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Abstract

In this paper, we propose a recurrent neural network-based tuple sequence model (RNNTSM)
that can help phrase-based translation model overcome the phrasal independence assumption.
Our RNNTSM can potentially capture arbitrary long contextual information during estimating
probabilities of tuples in continuous space. It, however, has severe data sparsity problem due
to the large tuple vocabulary coupled with the limited bilingual training data. To tackle this
problem, we propose two improvements. The first is to factorize bilingual tuples of RNNTSM
into source and target sides, we call factorized RNNTSM. The second is to decompose phrasal
bilingual tuples to word bilingual tuples for providing fine-grained tuple model. Our extensive
experimental results on the IWSLT2012 test sets1 showed that the proposed approach essentially
improved the translation quality over state-of-the-art phrase-based translation systems (baselines)
and recurrent neural network language models (RNNLMs). Compared with the baselines, the
BLEU scores on English-French and English-German tasks were greatly enhanced by 2.1%-
2.6% and 1.8%-2.1%, respectively.

1 Introduction

The phrase-based translation systems (Koehn et al., 2003) rely on language model and lexicalized re-
ordering model to capture lexical dependencies that span phrase boundaries. Their translation models,
however, do not explicitly model context dependencies between translation units. To address this limi-
tation, Marino et al. (2006) and Crego and Yvon (2010) proposed n-gram-based translation systems to
capture dependencies across phrasal boundaries. The n-gram translation models have been shown to be
effective in helping the phrase-based translation models overcome the phrasal independence assumption
(Durrani et al., 2013; Zhang et al., 2013). Most of the n-gram translation models (Marino et al., 2006;
Durrani et al., 2013; Zhang et al., 2013) employed Markov (n-gram) model over sequence of bilingual
tuples also known as minimal translation units (MTUs).

Recently, some pioneer studies (Schwenk et al., 2007; Son et al., 2012) proposed feed-forward neural
networks with factorizations to model bilingual tuples in a continuous space. Although the authors
reported some gains over the n-gram model in machine translation tasks, these models can only capture
a limited amount of context and remain a kind of n-gram model. In language modeling, experimental
results in (Mikolov et al., 2011; Arisoy et al., 2012; Sundermeyer et al., 2013) showed that recurrent
neural networks (RNNs) outperform feed-forward neural networks in both perplexity and word error rate
in speech recognition even though it is harder to train properly.

Therefore, in this paper we take the advantages of RNN and tuple sequence model and propose re-
current neural network-based tuple sequence models (RNNTSMs) to improve phrase-based translation
system. Our RNNTSMs are capable of modeling long-span context and have better generalization. Com-
pared with such related studies as (Schwenk et al., 2006; Son et al., 2012), our main contributions can

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1The IWSLT workshop aims at translating TED speeches (http://www.ted.com), a collection of public lectures cov-
ering a variety of topics.

1908



be summarized as: (i) our models can be regarded as deep neural network translation models because
they can capture arbitrary-length context potentially, which are proven to estimate more accurate proba-
bilities of bilingual tuples; (ii) we extend the conventional RNNTSM to factorized RNNTSMs that can
significantly overcome the data sparseness problem caused by the large vocabularies of bilingual tuples
by incorporating the factors from the source and the target sides in addition to bilingual tuples; (iii) we
investigate heuristic rules to decompose phrasal bilingual tuples to word bilingual tuples for reducing
the out-of-tuple-vocabulary rate and providing fine-grained tuple sequence model; (iv) we integrate the
proposed models into the state-of-the-art phrase-based translation system (MOSES) as a supplement of
the work in (Son et al., 2012) that is a complete n-gram translation system.

2 Related Work

The n-gram translation model (Marino et al., 2006) is a Markov model over phrasal bilingual tuples and
can improve the phrase-based translation system (Koehn et al., 2003) by providing contextual depen-
dencies between phrase pairs. To further improve the n-gram translation model, Crego and Yvon (2010)
explored factored bilingual n-gram language models. Durrani et al. (2011) proposed a joint sequence
model for the translation and reordering probabilities. Zhang et al. (2013) explored multiple decomposi-
tion structures as well as dynamic bidirectional decomposition. Since neural networks advance the state
of the art in the fields of image processing, acoustic modeling (Seide et al., 2011), language modeling
(Bengio et al., 2003), natural language processing (Collobert et al., 2011; Socher et al., 2013), machine
transliteration (Deselaers et al., 2009), etc, some prior studies have been done on neural network-based
translation models (NNTMs).

One kind of the NNTMs relies on word-to-word alignment information or phrasal bilingual tuples. For
example, Schwenk et al. (2007) investigated feed-forward neural networks to model bilingual tuples in
continuous space. Son et al. (2012) improved this idea by decomposing tuple units, i.e., distinguishing the
source and target sides of the tuple units, to address data sparsity issues. Although the authors reported
some gains over the n-gram model in the BLEU scores on some tasks, these models can only capture
a limited amount of context and remain a kind of n-gram model. In addition, a feed-forward neural
network independent from bilingual tuples was proposed (Schwenk, 2012), which can infer meaningful
translation probabilities for phrase pairs not seen in the training data.

Another kind of the NNTMs do not rely on alignment. Auli et al. (2013) and Kalchbrenner and
Blunsom (2013) proposed joint language and translation model with recurrent neural networks, in which
latent semantic analysis and convolutional sentence model were used to model source-side sentence.
Potentially, they can exploit an unbounded history of both source and target words thanks to recurrent
connections. However, they only modestly observed gains over the recurrent neural network language
model. Previous studies (Wu and Wang, 2007; Yang et al., 2013) showed that the performance of word
alignment (alignment error rate) is nearly 80%. That means explicit word alignment may be more reliable
as a way to represent the corresponding bilingual sentences compared with an implicit compressed vector
representation (Auli et al., 2013).

Our RNNTSM takes the advantages of the above NNTMs, that is, RNN enables our model to cap-
ture long-span contextual information, while tuple sequence model uses word alignment without much
information loss. Furthermore, factorized RNN and word bilingual tuples are proposed to address data
sparsity issue. To the best of our knowledge, few studies have been done on this aspect.

3 Tuple Sequence Model

In tuple sequence model, bilingual tuples are translation units extracted from word-to-word alignment.
They are composed of source phrases and their aligned target phrases that are also known as minimal
translation units (MTUs) and thus cannot be broken down any further without violating the constrains
of the translation rules. This condition results in a unique segmentation of the bilingual sentence pair
given its alignment. In our implementation, GIZA++ with grow-diag-final-and setting is used
to conduct word-to-word alignments in both directions, source-to-target and target-to-source (Och and
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musiciens

musiciens

Figure 1: An example of generating basic bilingual tuples from word alignment information.

Ney, 2003). Ncode toolkit2 is used to generate a unique bilingual segmentation of word-to-word aligned
sentence. Figure 1(a)-(b) illustrates the process of generating bilingual tuple. As can be seen in Figure
1, bilingual tuple u1 is composed of source phrase s̄1 (musicians) and target phrase t̄1 (les musiciens)
linked to s̄1. Because this type of bilingual tuples are composed of one or more words from the source
side and zero or more words from the target side, we call them phrasal bilingual tuples.

The phrasal bilingual tuple is not able to provide translations for individual words that appear tied to
other words unless they occur alone in some other tuple. For example, if target phrase t̄k=“les musiciens”
is always aligned to source phrase s̄k=“musicians” in the training corpus, then no word-to-word trans-
lation probability for “musicians:musiciens” will exist. This becomes a serious drawback when a large
number of phrasal bilingual tuples are extracted from one-to-many, many-to-one, and many-to-many
alignments. To tackle the issue, we propose to decompose phrasal bilingual tuples into word bilingual
tuples for providing fine-grained tuple sequence model. Suppose source phrase s̄k, a sequence of source
word sk1, sk2, ..., skI , is aligned to target phrase t̄k, a sequence of target word tk1, tk2, ..., tkJ , in which
I and J refer to the number of words in source phrase and that in target phrase. The following two types
of heuristic rules are considered.

(word-bilingual-tuple-I): For one-to-many alignments, we copy skI J − 1 times to fill the short
phrase s̄k. For many-to-one alignments, we copy tkJ I − 1 times to fill the phrase t̄k. For many-to-many
alignment, a maximum phrase length, we set it to 5, is used to avoid vocabulary explosion. That means,
if I > 5; then s̄k=⟨unk⟩, if J > 5; then t̄k=⟨unk⟩.

(word-bilingual-tuple-II): For one-to-many, many-to-one, and many-to-many alignments, we insert a
special token “NULL” | J − I | times to fill the short phrase, and map each word in the extended phrase
monotonically to generate a word-wise tuple sequence.

The Figure 1(c)-(d) demonstrate the decomposition results. As shown in Figure 1(c), the translation
probability of “musicians” being aligned to “musiciens” can be learned in the word bilingual tuples. The
word bilingual tuples enable our model use information from source-side of the tuples for computing
translation probabilities of some tuples. For example, translating “musicians:musiciens” benefits from
its source word “musicians”. Table 2 in Section 4 shows the sizes of the tuple vocabularies. We can see

2http://ncode.limsi.fr/
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Figure 2: (a): factorized RNNTSM, called fRNNTSM for short, which will go back to the RNNTSM
model when s̄k−1 and t̄k−1 are dropped. (b): fRNNTSMsource. (c) fRNNTSMtarget.

that the word-bilingual-tuple-I has lower out-of-tuple-vocabulary (OOTV) rate, though it increases the
tuple vocabulary. The word-bilingual-tuple-II greatly reduces the tuple vocabulary and the OOTV rate.
Note that some words may not be aligned correctly, like “NULL-musiciens”. However, generating these
tuples can be viewed as a language model process that exploits previous source and target words, and
current source word contained in previous tuples like “les-musiciens”.

Thus, given a target sentence t, a source sentence s, and its alignment a, the tuple sequence model can
be defined over the sequence of bilingual tuples (u1, u2, ..., um) as follows.

p(t, s, a) =
m∏

k=1

p(uk|uk−1, uk−2, ..., u1) =
m∏

k=1

p(uk|uk−1, uk−2, ..., uk−n+1) (1)

where uk denotes the k-th bilingual tuple of a given bilingual sentence pair. Each bilingual tuple uk

contains a source phrase s̄k and its aligned target phrase t̄k3. Formally, uk=s̄k:t̄k. The tuple sequence
model does not make any phrasal independence assumption and generates a tuple by looking at a context
of previous tuples. The n-gram translation models are Markov models over sequences of tuples, they
generate a tuple by looking at previous n-1 tuples.

4 Recurrent Neural Network-based Tuple Sequence Model

In order to use long-span context, this paper presents a recurrent neural network-based tuple sequence
model (RNNTSM) to approximate the probability p(ui|ui−1, ..., u1). Our RNNTSM can potentially
capture arbitrary long context rather than n-1 previous tuples. The input layer encodes bilingual tuples
by using 1-of-n coding, and the output layer produces a probability distribution over all bilingual tuples.
The hidden layer maintains a representation of the sentence history. This RNNTSM, however, has severe
data sparsity problem due to the large tuple vocabulary coupled with the limited bilingual training data.

4.1 Factorized RNNTSM
To solve the problem, we extend the RNNTSM model with factorizing tuples in input layer, as shown
in Figure 2(a). Specifically, it consists of an input layer x, a hidden layer h (state layer), and an out-
put layer y. The connection weights among layers are denoted by matrixes U and W. Unlike the
RNNTSM, which predicts probability p(uk|uk−1, hk−1), the factorized RNNTSM predicts probabili-
ty p(uk|uk−1, s̄k−1, t̄k−1, hk−1) of generating following tuple uk and is explicitly conditioned on the
preceding tuple uk−1, source-side of the tuple s̄k−1, and target-side of the tuple t̄k−1. It is implicitly
conditioned on the entire history by the delay copy of hidden layer hk−1. For those tuples (approximate-
ly 20% as shown in Table 2) that are not contained in the training data, i.e., co-occurrence (si−1, ti−1)

3Phrases turn to words in the word bilingual tuples. For convenience, we do not distinguish them in our paper.
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non-exist while either si−1 or ti−1 exists, the factorized RNNTSM backs off to the source- (si−1) or
target-side (ti−1). This process resembles factored n-gram language model (Duh and Kirchhoff, 2004).
However, the RNNTSM, computing p(ui|ui−1, hi−1), cannot estimate the probabilities for those tuples.
In the special case that s̄k−1 and t̄k−1 are dropped, the factorized RNNTSM goes back to the RNNTSM.
For convenience, uk−1, s̄k−1 and t̄k−1 are called features. In the input layer, each feature is encoded
into a feature vector using the 1-of-n coding. The tuple uk−1, the source phrase s̄k−1 and the target
phrase t̄k−1 are encoded into |u|-dimension feature vector vu

k−1, |s̄|-dimension feature vector vs̄
k−1 and

|t̄|-dimension feature vector vt̄
k−1, respectively. Here, |u|, |s̄| and |t̄| stand for the sizes of the tuple, the

source phrase, and the target phrase vocabularies. Finally, the input layer xk is formed by concatenating
feature vectors and hidden layer hk−1 at the preceding time step, as shown in the following equation.

xk = [vu
k−1, v

s̄
k−1, v

t̄
k−1, hk−1] (2)

The neurons in the hidden and output layers are computed as follows:

hk = f(U × xk), yk = g(W × hk)

f(z) =
1

1 + e−z
, g(z) =

ezm∑
k e

zk

(3)

To speed-up both in the training and testing processes, we map bilingual tuples into classes with
frequency binning and divide the output layer into two parts following (Mikolov et al., 2010). The first
part estimates the posterior probability distribution over all classes. The second computes the posterior
probability distribution over the tuples that belong to class c(uk), the one that contains predicted tuple
uk. Finally, translation probability p(uk|uk−1, s̄k−1, t̄k−1, hk−1) is calculated by,

p(uk|uk−1, s̄k−1, t̄k−1, hk−1) = p(c(uk)|xk) × p(uk|c(uk), xk) (4)

4.2 Factorized RNNTSM on source and target phrases
The above factorized RNNTSM is conditioned on the previous context during computing the probability
for tuple uk. It does not exploit its source side s̄k. For example, tuple “composers:compositeurs” does
not benefit from “composers”. To address this limitation, we rewrite the probability in Equation 1.

p(uk|uk−1, uk−2, ..., u1) = p(sk, tk|uk−1, uk−2, ..., u1)
= p(sk|uk−1, uk−2, ..., u1) × p(tk|sk, uk−1, uk−2, ..., u1)

(5)

The first sub-model p(sk|uk−1, uk−2, ..., u1) computes the probability distribution over source phras-
es. This model, called fRNNTSMsource for short, can be regarded as a reordering model. The second
sub-model p(tk|sk, uk−1, uk−2, ..., u1) is a translation model, abbreviated as fRNNTSMtarget, which
computes the probability distribution over t̄k that are translated from s̄k. The two sub-models are com-
puted with the recurrent neural networks shown in Figure 2(b)-(c). Another advantage of using the
factorized RNNTSM on source and target phrases separately is that their training become faster because
the vocabulary sizes of the source and target phrases are much smaller than that of the tuples.

4.3 Training
Training can be performed by the back-propagation through time (BPTT) algorithm (Boden, 2002) by
minimizing an error function defined in the following equations.

L =
1
2
×

N∑
i=1

(oi − pi)2 + γ × (
∑
lk

u2
lk +

∑
tl

w2
tl) (6)

where N is the number of training instances, oi denotes the desired output; i.e., the probability should
be 1.0 for the predicted tuple in the training sentence and 0.0 for all others. γ is the regularization term’s
weight, which is determined experimentally using a validation set. The training algorithm randomly ini-
tializes the matrixes and updates them with Equation 7 over all the training instances in several iterations.
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English-French English-German
tst2010 tst2011 tst2012 tst2010 tst2011 tst2012

Baseline 30.15 35.97 35.48 20.29 21.48 19.30
+RNNTSM 30.51(0.3) 36.11(0.1) 36.44(0.9) 20.67(0.4) 21.85(0.4) 19.56(0.3)

+fRNNTSM (1) 31.83(1.6) 37.58(1.6) 37.74(2.2) 21.67(1.4) 22.89(1.4) 20.60(1.3)

+fRNNTSMsource(2)
+fRNNTSMtarget(3)

31.89(1.7) 38.23(2.2) 37.82(2.3) 21.49(1.2) 22.94(1.4) 20.41(1.1)

+(1) +(2) +(3) 32.26(2.1) 38.36(2.4) 38.11(2.6) 21.80(1.5) 22.88(1.4) 20.76 (1.5)

Table 1: BLEU scores of the RNNTSMs, the factorized RNNTSM (fRNNTSM), the fRNNTSMsource

(sfRNNTSM), the fRNNTSMtarget with the word-bilingual-tuple-I and their combination. The num-
bers in the parentheses are the absolute improvements over the Baseline.

In Equation 7, ψ stands for one of the connection weights in the neural networks and η is the learning
rate. After each iteration, it uses validation data for stopping and controlling the learning rate. Usually,
our RNNs needs 10 to 20 iterations.

ψnew = ψprevious − η × ∂L

∂ψ
(7)

5 Experiments

We experiment with two language pairs on the IWSLT2012 data sets (Federico et al., 2012), with English
as source and French, German as target. The IWSLT data comes from TED speecheds, given by leaders
in various fields and covering an open set of topics in technology, entertainment, design, and many others.
In the following experiments, the IWSLT dev2010 set is used as the tuning set, the tst2010, tst2011, and
tst2012 as the test sets.

Phrase-based translation systems are constructed as baselines using standard settings (GIZA++ align-
ment, grow-diag-final-and, lexical reordering models, SRILM, and MERT optimizer) in the MOSES
toolkit (Koehn et al., 2007). The proposed models are used to re-score n-best lists produced by the base-
line systems. The n-best size is set to at most 1000 for each test sentence. During the n-best re-scoring,
the weights are re-tuned on the dev2010 data set with MERT optimizer4. The proposed RNN-based
models are evaluated on a small task and a large task. For the parameters of all the RNN-based models,
we set the number of hidden neurons in the hidden layer to 480 and classes in the output layer to 300.

5.1 Small Task
In the small task, the training data only contains the speech-style bi-text, i.e., the human translation of T-
ED speeches. Specially, the corpora for the English-French and English-German pairs contain 139K and
128K parallel sentences. The language model is a standard 4-gram language model with the Kneser-Ney
discounting. Both the n-gram LM and the RNNLM are trained on the target side of the bi-text corpus.
As the first experiment, we compare the proposed RNNTSMs with the word-bilingual-tuple-I. Table 1
summarizes the results. The main findings from this experiment are: (1) The RNNTSM yields modest
improvements of 0.3%-0.4% over the baseline system on most the test sets. (2) The factorized RNNTSM-
s essentially outperform the baseline and the RNNTSM on all the test sets. Specially, the improvements
of the factorized RNNTSM and the combination of the fRNNTSMsource and the fRNNTSMtarget over
the baseline for the English-French task range 1.6%-2.2% and 1.7%-2.3%. For the English-German pair,
these improvements are between 1.3%-1.4% and 1.1%-1.4%. The results indicate that the factorized
RNNTSMs can well address the data sparsity problem of the RNNTSM. (3) The improvements for the
English-German pair are comparatively smaller than that for the English-French pair. This is because
German is a morphologically rich language (Fraser et al., 2013), its vocabulary is larger and the sparsity

4To get statistically reliable comparison (Clark et al., 2011), replication of the MERT optimizer and test set evaluation are
performed five times. We finally report the average BLEU scores in the following experiments.
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English-French English-German
#Tuple #Source/#Target OOTV #Tuple #Source/#Target OOTV

Phrasal bilingual tuple 308K 130K/175K 26.0% 315K 148K/196K 23.4%
word-bilingual-tuple-I 332K 100K/111K 23.7% 351K 104K/135K 22.2%
word-bilingual-tuple-II 293K 44K/56K 14.9% 327K 43K/86K 14.8%

Table 2: Vocabulary sizes. OOTV refers to the out-of-tuple-vocabulary rate on the dev2010 set. K stands
for thousands.

English-French English-German
tst2010 tst2011 tst2012 tst2010 tst2011 tst2012

+fRNNTSMp 31.44 37.68 37.34 20.76 21.80 19.57
+fRNNTSMI 31.83(0.4) 37.58(−0.1) 37.74(0.4) 21.67(0.9) 22.89(1.1) 20.60(1.0)

+fRNNTSMII 31.73(0.3) 37.66 37.78(0.4) 22.00(1.2) 23.24(1.4) 21.09(1.5)

+fRNNTSMI +fRNNTSMII 31.98(0.6) 37.97(0.3) 38.14(0.6) 22.19(1.4) 23.25(1.4) 21.17(1.7)

Table 3: BLEU scores of the factorized RNNTSM with various types of bilingual tuples. fRNNTSMp

refers to the fRNNTSM with phrasal bilingual tuples, fRNNTSMI to the fRNNTSM with the word-
bilingual-tuple-I, etc. + means these models are used with the baseline systems. The numbers in the
parentheses are the absolute improvements over the +fRNNTSMp.

problem is more serious. (4) There is no significant difference between the factorized RNNTSM and the
combination of the fRNNTSMsource and the fRNNTSMtarget on most of the test sets except for the
tst2011 set of the English-French task. However, the BLEU scores are modestly improved by combining
the three factorized RNNTSMs.

The second experiment is to compare the phrasal bilingual tuples and the word bilingual tuples. Table
2 lists the vocabulary sizes of the tuples, source and target phrases. For the word-bilingual-tuple-I, the
bilingual tuple vocabulary size increases by 10% in both the English-French and the English-German
pairs. Compared with the phrasal bilingual tuples, the bilingual tuple vocabulary size in the word-
bilingual-tuple-II slightly changes. In addition, decomposing the tuples is capable to greatly reduce
the out-of-tuple-vocabulary rate by approximately 50% in the word-bilingual-tuple-II. Table 3 compares
bilingual tuples in terms of BLEU scores. It can be clearly seen that both the word-bilingual-tuple-I and
the word-bilingual-tuple-II achieve better performance than the phrasal bilingual tuple on most of the
test sets. The BLEU improvements of the word-bilingual-tuple-II over the phrasal tuple range 1.2-1.5
points on the English-German task. The main reason may be lie in: the decomposition can provide word-
to-word translation probabilities (such as “musicians:musiciens” in the example of Section 2) for those
non-one-to-one alignments. Thus the translation system will have a translation option for an isolated
occurrence of such words. Another important observation is that the decomposition performs differently
on the English-French and English-German tasks. For example, there exists slight difference between
the word-bilingual-tuple-I and the word-bilingual-tuple-II for the English-French task. However, for the
English-German task, the word-bilingual-tuple-II significantly outperforms the word-bilingual-tuple-I
by 0.4 BLEU scores. Lastly, we achieve modest improvements by combining the two types of word
bilingual tuples.

This paper proposes three factorized RNNTSMs and two types of word bilingual tuples. In this ex-
periment, we combine all of them (+Combination contains 6 models) and compare with RNN-based
language model (Mikolov et al., 2010). Table 4 summarizes the results. As shown in Table 4 and Ta-
ble 1, the combination can further enhance the performance on the English-German task. For example,
the combination improves the factorized RNNTSM with the word-bilingual-tuple-I from 20.76 to 21.29
on the tst2012 set of the English-German task. Moreover, the combination significantly outperforms
the RNNLM. The improvements over the RNNLMs on all test sets range 0.7-1.2 BLEU scores. The
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English-French English-German
tst2010 tst2010 tst2012 tst2010 tst2010 tst2012

Baseline 30.15(−1.2) 35.97(−1.2) 35.48(−1.5) 20.29(−0.8) 21.48(−0.9) 19.30(−0.8)

+RNNLM 31.43 37.23 37.04 21.14 22.39 20.08
+Combination 32.10(0.7) 38.04(0.8) 37.75(0.8) 22.13(1.0) 23.64(1.2) 21.29(1.2)

Table 4: BLEU scores of the combination of our proposed models and RNNLM in the small task. The
numbers in the parentheses are the absolute improvements over the RNNLM.

English-French English-German
tst2010 tst2010 tst2012 tst2010 tst2010 tst2012

Baseline 32.92(−1.0) 38.67(−1.2) 39.41(−1.4) 22.29(−0.5) 23.67(−0.4) 20.83(−0.7)

+RNNLM 33.93 39.90 40.82 22.80 24.12 21.49
+Combination 34.24(0.3) 40.37(0.5) 40.92(0.1) 23.61(0.8) 25.18(1.1) 22.64(1.1)

Table 5: BLEU scores of the combination of our proposed models and RNNLM. The numbers in the
parentheses are the absolute improvements over the RNNLM.

improvement over the baseline are between 1.9-2.3 BLEU points.

5.2 Large Task
In the large task, the training data includes both speech-style and text-style bi-text corpora. The text-style
bi-text corpora are collected from the WMT2012 campaign5, including CommonCrawl, NewsCommen-
tary, and Europarl. Totally, the numbers of the parallel sentences are 4.35M for the English-French
task and 3.85M for the English-German task. The language model is obtained by linear interpolation
of several 4-gram models trained on the target side of bi-text corpora and the LDC French Gigaword
corpus.

Table 5 reports the results. +Combination means the combination of six models, as described in Table
4. We can observe that: (1) The combination of the proposed RNNTSMs only trained on the speech-
style data can essentially enhance the baselines by 1.2-1.8 BLEU points. (2) The improvements over the
RNNLMs are significant on the English-German task but these improvements are modest on the English-
French task. Note that the factorized RNNTSMs and the RNNLMs in the large task are also only trained
the speech-style parallel corpus. In future work, we will train them on a bigger corpus, which can be
expected to further increase the performance (Auli et al., 2013; Wu et al., 2012).

6 Conclusion

Most prior neural network-based translation models either employ feed-forward neural networks to ex-
plicitly integrate source information via word-to-word alignment, or use recurrent neural networks in
which source information is implicitly represented with a compressed vector. In this paper, we present
recurrent neural network-based tuple sequence models (RNNTSMs) to compute probabilities of bilin-
gual tuples in continuous space. One of major advantages is their potential to capture long-span history
compared with feed-forward neural networks. In addition, our models can well address the data sparsity
problem thanks to the fine-grained word bilingual tuples and the factorized recurrent neural networks. As
can be concluded from the experimental results on the IWSLT2012 test sets, our factorized RNNTSMs
with the proposed bilingual tuples can essentially improve the BLEU scores for the English-French and
English-German tasks.

We plan to incorporate re-ordering and syntactic features into RNNTSMs and evaluate them on distant
language pairs, such as English-Chinese (Japanese) tasks in the future. Moreover, we will prune large
tuple vocabulary and speed up the training on bigger data.

5http://www.statmt.org/wmt12/translation-task.html
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