
Robust Estimation of Feature Weights in Statistical Machine Translation

Cristina España-Bonet and Lluı́s Màrquez
TALP Research Center

Universitat Politècnica de Catalunya
Jordi Girona 1–3, 08034 Barcelona

cristinae@lsi.upc.edu, lluism@lsi.upc.edu

Abstract

Weights of the various components in a
standard Statistical Machine Translation
model are usually estimated via Minimum
Error Rate Training. With this, one finds
their optimum value on a development
set with the expectation that these opti-
mal weights generalise well to other test
sets. However, this is not always the
case when domains differ. This work uses
a perceptron algorithm to learn more ro-
bust weights to be used on out-of-domain
corpora without the need for specialised
data. For an Arabic-to-English translation
system, the generalisation of weights rep-
resents an improvement of more than 2
points of BLEU with respect to the MERT
baseline using the same information.

1 Introduction

In Statistical Machine Translation (SMT) and
within the log-linear model (Och and Ney, 2002),
the best translation ê for a given source sentence
f is the most probable one, and the probability is
expressed as a weighted sum of different elements:

T (f) = ê = argmaxe

∑
m

λmhm(f, e) . (1)

In the standard most simple form, one consid-
ers 8 components being hm(f, e) log-probabilities
of: the language model P (e), the generative
and discriminative lexical translation probabilities
lex(f |e) and lex(e|f) respectively, the genera-
tive and discriminative translation models P (f |e)
and P (e|f), the distortion model Pd(e, f), and the
phrase and word penalties, ph(e) and w(e).

c© 2010 European Association for Machine Translation.

The λ weights, which account for the relative
importance of each feature in the log-linear prob-
abilistic model, are commonly estimated by opti-
mising the translation performance on a develop-
ment set. For this optimisation one can use Min-
imum Error Rate Training (MERT) (Och, 2003)
where BLEU (Papineni et al., 2002) is the refer-
ence score.

MERT estimates the 8D best fit by searching
the minimum in each dimension of the parame-
ter space. The line search used in Och (2003) is
demonstrated to find the absolute minimum in that
direction, still, this does not guarantee that the best
parameters obtained are the optimum ones. In fact,
the larger the number of features, the less reliable
the global minimisation will be. Some works such
as Cer et al. (2008), Moore and Quirk (2008), or
Foster and Kuhn (2009) try to improve the stan-
dard MERT minimisation. Here we do not follow
this line, since we are not interested in finding the
optimal parameters on development but on test.

In this study, we see how parameters estimated
with MERT can generalise quite bad on test sets
that depart substantially from the training and de-
velopment sets. Our goal is to find a more robust
vector of weights

−→
λ that, even without being op-

timal on development or test when the domain is
akin, better generalise on the other cases. We show
empirically that this can be done by including ma-
chine learning techiques to estimate

−→
λ without the

need for data in the new domain. However, if one
has at his disposal such data sets, systems can be
easier adapted. As there exist domain adaptation
methods to improve results when these data sets
are available, we devote most of the work to the
first case, but we also check that the method does
not hurt the performance in the second case.

For this purpose, we complement the stan-

[EAMT May 2010 St Raphael, France]

dard minimisation methods with an averaged
perceptron-based re-estimation of parameters.
Perceptrons have been used before with the aim
of adding a large amount of new features to sta-
tistical systems avoiding the problem of the nu-
merical minimisation of such a large vector of pa-
rameters (Liang et al., 2006; Tillmann and Zhang,
2006; Arun and Koehn, 2007). Other algorithms
such as MIRA have been used for the same pur-
pose (Arun and Koehn, 2007; Chiang et al., 2008).
Here, the philosophy is different. We do not intend
to include new information, but to profit better the
available data as we will argue in the following.
Even using the same data sets, the combination
of MERT and the perceptron training can improve
more than 2 points of BLEU the result of MERT
alone. When including specialised data for de-
velopment, the difference between MERT and the
combined training is not so spectacular, but, still,
the perceptron stage attains the leading results.

The outline of the paper is as follows. Section 2
introduces the perceptron training, details the al-
gorithm and shows different forms for the update
rule and the choice of a gold standard, two key as-
pects of using this algorithm for machine transla-
tion. Section 3 describes and classifies the data
used in the analysis. Afterwards, in Section 4,
we detail our experiments. The first one, Cross-
domain testing, is devoted to demonstrate how one
can enhance his system for an out-of-domain test
set by appending a perceptron training. The second
experiment focuses on using an out-of-domain de-
velopment set for tuning the system into the new
domain. Finally, we draw our conclusions in Sec-
tion 5.

2 Perceptron-based training

The averaged structured perceptron (Collins,
2002) is an online mistake driven algorithm that
determines the weights of a linear feature function
by correcting their values according to the distance
to the true solution.

The score function that quantifies the quality of
a translation in SMT, Eq. 1, is a linear function of
the hm components. Therefore, the corresponding
weights can be learned with the perceptron.

Figure 1 details the perceptron algorithm. Given
the training data set {f i,ei}, an initial value for
the weights

−→
λ 0, the learning rate ε, and the num-

ber of epochs N , the perceptron translates (de-
codes) every sentence in the training set and com-

Input:
Training data, {f i,ei}T

i=1

Initial weights, −→λ 0

N epochs, learning rate ε

for each epoch n = 1, ..., N
for each example fi i = 1, ..., T

ê = decode(fi,λi)
guess: ê[1]
tgt: argmaxj (BLEU(ê[j]))

if −→h (fi, guess) 6= −→
h (fi, tgt) then−→

λ i := −→
λ i + ε ·∆−→h (fi, tgt, guess)

end if−→Λ := −→Λ + −→
λ i

end for
end for

return (−→Λ /NT)

Figure 1: Average perceptron algorithm applied to
the weights λ.

pares the obtained translation with the target. The
function decode() calculates the score and the
corresponding argmax in Eq. 1 using the current
weights. It returns an n-best list of translations
ê ranked by its score. The guess is the first ele-
ment in the list. The target is for us the element
with the highest BLEU in the list. For each exam-
ple during the training of the perceptron, weights
are updated whenever the features of the guess−→
h (fi, guess) are different from the features of the
target

−→
h (fi, tgt). The update is a function of

the difference between the corresponding features,
∆−→h . In the end, the algorithm returns the aver-
aged weights −→Λ .

The next words discuss some possible update
rules and choices of the target or gold standard for
the machine translation problem.

2.1 Update rule
The traditional update rule for the perceptron ac-
counts for the difference between the features of
the guess and the target modulated by a learning
rate ε. We train the perceptron with the eight real
features related to the probabilities appearing in
Equation 1. That is, hm = [P (e), P (e|f), P (f |e),
lex(e|f), lex(f |e), Pd(e, f), ph(e), w(e)]. The
variation among the same feature of different
translations can be huge, and that can easily cause

the value of the corresponding weight to shoot up
unless it is smoothed by the learning rate. These
huge discrepancies are characteristic of the SMT
problem and we consider three alternatives to ad-
dress the issue.

1. The standard update rule. Every weight is
treated in a same way using a unique learn-
ing rate. The amount of change is just the
difference between features.

−→
λ i := −→

λ i + ε ·
[−→
h (fi, tgt)−−→h (fi, guess)

]

2. The normalised update rule. The difference
between features is normalised to the sum
of that feature for all the previous examples.
That makes an effective learning rate that de-
pends on the feature.

−→
λ i := −→

λ i + ε′∑i−1

k=1
|−→h (fk,tgt)−

−→
h (fk,guess)|

i−1

·

·
[−→
h (fi, tgt)−−→h (fi, guess)

]

We checked that, at the end, the steep changes
produced in number 1 and number 2 can be com-
pensated by a low learning rate, being the effec-
tive update of the same order of magnitude. The
same happens for the third update rule we consider,
which is the one we use for our final experiments
due to its simplicity:

3. The constant update rule. This choice only
makes use of the fact that two features are
different and the direction of change without
considering how much. The amount for up-
dating the weights is the same for all the fea-
tures and the examples, and it is equal to the
learning rate.

−→
λ i := −→

λ i + ε ·sign
(−→

h (fi, tgt)−−→h (fi, guess)
)

Other variations of the traditional update rule
for the perceptron can be found in Tillmann and
Zhang (2006), but they have not been included in
our analysis.

2.2 Gold Standard or target
The job of the update rule is to bring closer the
guess sentence towards the correct solution, the
gold standard or target, but in machine translation
this is not always possible. The reference transla-
tion one should optimise towards could be simply
not reachable because not all the necessary phrases

to construct the sentence are present in the transla-
tion table. Besides, the opposite phenomena is also
common: a same translation is reachable through
multiple phrase combinations. In the former case
one lacks the corresponding hm; in the latter one
has multiple hm’s for the same sentence.

Several approaches have been used to ad-
dress this problem – see for instance Liang et
al. (2006), Tillmann and Zhang (2006), Arun and
Koehn (2007). A common solution is to use as
gold standard an approximation of the best reach-
able translation. This one is simulated by using the
best BLEU sentence in the n-best translation list.
Notice that one must use a smoothed BLEU score
at the sentence level in this case, whereas the MER
training evaluates the translations at the document
level. So, for our principal choice:

1. The gold standard is the sentence with the
highest BLEU score in the n-best list (local
update in Liang et al. (2006)).

But other alternatives are possible and have been
tested as well:

2. All the sentences with a higher BLEU score
than the guess are considered, and the weights
are updated for all these solutions.

3. As in 2., one considers all the sentences with
a higher BLEU than the guess, but there is
at most one update. This is done when-
ever a percentage of the sentences with higher
BLEU than the guess (60%, 80% and 90% in
our experiments) agrees with the direction of
the update.

Since in our experiments the first option clearly
overcame the other two, Section 4 reports the re-
sults for this more convenient choice.

3 Data

The system is trained and evaluated for the Arabic-
to-English translation task, a language pair with
multiple development and test sets available. The
training set is a compilation of six newswire cor-
pora supplied by the Linguistic Data Consortium
for the 2008 NIST Machine Translation Open
Evaluation1. We select 124k lines with a length
shorter than 100 words. The language model is es-
timated from the English side of the corpus with
SRILM (Stolcke, 2002) and the alignment is done
1http://www.nist.gov/speech/tests/mt/2008

Test Segs. Genre OOVs Perplexity
set (%) Ara/Eng

Trdev 500 N 1.25 272/129
Trtest 500 N 1.18 270/133
N05 1056 N 2.02 320/145
N06 1797 NW 5.16 598/205
N08 1357 NW 3.82 568/227

Table 1: Test sets used in the analysis and their
perplexity given the newswire training set. Sets
are classified according to their genre (N stands for
Newswire and NW for News+Web).

with GIZA++ (Och and Ney, 2003). The phrase
extraction and decoding are done with the Moses
package (Koehn et al., 2006; Koehn et al., 2007).

For development and test we use several sets as
shown in Table 1. The similarity of each of the sets
to training set is quantified by the perplexity with
its language model. Trdev and Trtest are drawn
from the same compilation as the training set, and
therefore show the lowest perplexity. The test set
for the 2005 NIST MT Evaluation (N05) shares the
genre with the training set and is relatively similar
in perplexity. From now on, we say that a data set
is similar to the training corpus whenever the per-
plexity is low. On the other hand, both N06 and
N08 include segments from the web, the number
of out of vocabulary words (OOVs) augments, and
they show larger differences with the training. The
goal of our method is to optimise the weights so
that they obtain the optimum results on these sets.

4 Experiments

We test our approach on the test sets introduced in
the previous section. As a common setting, our ex-
periments use a learning rate of 0.001 and consider
an n-best list with 100 candidate translations. As it
has been argued in Sections 2.1 and 2.2, we report
the results obtained with update rule #3 and choice
of gold standard #1. These choices show a good
time-quality trade-off2.

4.1 Cross-domain testing

We focus on the case where we only have data of
a given domain but want to translate a test set of
a different genre. Contrary to domain adaptation
techniques, this is a complete empirical approach
2Current implementation of the perceptron is external to the
decoder, and the execution time is dominated by decoding
time.

Figure 2: Evolution of the eight weights during the
perceptron training.

that does not make use of any out-of-domain data.
So, we are constrained to train our system with the
training set described in Section 3 and to use Trdev
for development.

The execution of MERT on Trdev provides us
with a vector of weights

−→
λ appropriate to use on

Trtest, but we look for a more robust vector that
can be applied on different test sets. Therefore, we
do a second stage of development, the perceptron
training, which takes as initial point the result of
MERT.

During the perceptron training, the BLEU score
diminishes from the maximum value given by
MERT. The perceptron is not able to find better pa-
rameters for the development set, but weights are
being perturbed from its original value example
by example. These variations during the training
can be seen in Figure 2. The plot shows the evo-
lution along 5,000 examples which correspond to
ten iterations of the perceptron. One can observe
a smooth pattern repeated through iterations, but
the randomisation of the order of the sentences in
Trdev does not alter the global trend of the evolu-
tion and the effects on test are minimum.

From around example number 2,000 on, weights
show a stable behaviour. We consider the weights
to be stable and stop the training when the varia-
tion of all of them is less than 0.00005, 0.05% of its
variation along examples, which, with our constant
update rule, is equivalent to 0.05% of the learning
rate. In this case, the stopping criterion lets the
perceptron run up to example 2,598 (vertical dot-
ted line in Fig. 2), a bit more than 5 iterations.

Other stopping criteria can be used. For in-
stance, Arun and Koehn (2007) run 10 iterations

in-domain out-of-domain
Trtest N05 N06 N08

M 23.87 43.76 30.24 29.06
M+P 22.77 44.06 32.08 31.52
M on test 24.27 45.46 32.96 32.77

Table 2: BLEU scores for several tests as obtained
by MERT (first row) and by the combined training
with the perceptron (second row). The lower row
shows the result of MERT on the test set.

of the perceptron that are evaluated on a develop-
ment set. The best value there is used for testing.
We cannot use this criterion because our percep-
tron is initialised with MERT results, so, when-
ever we use the same set for MERT and the per-
ceptron, the BLEU evolution will usually be neg-
ative since MERT has already found a good value
for the weights on that set if not the optimum. As
an example, for the current training, the BLEU at-
tained by MERT is 26.20 whereas when the stop-
ping criterion is met the perceptron reaches 24.63.
In these cases and according to this criterion, we
should stop iterating at the beginning instead and
there would be no generalisation, whereas our re-
sults show that a decrement in the BLEU score on
the development set can still correspond to an in-
crement on test.

Using the weights at this point, we estimate the
BLEU score for four test sets. Table 2 gathers
these results and shows them together with those
obtained by MERT alone. The last row of the table
shows the artificial result of MERT on the test set.
We consider this value to be an upper limit to the
attainable BLEU score for the given test set.

The first thing to notice in Table 2 is that for
test sets similar to the training corpus there is no
benefit in continuing with the perceptron training.
That is the case of Trtest. There is little room for
improvement because the upper bound that hints
MERT on Trtest is close to that obtained with the
development weights and, besides, we are not in-
terested in generalising the value of the weights
when they belong to the same domain. This is why
the BLEU score gets no benefit with the combined
training. A similar thing happens with N05, the
domain is akin but now the upper bound is higher,
and, because of this, there is a slight improvement
which is already noticeable although not large.

On the other hand, data sets that add segments
from the web, N06 and N08, do profit from the per-

ceptron training. Note that we are reusing the same
development set as for MERT, and there is around
two BLEU points of improvement with respect to
the result with MERT alone, 1.84 points for N06
and 2.46 for N08. Since we do not use any data
similar to the test sets for development, the BLEU
scores are still one point below the upper limit that
the straightforward application of MERT on the
test sets would give. This confirms that moving
slightly away from the optimal value on develop-
ment but keeping the information of the data set
is beneficial for generalising, and this is accom-
plished by the perceptron. An early stopping of
MERT does not have the same effect. We checked
that the almost monotonous increment of BLEU
throught MERT iterations on development some-
times translates into erratic BLEU results on test,
especially when the domain of the data sets differs.
The variance of BLEU scores on test can be large.
There are values quite better than the last one but
also quite worse, and there is no way to know when
to obtain the best one from the training.

In order to find out whether the results are
statistically significant, we generated 1,000 sets
by pair bootstrap resampling of the original test
sets (Koehn, 2004). All the enhancements with re-
spect to the MERT baseline result to be significant
and are written in boldface in Table 2.

Since the perceptron is maximising the BLEU
score, it is on this metric that we mostly analyse
the results, but the quality of the translation can-
not be only judged in terms of BLEU. We thus in-
vestigate if the positive effects are also captured
by other metrics. Table 3 summarises the results
for a set of lexical metrics: WER (Nießen et al.,
2000), BLEU (Papineni et al., 2002), NIST (Dod-
dington, 2002), ROUGE (Lin and Och, 2004) and
METEOR (Banerjee and Lavie, 2005). The last
metric, ULC (Giménez and Amigó, 2006), per-
forms a linear combination of a set of 33 lexical
metrics, most of them variants of the ones appear-
ing in the table (see Giménez (2007) for details).

As a general trend, the same conclusions seen
with BLEU can be extracted here. For the out-
of-domain test sets, the addition of the percep-
tron stage improves for all the metrics but WER
the results with respect to MERT alone. For in-
domain test sets, the answer is not unique and the
behaviour depends on the metric, so, there is no a
clear effect of the second stage as the similarity of
the ULC scores suggests.

Trtest N05 N06 N08
Metric M M+P M M+P M M+P M M+P
1-WER 0.3124 0.2802 0.5230 0.5043 0.4359 0.4239 0.4174 0.4038
BLEU 0.2387 0.2277 0.4376 0.4406 0.3024 0.3208 0.2906 0.3152
NIST 6.3772 6.1505 10.375 10.286 8.4585 8.9264 8.5186 9.0402
ROUGE 0.3076 0.3093 0.3027 0.3048 0.2720 0.2733 0.2642 0.2681
METEOR 0.5119 0.5226 0.6353 0.6493 0.5312 0.5489 0.5310 0.5552
ULC 0.7235 0.7100 1.1320 1.1297 0.8522 0.8876 0.9287 0.9723

Table 3: Automatic evaluation of the M and M+P systems on four test sets using different lexical metrics.
M represents the MERT baseline with Trdev, and M+P includes the perceptron stage on the same data.

4.2 Including out-of-domain data

It is not realistic to think that one can always obtain
a whole training set adequate to the genre of the
test set, but it may be feasible to collect a smaller
set for development which shares the domain of
the test. This can be enough to ease the domain
shift. Let us assume now that we want to translate
N08 and we can use the help of N06 for devel-
opment together with Trdev . With both data sets
we create three development sets: Trdev, N06 and
Trdev.N06 (the union of both randomly sorted).
These sets can be used for MERT alone or for the
combined training with the perceptron.

Permutations of these three data sets in both
stages provide nine different configurations. Fig-
ure 3 depicts the results on N08 for these nine
models. The plot shows the BLEU evolution on
test during the training and crosses mark the BLEU
score at the stopping point of the perceptron. The
initial point represents the score obtained after
MER training and equals to 29.06 for Trdev set,
32.89 for N06 and 32.34 for Trdev.N06. The ad-
dition of N06 shows then crucial in improving the
performance on N08 both for MERT and for the
combined training. For MERT alone, N06 allows
to increase more than 3 points the BLEU score on
N08.

Regarding the effect of the perceptron training,
it is still apparent when tuning the system towards
the domain of N08. In all the models, the per-
ceptron stage improves with statistical significance
the final BLEU score, yet now improvements are
small. More significant, the improvement comes
in the highest range of the BLEU score. That
is, a straightforward application of MERT on N08
achieves a BLEU of 32.77, and 7 out of the 9 com-
bined trainings with the perceptron surpass this
value, showing that MERT is not able to find the
real minimum in this case, and that the generalisa-

tion of the weights using a similar set can take us
close to an optimum result.

In all the cases there is a substantial improve-
ment of the BLEU score already at the first steps
of the training and it becomes stable after about
2,000 examples. For some models, the maximum
is before this point as it happens for the best learn-
ings. So, the stopping criterion based on the sta-
bilisation of the weights is failing in these cases
where the best BLEU is found very soon. How-
ever, notice that 6 out of the 9 models surpass the
maximum value that one would obtain by MERT
on N08 at least along 1,000 examples. That means
that although not being able to catch the maximum
BLEU, probably the selected score will still be bet-
ter than the initial point.

Globally, one can see that, as expected, per-
ceptron trainings which start from a better point
(MERT with a similar set to the test one) reach
faster and higher maxima. Perceptron trainings
that base the learning on Trdev remain below those
that use N06 or Trdev.N06. Numerically, the best
results at the stopping point are obtained with
the combinations [N06]M+Trdev.N06 (33.08) and
[N06]M+N06 (33.07). The best attainable score
with an ideal stopping criterion is a BLEU of
33.53 obtained with this last configuration, and it
is 0.76 points over the forecasted upper bound that
MERT could attain on N08. Notice that MERT
alone also beats this value when trained with N06
([N06]M → 32.89 vs. [N08]M → 32.77 both on
N08). Still our best attainable score is 0.64 points
over the best MERT one, although with our crite-
rion we finally get a modest improvement of 0.19
BLEU points.

5 Discussion and conclusions

This work presents a combined methodology for
estimating robust weights for the components of a

Figure 3: Evolution during the perceptron train-
ing of the BLEU score on the test set N08 for 9
different configurations. Initial points correspond
to 3 different MERT results: [Trdev]M (blues),
[N06]M (reds) and [Trdev.N06]M (greens). For
each of them, the perceptron runs on Trdev (dot-
dashed), N06 (dashed) and Trdev.N06 (solid).
Crosses mark the point where one would stop the
training on the development set.

log-linear model in SMT. The first stage is the tra-
ditional MERT. The second stage continues with a
perceptron-based training that updates the value of
each weight so that it is closer to the weight of the
translation with the highest BLEU within an n-best
list.

For an out-of-domain test set, N06 or N08, the
perceptron training done with in-domain data im-
proves by more than 2 BLEU points the value of
MERT alone. The perceptron is able to cover two
thirds of the distance between the MERT value and
the fictitious score that MERT would obtain di-
rectly on these tests.

In the situation that one can collect a data set
with a similar domain to the test set, both MERT
and the perceptron training improve considerably
the BLEU score. Even with these conditions, the
best results are achieved when the out-of-domain
data are used in the two stages of the combined
training. A more precise stopping criteria could
help to further enhance current results as seen in
the evolution of the BLEU score along the whole
training.

The initial feature vector for the percetron is also
important for its performance. This is why the
global best test results are obtained when using the

best available MERT values. And this is also why
we apply the perceptron training after MERT and
not instead ot it.

As we have explained in the introduction, one
can find in the literature several works that use
a learning algorithm to estimate the vector of
weights in SMT. A direct comparison with our re-
sults is difficult because of the different purposes
of the analyses. However, we can point out the
results of Chiang et al. (2008), where an improve-
ment of 0.7 BLEU points on N06 is found with
MIRA with respect to MERT for their same 12 fea-
tures. They study the domain of the test set and
realise that the improvement comes from the part
of the set with web content instead of newswire,
but attribute it to the length of the sentences, ar-
guing that MIRA translations tend to be longer
than the MERT ones and web references are longer
than newswire’s. On the other hand, Arun and
Koehn (2007) obtain shorter outputs with MIRA
for the Czech-English language pair. In our case,
we also obtain longer translations with the percep-
tron than with MERT alone, probably because the
experiments are done on the same language pair,
Arabic-English. However, since the longer output
is consistent for Trtest and N08 sets and we do not
get any improvement on Trtest, we attribute the en-
hancements to the domain of the data set.

It might be interesting to extend this work from
two points of view. From the empirical side, dif-
ferent corpus sizes and language pairs, above all
those with data sets of several domains available,
should be tested. The behaviour of the percep-
tron when one optimises against other metrics than
BLEU should be studied as well. From the the-
oretical side, one must investigate which are the
properties of the perceptron that allow to gain ro-
bustness in the weights. This may be useful since
it is not clear how to characterise robust vectors in
MERT (Foster and Kuhn, 2009).

Acknowledgements

The research leading to these results has received
funding from the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) un-
der grant agreement numbers 247914 and 247762
and from the Spanish Ministry of Science and In-
novation (TIN2009-14675-C03). The authors are
thankful to the anonymous referees for some use-
ful comments and suggestions.

References
Arun, Abhishek and Philipp Koehn. 2007. On-

line learning methods for discriminative training of
phrase based statistical machine translation. In MT
Summit XI, pages 15–20, September.

Banerjee, Satanjeev and Alon Lavie. 2005. METEOR:
An Automatic Metric for MT Evaluation with Im-
proved Correlation with Human Judgments. In Pro-
ceedings of ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for MT and/or Summarization.

Cer, Daniel, Daniel Jurafsky, and Christopher Manning.
2008. Regularization and search for minimum er-
ror rate training. In Proceedings of the Third Work-
shop on Statistical Machine Translation, pages 26–
34, Columbus, Ohio, June.

Chiang, David, Yuval Marton, and Philip Resnik. 2008.
Online large-margin training of syntactic and struc-
tural translation features. In EMNLP ’08: Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 224–233, Morris-
town, NJ, USA.

Collins, Michael. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 conference on Empirical methods in
natural language processing, volume 10, pages 1–8.

Doddington, George. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the 2nd In-
ternation Conference on Human Language Technol-
ogy, pages 138–145.

Foster, George and Roland Kuhn. 2009. Stabilizing
minimum error rate training. In StatMT ’09: Pro-
ceedings of the Fourth Workshop on Statistical Ma-
chine Translation, pages 242–249, Morristown, NJ,
USA. Association for Computational Linguistics.

Giménez, Jesús and Enrique Amigó. 2006. IQMT:
A Framework for Automatic Machine Translation
Evaluation. In Procs. of the 5th Conference on Lan-
guage Resources and Evaluation, pages 685–690.

Giménez, Jesús. 2007. IQMT v 2.1. Technical Manual
(LSI-07-29-R). Technical report, TALP Research
Center. LSI Department.
http://www.lsi.upc.edu/∼nlp/IQMT/IQMT.v2.1.pdf.

Koehn, Philipp, Wade Shen, Marcello Federico, Nicola
Bertoldi, Chris Callison-Burch, Brooke Cowan,
Chris Dyer, Hieu Hoang, Ondrej Bojar, Richard
Zens, Alexandra Constantin, Evan Herbst, and
Christine Moran. 2006. Open Source Toolkit for
Statistical Machine Translation. Technical report,
Johns Hopkins University Summer Workshop.

Koehn, Philipp, Hieu Hoang, Alexandra Birch Mayne,
Christopher Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondrej Bo-
jar, Alexandra Constantin, and Evan Herbst. 2007.

Moses: Open source toolkit for statistical machine
translation. In Annual Meeting of the Association
for Computation Linguistics, pages 177–180, Jun.

Koehn, Philipp. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP 2004, Barcelona, Spain.

Liang, Percy, Alexandre Bouchard-Côté, Dan Klein,
and Ben Taskar. 2006. An end-to-end discrimi-
native approach to machine translation. In ACL-
44: Proceedings of the 21st International Confer-
ence on Computational Linguistics and the 44th an-
nual meeting of the Association for Computational
Linguistics, pages 761–768, Morristown, NJ, USA.

Lin, Chin-Yew and Franz Josef Och. 2004. Au-
tomatic Evaluation of Machine Translation Qual-
ity Using Longest Common Subsequence and Skip-
Bigram Statics. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Lin-
guistics.

Moore, Robert C. and Chris Quirk. 2008. Random
restarts in minimum error rate training for statisti-
cal machine translation. In Proc. of the 22nd Inter-
national Conference on Computational Linguistics,
pages 585–592, Manchester, UK, August.

Nießen, Sonja, Franz Josef Och, Gregor Leusch, and
Hermann Ney. 2000. An Evaluation Tool for Ma-
chine Translation: Fast Evaluation for MT Research.
In Proceedings of the 2nd International Conference
on Language Resources and Evaluation.

Och, Franz Josef and Hermann Ney. 2002. Discrim-
inative Training and Maximum Entropy Models for
Statistical Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 295–302.

Och, Franz Josef and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Och, Franz Josef. 2003. Minimum error rate train-
ing in statistical machine translation. In Proc. of the
Association for Computational Linguistics, Sapporo,
Japan, July 6-7.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of
the Association of Computational Linguistics, pages
311–318.

Stolcke, Andreas. 2002. SRILM – An extensible lan-
guage modeling toolkit. In Proc. Intl. Conf. on Spo-
ken Language Processing.

Tillmann, Christoph and Tong Zhang. 2006. A dis-
criminative global training algorithm for statistical
mt. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational
Linguistics, pages 721–728, Sydney, Australia, July.
Association for Computational Linguistics.

