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Abstract

The problem of language model adaptation
in statistical machine translation is consid-
ered. A mixture of language models is
employed, which is obtained by clustering
the bilingual training data. Unsupervised
clustering is guided by either the devel-
opment or the test set. Different mixture
weight estimation schemes are proposed
and compared, at the level of either sin-
gle or all source sentences. Experimental
results show that, by training different spe-
cific language models weighted according
to the actual input instead of using a single
target language model, translation quality
is improved, as measured by BLEU and
TER.

1 Introduction

The grounds of modern Statistical Machine Trans-
lation (SMT), a pattern recognition approach to
machine translation, were established in (Brown et
al., 1993), where the problem of machine trans-
lation was defined as follows: given a sentence f
from a certain source language, an equivalent sen-
tence ê in a given target language that maximizes
the posterior probability is to be found. Such a
statement can be formalized as:

ê = argmax
e

Pr(e|f)

= argmax
e

Pr(f |e) · Pr(e) (1)

where Pr(f |e) stands for the translation probabil-
ity and Pr(e) accounts for penalizing ill-formed
sentences of the target language.
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More recently, a direct modeling of the posterior
probability Pr(e|f) has been widely adopted, and,
to this purpose, different authors (Papineni et al.,
1998; Och and Ney, 2002) proposed the use of the
so-called log-linear model, where

Pr(e|f) =
exp

∑K
k=1 λkhk(f , e)∑

e′ exp
∑K

k=1 λkhk(f , e′)
(2)

and the decision rule is given by the expression

ê = argmax
e

K∑
k=1

λkhk(f , e) (3)

where hk(f , e) is a score function representing an
important feature for the translation of f into e,
for example the target language model p(e), K
is the number of models (or features) and λk are
the weights of the log-linear combination. Typi-
cally, the weights λk are optimized during the tun-
ing stage with the use of a development set.

In this paper, we deal with the problem of adap-
tation of SMT models. Specifically, we focus on
augmenting the Language Model (LM) compo-
nent by introducing parameters that are adapted
dynamically to the input text. With this purpose,
the LM is implemented as a mixture of special-
ized sub-LMs, which are conveniently estimated
through some bilingual clustering of the train-
ing data and then combined following different
weighting schemes. The work described here rep-
resents an important extension of what is presented
in (Sanchis-Trilles et al., 2009): in fact, there the
methods were tested on a small task like IWSLT;
on the contrary, here the approach is assessed on
the medium-sized Europarl task. Moreover, the
clustering of training data does not exploit any su-
pervised annotation of texts.

The paper is organized as follows. Section 2
briefly lists other papers dealing related issues.
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Our adaptation procedure is described in Section 3,
together with the different clustering techniques
and weighting schemes we have investigated. In
Section 4 the experimental setup is described and
results provided and commented. Possible exten-
sions of the present work are depicted in Section 5;
some final remarks ends the paper.

2 Related Work

LM adaptation has been deeply explored since
at least mid 90s in the ambit of speech recog-
nition (De Mori and Federico, 1999; Bellagarda,
2001). Nowadays, also in the SMT community
the interest for adaptation is continuously growing.
One of the first approaches was proposed by (La-
garda and Juan, 2003), in which the translation
model (TM) is implemented as an unsupervised
multinomial mixture of TMs and each component
is supposed to concentrate most of its probability
mass on a certain topic. Slightly later, (Nepveu et
al., 2004) applied other adaptation techniques to
interactive MT, following the ideas in (Kuhn and
De Mori, 1990) and adding cache LMs and cache
TMs to their system. In (Koehn and Schroeder,
2007), different ways to combine available data
belonging to two different sources was explored;
in (Bertoldi and Federico, 2009) similar experi-
ments were performed, but considering only ad-
ditional source data. In (Civera and Juan, 2007),
alignment model mixtures were explored as a way
of performing topic-specific adaptation, the align-
ments being used to extract phrases.

A work that resembles the one presented here
is (Zhao et al., 2004), where each source sen-
tence was used to build a query and retrieve similar
sentences from a larger corpus. Then, a specific
LM was trained and interpolated with a generic
LM. This combination was used to translate the
original sentence. In (Lü et al., 2007), each sen-
tence was used to select similar data within the
same corpus by means of TF-IDF, and then pre-
pare specific LMs and TMs ready to be interpo-
lated. In (Yamamoto and Sumita, 2007), the bilin-
gual corpus is clustered so as to minimize the en-
tropy of each subset, and then independent LMs
and TMs are trained from these smaller bilingual
corpora, which are in turn recombined in transla-
tion time by performing domain prediction. Dif-
ferently, in our work the final combination of tar-
get LMs is obtained by re-using the weights esti-
mated by maximizing the probability of generating

the source sentence by means of the linear interpo-
lation of source sub-LMs.

3 Language Model Adaptation

In this paper, we focus on the problem of LM adap-
tation. Specifically, one of the features described
in eq. 3 may be

h(e, f) = log p(e)

which provides the log score of the target LM. Typ-
ically, p(e) is given by a single LM; this configura-
tion will represent our baseline. However, that
distribution can be expressed also as a linear inter-
polation (mixture) of LMs:

p(e) =
M∑
i=1

wipi(e)

where pi’s are target LMs built on clusters which
the training data are split in. Our aim is to adapt the
interpolation of LMs by tuning the weights on the
actual input. With the help of Figure 1, the basic
adaptation procedure is described in the following.

Let us assume that the parallel training data have
been partitioned into a set of M bilingual clusters,
according to some criterion. On each cluster, lan-
guage specific LMs are estimated, which are then
organized into two language specific mixture mod-
els, one modeling the source language, the other
the target language. So far, operations can be per-
formed off-line. Now let us consider a source text
or sentence to be translated. Before translation,
the input is used to estimate optimal weights of
the source language mixture through Expectation-
Maximization (EM). The resulting weights are
then transferred to the target language mixture,
which is finally used as LM feature function by
the SMT system. The rationale behind the “weight
transfer trick” is that clustering likely generates
sub-models specialized in terms of contents rather
than linguistic structure and then the convenience
to weight more or less a given sub-model is ex-
pected to be shared by both source and target sides.

3.1 Clustering
It should be clear that the fundamental intermedi-
ate step of our approach is the clustering of bilin-
gual training data. The elements of each cluster
are sentences. Hence, the goal of this stage is to
group together sentences which are similar each
other from the lexical point of view. Unless dif-
ferently specified, the clustering is performed by
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Figure 1: Basic procedure for LM adaptation.

• representing each sentence pair as a bag of
both source and target words;

• setting the number of clusters to 4, since a
preliminary investigation revealed this num-
ber as begin able to generate clusters quite
specialized and not too sparse;

• means of the CLUTO1 package. The chosen
setup includes the k-way partitioning scheme
and the cosine distance as similarity function
between sentences.

On both source and target sides, in addition to
the 4 LMs trained on each cluster and for smooth-
ing purposes, the LM built on the whole training
data has also been considered.

In the following subsections, three different
clustering schemes are described.

3.1.1 Direct clustering
As a first approach, we investigated the direct

clustering of the bilingual training data by means
of CLUTO.

3.1.2 Development-induced clustering
Although the direct clustering of the training

data is the most straightforward choice, it might
not be the best choice, since by definition the
goal of any adaptation procedure is to cover pos-
sible mismatches between training and develop-
ment/test conditions. With this in mind, we pro-
pose to induce the clustering of the training data
from the clusters computed on the development
set. The scheme is shown in Figure 2 and is sum-
marized in the following algorithm:

1Available from http://glaros.dtc.umn.edu/gkhome/views/cluto

1. clustering the bilingual development text

2. estimate source and target LMs for each clus-
ter from step (1)

3. partition training data by classifying each sen-
tence pair according to eq. 4 (see below)

In step (3), each bilingual training sentence n is
assigned to the cluster m̂ by the rule:

m̂ = argmax
m

cos(tsrc
n ,dsrc

m )+cos(ttgt
n ,dtgt

m ) (4)

where t and d are vectors of M (the number of
clusters) weights and the cosine between two vec-
tors is defined as cos(x,y) = x·y

||x|| ||y|| , with · be-
ing the dot product and || || being the 2-norm. In
particular, tsrc

n is such to maximize the probability
of the linear interpolation of source LMs estimated
in step (2) on the source sentence n of the train-
ing text; the maximization is performed by an EM
step. ttgt

n is the twin of tsrc
n for the target side. dsrc

m

(dtgt
m ) is the vector of weights which maximize the

probability of again the source (target) LMs of step
(2) but on the whole source (target) side of cluster
m of the partitioning of the development set.

The intuitive explanation of eq. 4 relies on the
meaning of components of vectors t and d. Let us
start by the fact that in some sense a LM trained
from a specific cluster is a compact representa-
tion of the sentences in that cluster; hence, the
optimization of LM weights on a text provides,
through each single weight, a measure of the simi-
larity of that text with a specific LM, that is a spe-
cific cluster. Vectors t and d can then be consid-
ered as “fingerprints” of each training sentence and
development cluster, respectively. The cos() oper-
ation on them is then applied to compute the simi-
larity of training sentences with each cluster m.
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Figure 2: Procedure for obtaining development-induced clustering of the training data.

3.1.3 Test-induced clustering
For inducing the clustering of the bitext training

data it is possible to use the test set instead of the
development set. In this case the target side is not
available, then the clustering is performed only on
the source data, and the classification rule of eq. 4
is modified accordingly:

m̂ = argmax
m

cos(tsrc
n ,dsrc

m ) (5)

Note that even if eq. 5 relies only on the source
side, it is used to classify both sides of each sen-
tence n of the training data.

The idea behind performing a test-induced clus-
tering is that of taking profit of the information
available in the actual text to be translated. Nev-
ertheless, the possible benefits of using such infor-
mation may not be completely reliable, since only
the source side is available and the clustering is in-
stead induced on bilingual data.

3.2 Weight optimization
Once training text has been clustered and LMs
have been estimated for each cluster, weights are
needed for performing the interpolation. We inves-
tigated three different approaches, each one with a
different degree of granularity but with the com-
mon attempt of exploiting the actual input.

3.2.1 Set specific weights
LM-interpolation weights are estimated on the

source side of the complete test set. This approach,

which is the most straightforward, has nevertheless
an important drawback: the weights estimated are
those that well model the whole test set on aver-
age, without considering possibly significant dif-
ferences between specific sentences. Hence, the
potential benefit of using several LMs may fade.

3.2.2 Sentence specific weights
In this case, one specific set of weights is es-

timated for each sentence of the test set. By do-
ing so, we expect that the effect of splitting the
training corpus into several subsets yields better re-
sults, since the EM procedure is allowed complete
freedom in assigning the LM weights. However,
weights computed in such a manner may be less
reliable, since the estimation is performed on few
data (one single sentence).

3.2.3 Two-steps weight estimation
This approach merges the previous two in the

attempt of keeping their advantages and overcom-
ing the drawbacks. Once sentence specific weights
have been computed, each (source) test sentence
is assigned to the specific cluster corresponding to
the most weighted LM. This being done, one set
of weights can be re-estimated for each one of the
test clusters obtained in this way. This approach
has the intuitive benefit of mirroring the cluster-
ing of the training data into the test set, while still
avoiding the possible data sparseness issue that can
affect the sentence specific weight estimation. This
procedure is illustrated in Figure 3.
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Table 1: Europarl corpus statistics. Average sen-
tence length is always between 20 and 30 words.
OoV stands for “Out of Vocabulary” words, Dev.
for Development, K/M for thousands/millions.

De En Es En Fr En

Tr
ai

ni
ng Sentences 751K 731K 688K

Run. words 15.3M 16.1M 15.7M 15.2M 15.6M 13.8M
Voc. 195K 66K 103K 64K 80K 62K

D
ev

. Sentences 2000 2000 2000
Run. words 55K 59K 61K 59K 67K 59K
OoV 432 125 208 127 144 138

Te
st

Sentences 2000 2000 2000
Run. words 54K 58K 60K 58K 66K 58K
OoV 377 127 207 125 139 133

4 Experiments

4.1 Corpora

Experiments were conducted on the Europarl cor-
pus (Koehn, 2005), in the setup established in the
Workshop on Statistical Machine Translation of
the NAACL 2006 (Koehn and Monz, 2006).

The Europarl corpus consists of the transcrip-
tions of European Parliament speeches and in-
cludes versions in eleven European languages.
Here, we will focus on the German–English,
Spanish–English and French–English tasks, the
same language pairs selected for the cited work-
shop. Although we tested our systems on both
translation directions, in this paper we will only
report experiments having English as source lan-
guage for the sake of brevity, given that the be-
havior in the opposite direction was similar. The
corpus is divided into three separate sets, for train-
ing, development and testing purposes, respec-
tively. Statistics are provided in Table 1.

4.2 Baseline system

The baseline system is built upon the open-source
MT toolkit Moses (Koehn et al., 2007)2 in its
default setup. Following standard practice, the
weights of the log-linear combination (eq. 3) are
optimized by means of the Minimum Error Rate
Training (MERT) procedure (Och, 2003). MERT
was only performed for the baseline system, and
its weights were re-used for all other systems.
Although there could be reasons for re-running
MERT when the LM changes, we did not do so
in order to better isolate the effects of including
different LMs into the SMT system.

As baseline LM, a 5-gram word-based LM was
estimated on the target side of the training corpus,
smoothed according to the improved Kneser-Ney
technique (Chen and Goodman, 1999).

4.3 Results

Adaptation procedures presented in Section 3 have
been experimentally assessed by performing au-
tomatic translation whose quality is measured
in terms of BLEU (Papineni et al., 2001) and
TER (Snover et al., 2006).

Statistical significance tests have also been
computed, according to the technique described
in (Koehn, 2004), with 10K bootstrap repetitions.

The three tables presented in the following col-
lect BLEU and TER scores; in the additional col-
umn Signif, the result of the statistical signif-
icance tests is provided in binary terms (yes/no)
by checking if the improvement (or drop) in trans-
lation quality with respect to the baseline perfor-
mance is significant at a 95% confidence level.
These tests have been computed and outcomes are
provided for both BLEU/TER scores.

2Available from http://www.statmt.org/moses/



Table 2: Performance of the direct clustering ap-
proach.

Language Weight PP BLEU TER Signif
pair optimization BLEU/TER

En–Es

baseline 78.5 30.8 54.9 –
sentence 71.3 30.4 54.6 yes/yes
two-steps 71.2 30.3 54.5 yes/yes
test set 100.1 30.3 54.5 yes/yes

En–De

baseline 141.5 19.0 67.4 –
sentence 129.0 18.2 67.4 yes/no
two-steps 129.7 18.1 67.4 yes/no
test set 202.3 18.0 67.6 yes/no

En–Fr

baseline 50.0 32.9 55.3 –
sentence 45.4 32.7 55.0 no/yes
two-steps 45.5 32.6 54.9 yes/yes
test set 64.5 32.5 55.0 yes/yes

Finally, the column PP shows the perplexity
value of either the single LM (baseline) or the in-
terpolation of LMs (other cases) computed on the
test set references.

4.3.1 Direct clustering
Results observed by directly clustering the train-

ing data are shown in Table 2, for all the three
weight optimization schemes and for all the three
translation directions.

A degradation of the BLEU score is observed
in any condition, while TER slightly improves for
the En–Es and En–Fr pairs, especially when ei-
ther the sentence-based or the two-steps estimation
schemes are adopted. However, since results are
not coherent for two scores, it cannot be definitely
stated whether this form of LM adaptation over-
comes the use of the single baseline LM.

4.3.2 Development-induced clustering
Results for the development-induced clustering

are reported in Table 3. In this case, the LM adap-
tation does improve the baseline consistently, for
both scores and significantly in almost every setup.
Again, the best performing weight optimization
scheme is the two-steps one, which improves the
baseline in all language pairs in a statistically sig-
nificant way. Performances comparable to those
of two-steps optimization are obtained also with
weights estimated at the single test sentence level.
Again, the optimization of weights on the whole
test set does not seem to be appropriate.

4.3.3 Test-induced clustering
Lastly, Table 4 collects results when the clus-

tering of training data is induced by the test set.

Table 3: Performance of the development-induced
clustering approach.

Language Weight PP BLEU TER Signif
pair optimization BLEU/TER

En–Es

baseline 78.5 30.8 54.9 –
sentence 68.3 31.3 54.4 yes/yes
two-steps 68.3 31.3 54.3 yes/yes
test set 105.6 30.9 54.6 yes/yes

En–De

baseline 141.5 19.0 67.4 –
Sentence 126.0 19.2 66.7 yes/yes
two-steps 126.3 19.2 66.7 yes/yes
test set 206.6 18.7 67.2 yes/no

En–Fr

baseline 50.0 32.9 55.3 –
sentence 43.5 33.2 54.9 yes/yes
two-steps 43.5 33.3 54.8 yes/yes
test set 65.0 32.9 55.1 no/yes

This kind of clustering seems not to be able to ex-
ploit the test information provided to the system;
in fact, BLEU is non-differentiable from the base-
line in almost every setup, while TER is improved
only at a limited extent. Concerning the weight
optimization, here the best choice is to perform it
on the whole test set, differently from what hap-
pened in the other types of clustering. This could
be originated from the fact that LMs are built on
clusters induced by just the test set. For this rea-
son, in this specific case the use of the whole test
set allows an effective trade-off between the esti-
mation of weights which are good on average on
the whole test set and the sparseness of data on
which the optimization is done. Nevertheless, it is
worth noticing that differences in translation qual-
ity are mostly not statistically significant.

4.4 General remarks

Results in Tables 2, 3 and 4 show the different
impact that the proposed clustering and weight
optimization schemes for LM adaptation have on
MT performance. In particular, the best scores
measured in our experiments, marked in bold in
Table 3, are achieved when using development-
induced clustering combined with the two-steps
(or sentence-based) weight optimization. With this
setup, the translation quality always improves the
one obtained by the baseline system. Such re-
sults, which are statistically significant and coher-
ent throughout all language pairs and for both con-
sidered evaluation scores, prove that there is a po-
tential benefit behind the use of n-gram mixtures
in SMT.

From another viewpoint, it seems that the
sentence-based interpolation technique is able to



yield the same translation quality than the two-
steps weight optimization. This should indirectly
prove that the input sentence alone contains suf-
ficient information to make the interpolation pro-
cedure stable enough. In fact, average sentence
length for the test sets ranges from 33 words per
sentence for French, to 27 words per sentence for
German, i.e. fairly long sentences. Given this ex-
perimental evidence and the fact that it is computa-
tionally cheaper, the sentence-based optimization
should be the first choice in presence of quite long
input sentences.

It must also be noted that, although all the sub-
sets of the Europarl corpora belong to the same do-
main, they were not extracted randomly: specifi-
cally, the training corpus comprises data from year
1997 to year 2003, although the development and
test data are extracted from the fourth quarter of
year 2000. This fact should explain the good re-
sults obtained with the development-induced clus-
tering, since both test and development sets belong
to a very narrow time frame, in which the top-
ics being debated in the European Parliament were
likely similar. Hence, development-induced clus-
tering may be able to make a better use of the un-
even distribution of training and development/test
data, since it resembles the test data, and contains
bilingual information (as opposed to test-induced
clustering).

The fact that test-driven clustering only relies on
source-sentence information is an important draw-
back that cannot be ignored: preliminary investiga-
tions revealed that including both source and target
information into the clustering procedure did have
an important impact, which is evidenced in this
case as well. Although it might seem that mono-
lingual clustering relies on half of the information
of bilingual clustering, this is even optimistic: in
fact, bilingual clustering does not only take into
account both source and target sides, but also the
interaction between the two.

5 Future Work

Results achieved in this work reveals that the im-
provements that can be obtained by our LM adap-
tation approach greatly depend on the clustering
technique employed. Since here only the surface
form of single words has been used for clustering
the training data, we plan to investigate alterna-
tives, such as clustering based on n-gram or PoS-
tag information.

Table 4: Performance of the test-induced cluster-
ing approach.

Language Weight PP BLEU TER Signif
pair optimization BLEU/TER

En–Es

baseline 78.5 30.8 54.9 –
sentence 72.4 30.9 54.6 no/yes
two-steps 72.2 30.9 54.6 no/yes
test set 105.7 31.0 54.6 yes/yes

En–De

baseline 141.5 19.0 67.4 –
sentence 133.7 18.9 67.3 no/no
two-steps 133.9 18.9 67.3 no/no
test set 204.4 18.9 67.1 no/yes

En–Fr

baseline 50.0 32.9 55.3 –
sentence 46.6 32.8 55.2 no/no
two-steps 46.4 32.8 55.3 no/no
test set 65.2 33.0 55.2 no/no

Furthermore, another interesting issue left out
from this paper is supervised clustering. In fact,
detailed supervision is typically available only
for quite small linguistic resources; on the other
side, large quantity of texts can be provided with
coarse - and even not fully reliable - labels about
the topic contents, like the xml documents made
available by Google News. Then, when large sized
tasks are involved, a research issue is that of how to
exploit such kind of information for making more
effective the clustering.

Another issue which deserves an investigation
regards the interpolation of target LMs by re-using
weights estimated for the optimal interpolation of
source LMs. In fact, although it appears as a
reasonable choice, it could happen that the likeli-
hood on the target side is maximized with different
weights than those which ensures the maximum
likelihood on the source side. A source-to-target
weight map could be learnt from a parallel devel-
opment/training set.

6 Conclusions

This paper has presented a technique for adapt-
ing the LM of SMT systems to the actual input.
The assumption is that the LM is provided as a lin-
ear interpolation of sub-LMs, each estimated on a
specific portion of the training data. The interpo-
lation weights are then estimated dynamically on
the text to be translated via a maximum likelihood
EM-based procedure.

Different methods for clustering training data in
an unsupervised manner and different schemes for
estimating the interpolation weights have been ex-
perimentally tested on three language pairs of the
Europarl task. Results have showed that (i) the



clustering induced by exploiting both sides (source
and target) of the development set and (ii) the esti-
mation of weights at the sentence level or with the
two-steps approach yield consistent improvements
in translation quality over the reference baseline.
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