in-domain corpus to avoid over-fitting.
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haystack) in a way that allows us to directly measure selection quality. Starting out from a general-
domain corpus Cg consisting of 4.51M sentence pairs, collected from multiple resources including
EuroParl (Koehn, 2005), Common Crawl Corpus, UN Corpus, News Commentary, TAUS Software,
TAUS Hardware, and TAUS Pharmacy, and a 177K in-domain (TAUS Legal) sentence pairs.

We create Cmix by selecting an arbitrary 100K pairs of in-domain set and adding them to Cg; the
remaining 77K in-domain pairs constitute Cin. We think of this as hiding in-domain data in Cmix so
we can evaluate our ability to retrieve it; in this setting we can evaluate selection directly using pseudo-
precision/recall defined as the percentage of selected in-domain pairs to the total selected or to the hidden
100K pairs respectively.

Table 1 summarizes the data and the translation task. It should be noted that a mix-domain corpus,
that contains a large and rather varied set of domains, frequently contains subsets with a vocabulary that
is close to the in-domain adaptation task; in this case, e.g., Europarl and TAUS Legal share big portions
of their source vocabulary, whereas their translations could differ. This makes the selection task far more
difficult than assumed by previous approaches as we will show next.

Task Corpora English Spanish
Mix-Domain Corpus (4.51M sents) 125, 339, 057 139, 655, 311

TAUS Legal
In-Domain Corpus (77K sents) 1, 555, 342 1, 733, 370
Dev (2K sents) 27, 983 30, 501
Test (2K sents) 45, 736 48, 999

Table 1: The data preparation - training, dev and testing corpora (size in words). Note that the dev set
contains sentences of 10-25 words, while the test set contains sentences that vary substantially in length,
from 5-10 words up to 45-50 words.

Our Invitation model takes 3 EM-iterations to train.4 We then weigh sentence pairs under our model
with P (D1 | e, f). We test various baseline models, including the bilingual cross-entropy difference
model, and the two cross-entropy difference models (on the source language and on the target lan-
guage).5 We report pseudo-precision/recall at the sentence-level using a range of cut-off criteria for
selecting the top scoring instances in the mix-domain corpus.

We use Moses (Koehn et al., 2007) with GIZA++ (Och and Ney, 2003) and k-best batch MIRA
(Cherry and Foster, 2012). Final MT systems use the same non-adapted language models trained on
2.2M English Europarl sentences plus 248.8K sentences from News Commentary Corpus (WMT 2013).

We report BLEU (Papineni et al., 2002), METEOR 1.4 (Denkowski and Lavie, 2011) and TER
(Snover et al., 2006). Statistical significance uses 95% confidence intervals using paired bootstrap
re-sampling (Press et al., 1992; Koehn, 2004). The k-best batch MIRA optimizer (Cherry and Foster,
2012) was run at least three times to optimize any SMT system to avoid instability (Clark et al., 2011).6

4 Results

Table 2 presents the results showing substantial improvement in selection performance compared to all
the baselines. Subsequently we build SMT systems over the selected subsets. We report the transla-
tion yielded by these systems over the task in Table 2 as well. It can be easily seen that the baseline
approaches that simply train on in- and mix-domain data do not work that well for a difficult selection
task from a mix-domain corpus consisting of a large and rather diverse set of domains. The SMT sys-

4To train the LM probs, we construct interpolated 4-gram Kneser-Ney language models using BerkeleyLM (Pauls and
Klein, 2011). This setting for training language models is used for all experiments in this work.

5The script we use to train these models is developed by Luke Orland and available at: https://github.com/
lukeorland/moore\_and\_lewis\_data\_selection.

6Note that metric scores for the systems are averages over multiple runs.
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Cut-off Model In-domain
Pairs

pseudo-
Precision

pseudo-
Recall BLEU METEOR TER

50K

CE Difference (source side) 370 0.74 0.37 20.5 28.0 62.3
CE Difference (target side) 375 0.75 0.38 19.3 26.8 63.3
Bilingual CE Difference 413 0.83 0.41 18.7 26.3 64.3
Invitation 19156 38.31 19.16 36.5 36.4 47.1

100K

CE Difference (source side) 592 0.59 0.59 24.8 30.8 57.8
CE Difference (target side) 572 0.57 0.57 22.1 29.7 60.1
Bilingual CE Difference 649 0.65 0.65 23.1 30.0 58.9
Invitation 30474 30.47 30.47 37.1 36.9 47.0

150K

CE Difference (source side) 753 0.50 0.75 26.4 32.0 56.2
CE Difference (target side) 742 0.49 0.74 23.9 31.2 58.8
Bilingual CE Difference 793 0.53 0.79 24.4 30.9 58.1
Invitation 38424 25.62 38.42 37.1 37.0 46.7

200K

CE Difference (source side) 874 0.44 0.87 26.6 32.4 56.0
CE Difference (target side) 888 0.44 0.88 25.8 32.1 57.2
Bilingual CE Difference 932 0.93 0.65 25.7 32.0 57.0
Invitation 44392 22.17 44.39 37.5 37.4 46.2

250K

CE Difference (source side) 994 0.40 0.99 27.3 32.8 55.4
CE Difference (target side) 997 0.40 0.10 26.3 32.4 56.3
Bilingual CE Difference 1062 0.42 1.06 26.6 32.7 55.6
Invitation 49419 19.77 49.42 37.3 37.3 46.1

300K

CE Difference (source side) 1122 0.37 1.12 28.2 33.4 54.5
CE Difference (target side) 1093 0.36 1.09 26.4 32.7 56.0
Bilingual CE Difference 1169 0.39 1.17 27.8 33.3 54.9
Invitation 53892 17.96 53.89 37.7 37.5 46.0

Table 2: Systematic comparison between selection models.

tems trained on the selection of our model perform significantly and consistently better (with p-value
= 0.0001 for all cases) than the others trained on the selection of the baselines.

Sentences
Bilingual CE Difference

1 by assisting in the placement and financing of used and end-of-lease aircraft , atr asset management has helped broaden
atr ’s customer base , notably in emerging markets , by providing quality reconditioned aircraft at attractive prices and
has helped maintain residual values of used aircraft .
al participar en la colocación y en la financiación de los aviones usados al final del perı́odo de arrendamiento , atr
gestión de activos ha podido ampliar la base de su clientela , en particular en los paı́ses de economı́as emergentes , al
proporcionar aparatos entregados en buen estado a precios interesantes y ha contribuido a mantener el valor residual
de los aviones usados .

2
in contrast , recent improvements in western europe are not expected to be reversed significantly .
en cambio no se espera que las recientes mejoras en europa occidental se inviertan significativamente .

3
creating xml file ...
creando el archivo xml ...

Invitation Model

1 as she has said , the harmonisation of the requirements for information to appear on the invoice will mean that traders
operating within the single market will be subject to a single legislation , while until now they have had to know , comply
with and apply fifteen different legislations .
como ella ha dicho , la armonización de los requisitos de información que deben constar en la factura permitirá a los
comerciantes que operen en el mercado interior sujetarse a una sola legislación , mientras que hasta ahora tenı́an que
conocer , sujetarse y aplicar quince legislaciones diferentes .

2
the solicitation documents shall specify the estimated period of time following dispatch of the notice of acceptance that
will be required to obtain the approval .
en el pliego de condiciones se indicará el plazo de tiempo previsto , a partir de la expedición del aviso de aceptación ,
que será requerido para obtener la aprobación .

3
there is no doubt that disadvantages will result for the consumer and for the manufacturer of branded goods , for example
with regard to consumer health protection .
ello generará , sin duda alguna , desventajas para el consumidor y el productor de artı́culos de marca , entre otros
aspectos también en lo que se refiere a la protección de la salud del consumidor .

Table 3: Top pairs from mix-domain corpus with highest scores according to models.

Table 3 presents some random top ranked sentence pairs from the bilingual cross-entropy difference
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Cut-off: 50K Cut-off: 100K Cut-off: 200K
Model English Spanish English Spanish English Spanish
CE Difference (source side) 8.65 8.70 11.92 12.21 15.50 16.22
CE Difference (target side) 8.14 10.09 11.61 14.13 15.45 18.50
Bilingual CE Difference 7.03 8.16 10.38 11.96 14.34 16.43
Invitation 40.16 44.70 37.30 41.59 34.32 38.32

Table 4: Average words in selected sentences.

model against our Invitation model for the task. This shows clearly more relevant pairs for our selection
model than for the baselines. It should be noted that the baseline models tend to prefer shorter sentences,
while our model suffers less from this kind of bias. Table 4 presents the average length (in words) of
selected sentences selected by different models over various cut-offs.

Cut-off Model In-domain
Pairs

pseudo-
Precision

pseudo-
Recall BLEU METEOR TER

300K
Without Translation Model 34156 11.39 34.16 35.8 36.6 47.3
Without Language Model 51991 17.33 51.99 37.4 37.4 46.6
Full model 53892 17.96 53.89 37.7 37.5 46.0

Table 5: Experiments exploring the roles of individual components in our model.

Which component type (language or translation models) contributes more to performance? We neu-
tralize each component in turn and build a selection system with the remaining model parameters. Ta-
ble 5 shows translation models are crucial for performance, while domain-dependent LMs make a small,
yet noteworthy contribution. It should also be noted that using the LMs derived separately from in- and
out-domain data yields far better performance than the LMs derived from in- and mix-domain data for
this task.

System Phrases BLEU METEOR TER
Large data Cmix 236.74M 36.8 37.2 47.1
Subset of 300K 22.47M 37.7 37.5 46.0

Table 6: Translation accuracy comparison.

Finally, we compare a system trained on a selection of the top scored 300K sentences to a baseline
large-scale SMT system trained on Cmix (4.61M sentences). The baseline trained on Cmix works with
236.74M phrase pairs, whereas the Invitation trained system employs a small table of 22.47M phrases.
Tabel 6 shows the results. It is interesting that the small MT system trained by Invitation performs
significantly better (with p-value = 0.0001 for all metrics) than the large-scale system baseline trained
on all of Cmix.

Input
cada estado miembro supervisará la categorı́a cientı́fica de la evaluación y las actividades de los miembros
de los comités y de los expertos que haya designado, pero se abstendrá de darles instrucciones incompatibles
con las funciones que les competen.

Reference
each member state shall monitor the scientific level of the evaluation carried out and supervise the activities
of members of the committees and the experts it nominates, but shall refrain from giving them any instruction
which is incompatible with the tasks incumbent upon them.

Large Cmix
each member state will oversee the category scientific assessment and the activities of members of the com-
mittees and experts which designated, but abstain of instruct incompatible with their regulatory functions.

Subset 300K
each member state will monitor the scientific category of the evaluation and the activities of the members
of the committees and of experts who has designated, but refrain from giving them instructions incompatible
with the required functions assumed.

Table 7: Translation example yielded by systems.

To give a sense of the improvement in translation, we present an example in Table 7. The example
is indeed illuminating because it shows the difference in choice between the mix-domain system and
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our selection-trained system. The example shows different translation pairs: 〈supervisará-monitor〉 vs.
〈supervisará-oversee〉, 〈evaluación-evaluation〉 vs. 〈evaluación-assessment〉, and 〈abstendrá de-refrain
from〉 vs. 〈abstendrá de-abstain〉. Table 8 presents phrase table entries, i.e., p(e | f) and p(f | e), for the
pairs of words in each system.

supervisará evaluación abstendrá de
System Entry monitor oversee evaluation assessment refrain from abstain

Large data Cmix
φ(e|f) 0.002 0.020 0.579 0.429 0.002 0.013
φ(f |e) 0.119 0.081 0.391 0.403 0.014 0.060

Subset of 300K φ(e|f) 0.012 0.024 0.487 0.357 0.015 −
φ(f |e) 0.203 0.072 0.338 0.417 0.143 −

Table 8: Phrase entry examples. Note that the system trained on the subset of top 300K pairs of sentences
does not contain the phrase pair 〈refrain from-abstain〉.

5 Final Machine Translation experiments: Putting all data together

For final adaptation evaluations we follow (Koehn and Schroeder, 2007; Nakov, 2008) and (Axelrod et
al., 2011; Sennrich, 2012), by passing multiple phrase tables directly to the Moses decoder and tuning
a system using these different tables together. Table 9 presents the result, showing the consistent im-
provement of adaptation with Invitation model compared to the baselines (with p-value = 0.0001 for all
cases) over the mixture data Cmix.

Data System BLEU METEOR TER
In-domain 36.66 37.19 44.76

50K

+ CE Difference (source side) 37.1 36.7 48.1
+ CE Difference (target side) 37.1 36.6 48.2
+ Bilingual CE Difference 37.1 36.6 48.2
+ Invitation 38.0 37.2 47.3

100K

+ CE Difference (source side) 37.3 36.8 47.9
+ CE Difference (target side) 37.2 36.8 48.0
+ Bilingual CE Difference 37.2 36.8 48.0
+ Invitation 38.4 37.4 46.9

150K

+ CE Difference (source side) 37.1 36.9 48.2
+ CE Difference (target side) 37.3 36.9 47.9
+ Bilingual CE Difference 37.0 36.8 48.1
+ Invitation 38.6 37.5 46.6

200K

+ CE Difference (source side) 37.3 36.9 47.7
+ CE Difference (target side) 37.3 36.9 47.9
+ Bilingual CE Difference 37.3 36.9 47.8
+ Invitation 38.4 37.6 46.7

250K

+ CE Difference (source side) 37.4 36.9 47.7
+ CE Difference (target side) 37.3 37.0 47.7
+ Bilingual CE Difference 37.3 37.0 47.8
+ Invitation 38.6 37.7 46.5

300K

+ CE Difference (source side) 37.3 37.0 47.8
+ CE Difference (target side) 37.1 37.0 48.0
+ Bilingual CE Difference 37.3 36.9 47.8
+Invitation 38.9 37.9 46.3

Table 9: Translation results from our domain-adapted SMT systems.

Finally, we also test the adaptation evaluations between the system trained on the small selection of
top 300K sentences against the large-scale SMT system trained on Cmix when combined with the in-
domain trained system. Table 10 presents the results, revealing comparable translation performance,
although they are trained on data sets that are significantly different in size.
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System BLEU METEOR TER
In-domain + Large data Cmix 39.0 38.0 46.3
In-domain + Subset of 300K 38.9 37.9 46.3

Table 10: Translation results from our domain-adapted SMT system and the large-scale SMT system.
Note that the baseline is slightly better than our domain-adapted SMT system under BLEU and ME-
TEOR, however, not statistically significant.

6 Final notes on mix-domain data selection

The specific data selection scenario studied in this paper brings up different aspects that did not receive
(sufficient) attention in earlier work on data selection and domain adaptation:

• The mix-domain parallel corpus Cmix contains a large variety of domains that overlap and but also
differ in lexical choice and translation. This is radically different from the in-/out-domain setting
usually assumed in adaptation and constitutes a major challenge for existing selection approaches.

• The way the small in-domain corpus relates to the large mix-domain corpus is also challenging
because translation performance often depends on selecting relevant sentence pairs, aside from
those that are clearly in-domain.

• The lack of out-domain data in a realistic mix-domain scenario, suggests that efforts are needed
at finding data that contrasts enough with the in-domain data. In this work we propose an initial
training period (burn-in) for isolating pseudo out-domain data. But it might be that relevance-
related approaches could also turn out more effective for this.

In our current model we implement the P (e | D) and P (f | D) as language models, inspired by the
approaches based on the contrast between the cross-entropies of in- and mix-domain language models
(Moore and Lewis, 2010; Axelrod et al., 2011). However, P (e | D) and P (f | D) should work with
relevance models, i.e., assessing the relevance of sentences to domain D. Relevance is a different con-
cept than fluency as embodied by language models, and this aspects demands special attention in future
work.7

In ongoing large-scale experiments, we now explore the behavior of our Invitation model on a variety
of different data settings and compare that to a range of alternative existing approaches. We are also
exploring new variations of our Invitation model to find out what the optimal settings might be for
different mixes of domains. So far we find that the burn-in and size of pseudo out-domain selection
after burn-in can be important in certain situations. We also observe that estimating the suitable size
of the selection set is also a topic that demands more attention because the estimate of P (D1) with
the interpretation percentage of relevant data in Cmix like likely to demand suitable relevance models
instead of language models.

We observe that the present Invitation model could be approached from a discriminative perspective,
which could be effective for specific data settings. Finally, it is theoretically not clear whether a single
approach will be most effective for all practical data scenarios.

7 Conclusions

This work looks at modeling the relevance of sentence pairs from the mix-domain corpus to a task repre-
sented by an in-domain sample. In contrast with previous work we cast this as a translation problem with
a latent domain variable. Our Invitation model based on iterative weighted Invitations using EM, offers
a new view on data selection for MT. Our model also offers principled cut-off points for selecting in-
domain and other relevant subsets. Experiments on the in-domain task shows our approach outperforms
the existing data selection for such a very complex mixture training data.

7We thank Amir Kamran for bringing this difference to our attention through ongoing joint experimental work.

1936



The high accuracy in our experiments in this kind of data compared to the baseline suggests that our
model might also offer good estimates that can be used for data weighting. In future work we aim to test
the Invitation model for instance weighting and explore avenues for using it for selecting and weighting
sub-sentential translation pairs (e.g., phrase pairs) that can be used directly for building SMT systems.
A further issue is to improve the quality of word alignments induced for mix-domain corpora. We also
aim at exploring a discriminative learning approach in conjunction with our model.

Acknowledgements

The first author is supported by the EXPERT (EXPloiting Empirical appRoaches to Translation) Initial
Training Network (ITN) of the European Union’s Seventh Framework Programme. We thank Transla-
tion Automation Society (TAUS.com) for providing us with suitable data for the mix-domain scenario.
We also thank Amir Kamran and Bart Mellebeek for help and collaboration on experiments related to
data selection and domain adaptation. We thank Miloš Stanojević and three anonymous reviewers for
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