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Abstract

A fundamental problem in text generation
is word ordering. Word ordering is a com-
putationally difficult problem, which can
be constrained to some extent for particu-
lar applications, for example by using syn-
chronous grammars for statistical machine
translation. There have been some recent
attempts at the unconstrained problem of
generating a sentence from a multi-set of
input words (Wan et al., 2009; Zhang and
Clark, 2011). By using CCG and learn-
ing guided search, Zhang and Clark re-
ported the highest scores on this task. One
limitation of their system is the absence
of an N-gram language model, which has
been used by text generation systems to
improve fluency. We take the Zhang and
Clark system as the baseline, and incor-
porate an N-gram model by applying on-
line large-margin training. Our system sig-
nificantly improved on the baseline by 3.7
BLEU points.

1 Introduction

One fundamental problem in text generation is
word ordering, which can be abstractly formu-
lated as finding a grammatical order for a multi-
set of words. The word ordering problem can also
include word choice, where only a subset of the
input words are used to produce the output.

Word ordering is a difficult problem. Finding
the best permutation for a set of words accord-
ing to a bigram language model, for example, is
NP-hard, which can be proved by linear reduction
from the traveling salesman problem. In prac-
tice, exploring the whole search space of permu-
tations is often prevented by adding constraints.

In phrase-based machine translation (Koehn et al.,
2003; Koehn et al., 2007), a distortion limit is
used to constrain the position of output phrases.
In syntax-based machine translation systems such
as Wu (1997) and Chiang (2007), synchronous
grammars limit the search space so that poly-
nomial time inference is feasible. In fluency
improvement (Blackwood et al., 2010), parts of
translation hypotheses identified as having high
local confidence are held fixed, so that word or-
dering elsewhere is strictly local.

Some recent work attempts to address the fun-
damental word ordering task directly, using syn-
tactic models and heuristic search. Wan et al.
(2009) uses a dependency grammar to solve word
ordering, and Zhang and Clark (2011) usesCCG

(Steedman, 2000) for word ordering and word
choice. The use of syntax models makes their
search problems harder than word permutation us-
ing anN -gram language model only. Both meth-
ods apply heuristic search. Zhang and Clark de-
veloped a bottom-up best-first algorithm to build
output syntax trees from input words, where
search is guided by learning for both efficiency
and accuracy. The framework is flexible in allow-
ing a large range of constraints to be added for
particular tasks.

We extend the work of Zhang and Clark (2011)
(Z&C) in two ways. First, we apply online large-
margin training to guide search. Compared to the
perceptron algorithm on “constituent level fea-
tures” by Z&C, our training algorithm is theo-
retically more elegant (see Section 3) and con-
verges more smoothly empirically (see Section 5).
Using online large-margin training not only im-
proves the output quality, but also allows the in-
corporation of anN -gram language-model into
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the system.N -gram models have been used as a
standard component in statistical machine trans-
lation, but have not been applied to the syntac-
tic model of Z&C. Intuitively, anN -gram model
can improve local fluency when added to a syntax
model. Our experiments show that a four-gram
model trained using the English GigaWord cor-
pus gave improvements when added to the syntax-
based baseline system.

The contributions of this paper are as follows.
First, we improve on the performance of the Z&C
system for the challenging task of the general
word ordering problem. Second, we develop a
novel method for incorporating a large-scale lan-
guage model into a syntax-based generation sys-
tem. Finally, we analyse large-margin training in
the context of learning-guided best-first search,
offering a novel solution to this computationally
hard problem.

2 The statistical model and decoding
algorithm

We take Z&C as our baseline system. Given
a multi-set of input words, the baseline system
builds aCCG derivation by choosing and ordering
words from the input set. The scoring model is
trained using CCGBank (Hockenmaier and Steed-
man, 2007), and best-first decoding is applied. We
apply the same decoding framework in this paper,
but apply an improved training process, and incor-
porate anN -gram language model into the syntax
model. In this section, we describe and discuss
the baseline statistical model and decoding frame-
work, motivating our extensions.

2.1 Combinatory Categorial Grammar

CCG, and parsing withCCG, has been described
elsewhere (Clark and Curran, 2007; Hockenmaier
and Steedman, 2002); here we provide only a
short description.

CCG (Steedman, 2000) is a lexicalized gram-
mar formalism, which associates each word in a
sentence with a lexical category. There is a small
number of basic lexical categories, such as noun
(N), noun phrase (NP), and prepositional phrase
(PP). Complex lexical categories are formed re-
cursively from basic categories and slashes, which
indicate the directions of arguments. TheCCG

grammar used by our system is read off the deriva-
tions in CCGbank, following Hockenmaier and

Steedman (2002), meaning that theCCGcombina-
tory rules are encoded as rule instances, together
with a number of additional rules which deal with
punctuation and type-changing. Given a sentence,
its CCGderivation can be produced by first assign-
ing a lexical category to each word, and then re-
cursively applyingCCG rules bottom-up.

2.2 The decoding algorithm

In the decoding algorithm, a hypothesis is an
edge, which corresponds to a sub-tree in aCCG

derivation. Edges are built bottom-up, starting
from leaf edges, which are generated by assigning
all possible lexical categories to each input word.
Each leaf edge corresponds to an input word with
a particular lexical category. Two existing edges
can be combined if there exists aCCG rule which
combines their category labels, and if they do not
contain the same input word more times than its
total count in the input. The resulting edge is as-
signed a category label according to the combi-
natory rule, and covers the concatenated surface
strings of the two sub-edges in their order or com-
bination. New edges can also be generated by ap-
plying unary rules to a single existing edge. Start-
ing from the leaf edges, the bottom-up process is
repeated until a goal edge is found, and its surface
string is taken as the output.

This derivation-building process is reminiscent
of a bottom-upCCG parser in the edge combina-
tion mechanism. However, it is fundamentally
different from a bottom-up parser. Since, for
the generation problem, the order of two edges
in their combination is flexible, the search prob-
lem is much harder than that of a parser. With
no input order specified, no efficient dynamic-
programming algorithm is available, and less con-
textual information is available for disambigua-
tion due to the lack of an input string.

In order to combat the large search space, best-
first search is applied, where candidate hypothe-
ses are ordered by their scores, and kept in an
agenda, and a limited number of accepted hy-
potheses are recorded in a chart. Here the chart
is essentially a set of beams, each of which con-
tains the highest scored edges covering a particu-
lar number of words. Initially, all leaf edges are
generated and scored, before they are put onto the
agenda. During each step in the decoding process,
the top edge from the agenda is expanded. If it is
a goal edge, it is returned as the output, and the
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Algorithm 1 The decoding algorithm.
a← INITAGENDA( )
c← INITCHART( )
while not TIMEOUT( ) do

new← []
e← POPBEST(a)
if GOALTEST(e) then

return e

end if
for e′ ∈ UNARY(e, grammar) do

APPEND(new, e)
end for
for ẽ ∈ c do

if CANCOMBINE(e, ẽ) then
e′← BINARY (e, ẽ, grammar)
APPEND(new, e′)

end if
if CANCOMBINE(ẽ, e) then

e′← BINARY (ẽ, e, grammar)
APPEND(new, e′)

end if
end for
for e′ ∈ new do

ADD(a, e′)
end for
ADD(c, e)

end while

decoding finishes. Otherwise it is extended with
unary rules, and combined with existing edges in
the chart using binary rules to produce new edges.
The resulting edges are scored and put onto the
agenda, while the original edge is put onto the
chart. The process repeats until a goal edge is
found, or a timeout limit is reached. In the latter
case, a default output is produced using existing
edges in the chart.

Pseudocode for the decoder is shown as Algo-
rithm 1. Again it is reminiscent of a best-first
parser (Caraballo and Charniak, 1998) in the use
of an agenda and a chart, but is fundamentally dif-
ferent due to the fact that there is no input order.

2.3 Statistical model and feature templates

The baseline system uses a linear model to score
hypotheses. For an edgee, its score is defined as:

f(e) = Φ(e) · θ,

whereΦ(e) represents the feature vector ofe and
θ is the parameter vector of the model.

During decoding, feature vectors are computed
incrementally. When an edge is constructed, its
score is computed from the scores of its sub-edges
and the incrementally added structure:

f(e) = Φ(e) · θ

=
(

(

∑

es∈e

Φ(es)
)

+ φ(e)
)

· θ

=
(

∑

es∈e

Φ(es) · θ
)

+ φ(e) · θ

=
(

∑

es∈e

f(es)
)

+ φ(e) · θ

In the equation,es ∈ e represents a sub-edge of
e. Leaf edges do not have any sub-edges. Unary-
branching edges have one sub-edge, and binary-
branching edges have two sub-edges. The fea-
ture vectorφ(e) represents the incremental struc-
ture whene is constructed over its sub-edges.
It is called the “constituent-level feature vector”
by Z&C. For leaf edges,φ(e) includes informa-
tion about the lexical category label; for unary-
branching edges,φ(e) includes information from
the unary rule; for binary-branching edges,φ(e)
includes information from the binary rule, and ad-
ditionally the token,POSand lexical category bi-
grams and trigrams that result from the surface
string concatenation of its sub-edges. The score
f(e) is therefore the sum off(es) (for all es ∈ e)
plusφ(e) ·θ. The feature templates we use are the
same as those in the baseline system.

An important aspect of the scoring model is that
edges with different sizes are compared with each
other during decoding. Edges with different sizes
can have different numbers of features, which can
make the training of a discriminative model more
difficult. For example, a leaf edge with one word
can be compared with an edge over the entire in-
put. One way of reducing the effect of the size dif-
ference is to include the size of the edge as part of
feature definitions, which can improve the compa-
rability of edges of different sizes by reducing the
number of features they have in common. Such
features are applied by Z&C, and we make use of
them here. Even with such features, the question
of whether edges with different sizes are linearly
separable is an empirical one.

3 Training

The efficiency of the decoding algorithm is de-
pendent on the statistical model, since the best-
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first search isguidedto a solution by the model,
and a good model will lead to a solution being
found more quickly. In the ideal situation for the
best-first decoding algorithm, the model is perfect
and the score of any gold-standard edge is higher
than the score of any non-gold-standard edge. As
a result, the top edge on the agenda is always a
gold-standard edge, and therefore all edges on the
chart are gold-standard before the gold-standard
goal edge is found. In this oracle procedure, the
minimum number of edges is expanded, and the
output is correct. The best-first decoder is perfect
in not only accuracy, but also speed. In practice
this ideal situation is rarely met, but it determines
the goal of the training algorithm: to produce the
perfect model and hence decoder.

If we take gold-standard edges as positive ex-
amples, and non-gold-standard edges as negative
examples, the goal of the training problem can be
viewed as finding a large separating margin be-
tween the scores of positive and negative exam-
ples. However, it is infeasible to generate the full
space of negative examples, which is factorial in
the size of input. Like Z&C, we apply online
learning, and generate negative examples based
on the decoding algorithm.

Our training algorithm is shown as Algo-
rithm 2. The algorithm is based on the decoder,
where an agenda is used as a priority queue of
edges to be expanded, and a set of accepted edges
is kept in a chart. Similar to the decoding algo-
rithm, the agenda is intialized using all possible
leaf edges. During each step, the top of the agenda
e is popped. If it is a gold-standard edge, it is ex-
panded in exactly the same way as the decoder,
with the newly generated edges being put onto
the agenda, ande being inserted into the chart.
If e is not a gold-standard edge, we take it as a
negative examplee−, and take the lowest scored
gold-standard edge on the agendae+ as a positive
example, in order to make an udpate to the model
parameter vectorθ. Our parameter update algo-
rithm is different from the baseline perceptron al-
gorithm, as will be discussed later. After updating
the parameters, the scores of agenda edges above
and includinge−, together with all chart edges,
are updated, ande− is discarded before the start
of the next processing step. By not putting any
non-gold-standard edges onto the chart, the train-
ing speed is much faster; on the other hand a wide
range of negative examples is pruned. We leave

Algorithm 2 The training algorithm.
a← INITAGENDA( )
c← INITCHART( )
while not TIMEOUT( ) do

new← []
e← POPBEST(a)
if GOLDSTANDARD(e) and GOALTEST(e)

then return e

end if
if not GOLDSTANDARD(e) then

e−← e

e+← M INGOLD(a)
UPDATEPARAMETERS(e+ , e−)
RECOMPUTESCORES(a, c)
continue

end if
for e′ ∈ UNARY(e, grammar) do

APPEND(new, e)
end for
for ẽ ∈ c do

if CANCOMBINE(e, ẽ) then
e′← BINARY (e, ẽ, grammar)
APPEND(new, e′)

end if
if CANCOMBINE(ẽ, e) then

e′← BINARY (ẽ, e, grammar)
APPEND(new, e′)

end if
end for
for e′ ∈ new do

ADD(a, e′)
end for
ADD(c, e)

end while

for further work possible alternative methods to
generate more negative examples during training.

Another way of viewing the training process is
that it pushes gold-standard edges towards the top
of the agenda, and crucially pushes them above
non-gold-standard edges. This is the view de-
scribed by Z&C. Given a positive examplee+ and
a negative examplee−, they use the perceptron
algorithm to penalize the score forφ(e−) and re-
ward the score ofφ(e+), but do not update pa-
rameters for the sub-edges ofe+ ande−. An argu-
ment for not penalizing the sub-edge scores fore−
is that the sub-edges must be gold-standard edges
(since the training process is constructed so that
only gold-standard edges are expanded). From
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the perspective of correctness, it is unnecessary
to find a margin between the sub-edges ofe+ and
those ofe−, since both are gold-standard edges.

However, since the score of an edge not only
represents its correctness, but also affects its pri-
ority on the agenda, promoting the sub-edge of
e+ can lead to “easier” edges being constructed
before “harder” ones (i.e. those that are less
likely to be correct), and therefore improve the
output accuracy. This perspective has been ob-
served by other works of learning-guided-search
(Shen et al., 2007; Shen and Joshi, 2008; Gold-
berg and Elhadad, 2010). Intuitively, the score
difference between easy gold-standard and harder
gold-standard edges should not be as great as the
difference between gold-standard and non-gold-
standard edges. The perceptron update cannot
provide such control of separation, because the
amount of update is fixed to 1.

As described earlier, we treat parameter update
as finding a separation between correct and incor-
rect edges, in which the global feature vectorsΦ,
rather thanφ, are considered. Given a positive ex-
amplee+ and a negative examplee−, we make a
minimum update so that the score ofe+ is higher
than that ofe− with some margin:

θ ← arg min
θ′

‖ θ′−θ0 ‖, s.t.Φ(e+)θ′−Φ(e−)θ′ ≥ 1

whereθ0 andθ denote the parameter vectors be-
fore and after the udpate, respectively. The up-
date is similar to the update of online large-margin
learning algorithms such as 1-bestMIRA (Cram-
mer et al., 2006), and has a closed-form solution:

θ ← θ0 +
f(e−)− f(e+) + 1

‖ Φ(e+)− Φ(e−) ‖2
(

Φ(e+)−Φ(e−)
)

In this update, the global feature vectorsΦ(e+)
and Φ(e−) are used. Unlike Z&C, the scores
of sub-edges ofe+ and e− are also udpated, so
that the sub-edges ofe− are less prioritized than
those ofe+. We show empirically that this train-
ing algorithm significantly outperforms the per-
ceptron training of the baseline system in Sec-
tion 5. An advantage of our new training algo-
rithm is that it enables the accommodation of a
separately trainedN -gram model into the system.

4 Incorporating an N-gram language
model

Since the seminal work of the IBM models
(Brown et al., 1993),N -gram language models

have been used as a standard component in statis-
tical machine translation systems to control out-
put fluency. For the syntax-based generation sys-
tem, the incorporation of anN -gram language
model can potentially improve the local fluency
of output sequences. In addition, theN -gram
language model can be trained separately using
a large amount of data, while the syntax-based
model requires manual annotation for training.

The standard method for the combination of
a syntax model and anN -gram model is linear
interpolation. We incorporate fourgram, trigram
and bigram scores into our syntax model, so that
the score of an edgee becomes:

F (e) = f(e) + g(e)

= f(e) + α · gfour(e) + β · gtri (e) + γ · gbi(e),

wheref is the syntax model score, andg is the
N -gram model score.g consists of three com-
ponents,gfour, gtri and gbi, representing the log-
probabilities of fourgrams, trigrams and bigrams
from the language model, respectively.α, β and
γ are the corresponding weights.

During decoding,F (e) is computed incremen-
tally. Again, denoting the sub-edges ofe ases,

F (e) = f(e) + g(e)

=
(

∑

es∈e

F (es)
)

+ φ(e)θ + gδ(e)

Heregδ(e) = α ·gδfour(e)+β ·gδtri (e)+γ ·gδbi(e)
is the sum of log-probabilities of the newN -
grams resulting from the construction ofe. For
leaf edges and unary-branching edges, no newN -
grams result from their construction (i.e.gδ = 0).
For a binary-branching edge, newN -grams result
from the surface-string concatenation of its sub-
edges. The sum of log-probabilities of the new
fourgrams, trigrams and bigrams contribute togδ

with weightsα, β andγ, respectively.
For training, there are at least three methods to

tuneα, β, γ andθ. One simple method is to train
the syntax modelθ independently, and selectα,
β, andγ empirically from a range of candidate
values according to development tests. We call
this method test-time interpolation. An alterna-
tive is to selectα, β and γ first, initializing the
vector θ as all zeroes, and then run the training
algorithm for θ taking into account theN -gram
language model. In this process,g is considered
when finding a separation between positive and
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negative examples; the training algorithm finds a
value of θ that best suits the precomputedα, β

andγ values, together with theN -gram language
model. We call this methodg-precomputed in-
terpolation. Yet another method is to initializeα,
β, γ andθ as all zeroes, and run the training al-
gorithm taking into account theN -gram language
model. We call this methodg-free interpolation.

The incorporation of anN -gram language
model into the syntax-based generation system is
weakly analogous toN -gram model insertion for
syntax-based statistical machine translation sys-
tems, both of which apply a score from theN -
gram model component in a derivation-building
process. As discussed earlier, polynomial-time
decoding is typically feasible for syntax-based
machine translation systems without anN -gram
language model, due to constraints from the
grammar. In these cases, incorporation ofN -
gram language models can significantly increase
the complexity of a dynamic-programming de-
coder (Bar-Hillel et al., 1961). Efficient search
has been achieved using chart pruning (Chiang,
2007) and iterative numerical approaches to con-
strained optimization (Rush and Collins, 2011).
In contrast, the incorporation of anN -gram lan-
guage model into our decoder is more straightfor-
ward, and does not add to its asymptotic complex-
ity, due to the heuristic nature of the decoder.

5 Experiments

We use sections 2–21 of CCGBank to train our
syntax model, section 00 for development and
section 23 for the final test. Derivations from
CCGBank are transformed into inputs by turn-
ing their surface strings into multi-sets of words.
Following Z&C, we treat base noun phrases (i.e.
NPs that do not recursively contain otherNPs) as
atomic units for the input. Output sequences are
compared with the original sentences to evaluate
their quality. We follow previous work and use
the BLEU metric (Papineni et al., 2002) to com-
pare outputs with references.

Z&C use two methods to construct leaf edges.
The first is to assign lexical categories according
to a dictionary. There are 26.8 lexical categories
for each word on average using this method, cor-
responding to 26.8 leaf edges. The other method
is to use a pre-processing step — aCCG supertag-
ger (Clark and Curran, 2007) — to prune can-
didate lexical categories according to the gold-

CCGBank Sentences Tokens
training 39,604 929,552
development 1,913 45,422

GigaWord v4 Sentences Tokens
AFP 30,363,052 684,910,697
XIN 15,982,098 340,666,976

Table 1: Number of sentences and tokens by language
model source.

standard sequence, assuming that for some prob-
lems the ambiguities can be reduced (e.g. when
the input is already partly correctly ordered).
Z&C use different probability cutoff levels (the
β parameter in the supertagger) to control the
pruning. Here we focus mainly on the dictionary
method, which leaves lexical category disam-
biguation entirely to the generation system. For
comparison, we also perform experiments with
lexical category pruning. We choseβ = 0.0001,
which leaves 5.4 leaf edges per word on average.

We used the SRILM Toolkit (Stolcke, 2002)
to build a true-case 4-gram language model es-
timated over the CCGBank training and develop-
ment data and a large additional collection of flu-
ent sentences in the Agence France-Presse (AFP)
and Xinhua News Agency (XIN) subsets of the
English GigaWord Fourth Edition (Parker et al.,
2009), a total of over 1 billion tokens. The Gi-
gaWord data was first pre-processed to replicate
the CCGBank tokenization. The total number
of sentences and tokens in each LM component
is shown in Table 1. The language model vo-
cabulary consists of the 46,574 words that oc-
cur in the concatenation of the CCGBank train-
ing, development, and test sets. The LM proba-
bilities are estimated using modified Kneser-Ney
smoothing (Kneser and Ney, 1995) with interpo-
lation of lower n-gram orders.

5.1 Development experiments

A set of development test results without lexical
category pruning (i.e. using the full dictionary) is
shown in Table 2. We train the baseline system
and our systems under various settings for 10 iter-
ations, and measure the output BLEU scores after
each iteration. The timeout value for each sen-
tence is set to 5 seconds. The highest score (max
BLEU) and averaged score (avg. BLEU) of each
system over the 10 training iterations are shown
in the table.
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Method max BLEU avg. BLEU

baseline 38.47 37.36
margin 41.20 39.70
margin +LM (g-precomputed) 41.50 40.84

margin +LM (α = 0, β = 0, γ = 0) 40.83 —
margin +LM (α = 0.08, β = 0.016, γ = 0.004) 38.99 —
margin +LM (α = 0.4, β = 0.08, γ = 0.02) 36.17 —
margin +LM (α = 0.8, β = 0.16, γ = 0.04) 34.74 —

Table 2: Development experiments without lexical categorypruning.

The first three rows represent the baseline sys-
tem, our largin-margin training system (margin),
and our system with theN -gram model incorpo-
rated usingg-precomputed interpolation. For in-
terpolation we manually choseα = 0.8, β = 0.16
andγ = 0.04, respectively. These values could
be optimized by development experiments with
alternative configurations, which may lead to fur-
ther improvements. Our system with large-margin
training gives higher BLEU scores than the base-
line system consistently over all iterations. The
N -gram model led to further improvements.

The last four rows in the table show results
of our system with theN -gram model added us-
ing test-time interpolation. The syntax model is
trained with the optimal number of iterations, and
different α, β, andγ values are used to integrate
the language model. Compared with the system
using noN -gram model (margin), test-time inter-
polation did not improve the accuracies.

The row withα, β, γ = 0 represents our system
with the N -gram model loaded, and the scores
gfour, gtri and gbi computed for eachN -gram
during decoding, but the scores of edges are com-
puted without usingN -gram probabilities. The
scoring model is the same as the syntax model
(margin), but the results are lower than the row
“margin”, because computingN -gram probabil-
ities made the system slower, exploring less hy-
potheses under the same timeout setting.1

The comparison betweeng-precomputed inter-
polation and test-time interpolation shows that the
system gives better scores when the syntax model
takes into consideration theN -gram model during

1More decoding time could be given to the slowerN -
gram system, but we use 5 seconds as the timeout setting
for all the experiments, giving the methods with theN -gram
language model a slight disadvantage, as shown by the two
rows “margin” and “margin +LM (α, β, γ = 0).

 37

 38

 39

 40

 41

 42

 43

 44

 45

 1  2  3  4  5  6  7  8  9  10

B
LE

U

training iteration

baseline
margin

margin +LM

Figure 1: Development experiments with lexical cate-
gory pruning (β = 0.0001).

training. One question that arises is whetherg-
free interpolation will outperformg-precomputed
interpolation.g-free interpolation offers the free-
dom ofα, β andγ during training, and can poten-
tially reach a better combination of the parameter
values. However, the training algorithm failed to
converge withg-free interpolation. One possible
explanation is that real-valued features from the
language model made our large-margin training
harder. Another possible reason is that our train-
ing process with heavy pruning does not accom-
modate this complex model.

Figure 1 shows a set of development experi-
ments with lexical category pruning (with the su-
pertagger parameterβ = 0.0001). The scores
of the three different systems are calculated by
varying the number of training iterations. The
large-margin training system (margin) gave con-
sistently better scores than the baseline system,
and adding a language model (margin +LM) im-
proves the scores further.

Table 3 shows some manually chosen examples
for which our system gave significant improve-
ments over the baseline. For most other sentences
the improvements are not as obvious. For each
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baseline margin margin +LM

as a nonexecutive director Pierre Vinken
, 61 years old , will join the board . 29
Nov.

61 years old , the board will join as a
nonexecutive director Nov. 29 , Pierre
Vinken .

as a nonexecutive director Pierre Vinken
, 61 years old , will join the board Nov.
29 .

Lorillard nor smokers were aware of the
Kent cigarettes of any research on the
workers who studied the researchers

of any research who studied Neither the
workers were aware of smokers on the
Kent cigarettes nor the researchers

Neither Lorillard nor any research on the
workers who studied the Kent cigarettes
were aware of smokers of the researchers
.

you But 35 years ago have to recognize
that these events took place .

recognize But you took place that these
events have to 35 years ago .

But you have to recognize that these
events took place 35 years ago .

investors to pour cash into money funds
continue in Despite yields recent declines

Despite investors , yields continue to
pour into money funds recent declines in
cash .

Despite investors , recent declines in
yields continue to pour cash into money
funds .

yielding The top money funds are cur-
rently well over 9 % .

The top money funds currently are yield-
ing well over 9 % .

The top money funds are yielding well
over 9 % currently .

where A buffet breakfast , held in the mu-
seum was food and drinks to . everyday
visitors banned

everyday visitors are banned to where
A buffet breakfast was held , food and
drinks in the museum .

A buffet breakfast , everyday visitors are
banned to where food and drinks was
held in the museum .

A Commonwealth Edison spokesman
said an administrative nightmare would
be tracking down the past 3 12 years that
the two million customers have . whose
changed

tracking A Commonwealth Edison
spokesman said that the two million cus-
tomers whose addresses have changed
down during the past 3 12 years would
be an administrative nightmare .

an administrative nightmare whose ad-
dresses would be tracking down A Com-
monwealth Edison spokesman said that
the two million customers have changed
during the past 3 12 years .

The $ 2.5 billion Byron 1 plant , Ill. , was
completed . near Rockford in 1985

The $ 2.5 billion Byron 1 plant was near
completed in Rockford , Ill. , 1985 .

The $ 2.5 billion Byron 1 plant near
Rockford , Ill. , was completed in 1985 .

will ( During its centennial year , The
Wall Street Journal report events of the
past century that stand as milestones of
American business history . )

as The Wall Street Journal ( During its
centennial year , milestones stand of
American business history that will re-
port events of the past century . )

During its centennial year events will re-
port , The Wall Street Journal that stand
as milestones of American business his-
tory ( of the past century ) .

Table 3: Some chosen examples with significant improvements(supertagger parameterβ = 0.0001).

method, the examples are chosen from the devel-
opment output with lexical category pruning, af-
ter the optimal number of training iterations, with
the timeout set to 5s. We also tried manually se-
lecting examples without lexical category prun-
ing, but the improvements were not as obvious,
partly because the overall fluency was lower for
all the three systems.

Table 4 shows a set of examples chosen ran-
domly from the development test outputs of our
system with theN -gram model. The optimal
number of training iterations is used, and a time-
out of 1 minute is used in addition to the 5s time-
out for comparison. With more time to decode
each input, the system gave a BLEU score of
44.61, higher than 41.50 with the 5s timout.

While some of the outputs we examined are
reasonably fluent, most are to some extent frag-
mentary.2 In general, the system outputs are
still far below human fluency. Some samples are

2Part of the reason for some fragmentary outputs is the
default output mechanism: partial derivations from the chart
are greedily put together when timeout occurs before a goal
hypothesis is found.

syntactically grammatical, but are semantically
anomalous. For example, person names are often
confused with company names, verbs often take
unrelated subjects and objects. The problem is
much more severe for long sentences, which have
more ambiguities. For specific tasks, extra infor-
mation (such as the source text for machine trans-
lation) can be available to reduce ambiguities.

6 Final results

The final results of our system without lexical cat-
egory pruning are shown in Table 5. Row “W09
CLE” and “W09 AB” show the results of the
maximum spanning tree and assignment-based al-
gorithms of Wan et al. (2009); rows “margin”
and “margin +LM” show the results of our large-
margin training system and our system with the
N -gram model. All these results are directly com-
parable since we do not use any lexical category
pruning for this set of results. For each of our
systems, we fix the number of training iterations
according to development test scores. Consis-
tent with the development experiments, our sys-
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timeout = 5s timeout = 1m

drooled the cars and drivers , like Fortune 500 executives . over
the race

After schoolboys drooled over the cars and drivers , the race
like Fortune 500 executives .

One big reason : thin margins . One big reason : thin margins .
You or accountants look around ... and at an eye blinks . pro-
fessional ballplayers

blinks nobody You or accountants look around ... and at an eye
. professional ballplayers

most disturbing And of it , are educators , not students , for the
wrongdoing is who .

And blamed for the wrongdoing , educators , not students who
are disturbing , much of it is most .

defeat coaching aids the purpose of which is , He and other
critics say can to . standardized tests learning progress

gauge coaching aids learning progress can and other criticssay
the purpose of which is to defeat , standardized tests .

The federal government of government debt because Congress
has lifted the ceiling on U.S. savings bonds suspended sales

The federal government suspended sales of government debt
because Congress has n’t lifted the ceiling on U.S. savings
bonds .

Table 4: Some examples chosen at random from development test outputs without lexical category pruning.

System BLEU

W09 CLE 26.8
W09 AB 33.7
Z&C11 40.1

margin 42.5
margin +LM 43.8

Table 5: Test results without lexical category pruning.

System BLEU

Z&C11 43.2

margin 44.7
margin +LM 46.1

Table 6: Test results with lexical category pruning (su-
pertagger parameterβ = 0.0001).

tem outperforms the baseline methods. The acu-
racies are significantly higher when theN -gram
model is incorporated.

Table 6 compares our system with Z&C using
lexical category pruning (β = 0.0001) and a 5s
timeout for fair comparison. The results are sim-
ilar to Table 5: our large-margin training systems
outperforms the baseline by 1.5 BLEU points, and
adding theN -gram model gave a further 1.4 point
improvement. The scores could be significantly
increased by using a larger timeout, as shown in
our earlier development experiments.

7 Related Work

There is a recent line of research on text-to-
text generation, which studies the linearization of
dependency structures (Barzilay and McKeown,
2005; Filippova and Strube, 2007; Filippova and
Strube, 2009; Bohnet et al., 2010; Guo et al.,

2011). Unlike our system, and Wan et al. (2009),
input dependencies provide additional informa-
tion to these systems. Although the search space
can be constrained by the assumption of projec-
tivity, permutation of modifiers of the same head
word makes exact inference for tree lineariza-
tion intractable. The above systems typically ap-
ply approximate inference, such as beam-search.
While syntax-based features are commonly used
by these systems for linearization, Filippova and
Strube (2009) apply a trigram model to control
local fluency within constituents. A dependency-
based N-gram model has also been shown effec-
tive for the linearization task (Guo et al., 2011).

The best-first inference and timeout mechanism
of our system is similar to that of White (2004), a
surface realizer from logical forms usingCCG.

8 Conclusion

We studied the problem of word-ordering using
a syntactic model and allowing permutation. We
took the model of Zhang and Clark (2011) as the
baseline, and extended it with online large-margin
training and anN -gram language model. These
extentions led to improvements in the BLEU eval-
uation. Analyzing the generated sentences sug-
gests that, while highly fluent outputs can be pro-
duced for short sentences (≤ 10 words), the sys-
tem fluency in general is still way below human
standard. Future work remains to apply the sys-
tem as a component for specific text generation
tasks, for example machine translation.
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