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Abstract

Statistical machine translation systems
have greatly improved in the last years.
However, this boost in performance usu-
ally comes at a high computational cost,
yielding systems that are often not suitable
for integration in hand-held or real-time
devices. We describe a novel technique
for reducing such cost by performing a
Viterbi-style selection of the parameters of
the translation model. We present results
with finite state transducers and phrase-
based models showing a 98% reduction of
the number of parameters and a 15-fold in-
crease in translation speed without any sig-
nificant loss in translation quality.

1 Introduction

Nowadays, the key step of the process of statisti-
cal machine translation (SMT) involves inferring
a large table of phrase pairs that are translations
of each other from a large corpus of aligned sen-
tences. The set of all phrase pairs, together with es-
timates of conditional probabilities and other use-
ful features, is called phrasetable. Such phrases
are applied during the decoding process, combin-
ing their target sides to form the final translation.

A variety of algorithms to extract phrase pairs
has been proposed (Och and Ney, 2000; Marcu and
Wong, 2002; Zens et al., 2002; Och and Ney, 2003;
Vogel, 2005). Typically, these algorithms heuristi-
cally collect a highly redundant set of phrases from
each training sentence pair generating phrasetables
with a huge number of elements.

This bulk comes at a cost. Large phrasetables
lead to large data structures that require more re-
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sources and more time to process. More impor-
tantly, effort spent in handling large tables could
likely be more usefully employed in more features
or more sophisticated search processes. Addition-
ally, this is the main restriction for the widespread
application of SMT techniques in small portable
devices like cell phones, PDAs or hand-held game
consoles; one can imagine many scenarios that
could benefit from a lightweight translation device:
tourism, medicine, military, etc.

In this paper, we show that is possible to prune
phrasetables by removing those phrase pairs that
have little influence on the final translation per-
formance. Our approach consist in selecting only
those phrase pairs extracted from the most proba-
ble segmentation of the training sentences.

The technique presented here has several advan-
tages. It does not depend on the actual algorithm
used to extract the phrase pairs, therefore can be
applied to every imaginable method that assigns
probabilities to phrase pairs. It provides a straight-
forward method for pruning the phrasetables, with-
out the need of adjusting any additional parameter.
It does not significantly affect translation quality,
as measured by BLEU or TER scores, while very
substantial savings in terms of computational re-
quirements are reported.

The rest of the paper is organised as follows.
Section 2 revised previously published techniques
to prune the phrasetable. Section 3 introduces
SMT and the different models used in the exper-
imentation. Section 4 reviews the bilingual seg-
mentation problem in order to present our tech-
nique to filter the phrasetable. Section 5 describes
the experimentation carried out and presents the
obtained results. The paper concludes with a sum-
mary and discussion of the results.
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2 Related work

Most phrase-based decoders already include se-
veral built-in thresholds in order to prune the size
of phrasetables estimated from training corpora
(Ortiz et al., 2005; Koehn et al., 2007). They are
usually related either to absolute scores of phrase
pairs in the phrasetable or to relative scores be-
tween the phrase pairs sharing their source phrase.

Apart from phrasetable threshold pruning tech-
niques, which are usually employed in SMT, dif-
ferent complementary methods in order to reduce
even more the size of phrasetables have been ex-
plored within the last years. On the one hand,
Johnson et al. (2007) propose to use significance
testing in order to select only those phrase pairs
which are the most co-occurring ones in the train-
ing corpus. On the other hand, Eck et al. (2007)
considers usage statistics of phrase pairs, also
based on either their scores or their ranks, in or-
der to prune the ones below some minimal values.

Our work however does not perform an explicit
statistical analysis of the phrases in phrasetables,
but instead uses the concept of bilingual segmen-
tation of each sentence pair to greatly reduce the
number of parameters to be included in the fi-
nal phrasetable. González et al. (2008) already
proposed a segmentation-based technique using
phrasetables which indirectly causes a reduction
in their sizes. This technique was adopted by
Sanchis-Trilles and Casacuberta (2008) in order to
take advantage of the phrasetable pruning concept
within a standard, phrasetable-based SMT system.
Similarly, Wuebker et al. (2010) propose the use
of a single bilingual segmentation in order to re-
estimate translation probabilities by leaving-one-
out. As a side effect, the amount of model parame-
ters is also reduced. In our work however, the goal
of reducing the size of phrasetables is directly tar-
geted, thus achieving much larger reductions.

3 Statistical machine translation

Statistical Machine Translation (SMT) was defined
by Brown et al. (1993) as follows: given a sen-
tence x from a certain source language, a corre-
sponding sentence ŷ in a given target language
that maximises the posterior probability is to be
found. State-of-the-art SMT systems model the
translation distribution p(y|x) via the log-linear
approach (Och and Ney, 2002):

ŷ = argmax
y

Pr(y|x) (1)

≈ argmax
y

M∑
m=1

λmhm(x,y) (2)

where hm(x,y) is a function representing an im-
portant feature for the translation of x into y, M is
the number of features (or models) and λm are the
weights of the log-linear combination.

Current SMT systems are strongly based on the
concept of phrase. A phrase is defined as a con-
secutive group of words of the source or the target
sentences. In this work, we will conduct our exper-
iments on two different machine translation mod-
els based on phrases: phrase-based (PB) models
and phrase-based stochastic finite state transduc-
ers (PBSFSTs).

PB models (Tomas and Casacuberta, 2001; Och
and Ney, 2002; Marcu and Wong, 2002; Zens et
al., 2002), constitute the core of the current state-
of-the-art in SMT. The basic idea of PB models
is to segment the source sentence into phrases,
then to translate each source phrase into a target
phrase, and finally to reorder them in order to com-
pose the final translation in the target language.
The set of feature functions that compose the log-
linear model used by state-of-the-art PB-SMT sys-
tems typically include an n-gram language model,
phrase-based models estimated in both translation
directions and some additional components such
as word or phrase penalties. The word and phrase
penalties allow the SMT system to limit the num-
ber of words or target phrases, respectively, that
compose the translations of the source sentences.

PBSFSTs (González et al., 2008) are defined as
a set of states, a set of labelled transitions between
pairs of states (where labels are composed of a
source phrase and a target phrase), and probabilis-
tic distributions for the initial and the final states,
and for the labelled transitions (Vidal et al., 2005).
The inference of PBSFSTs is based on the use
of monotonic bilingual segmentations of parallel
training data and a language model of bilingual
phrases (Casacuberta and Vidal, 2004). These
models can also implement the log-linear approach
as described for PB models, which the aforesaid
PB bilingual language model is incorporated to as
an additional feature.

4 Phrasetable pruning by bilingual
segmentation

The problem of segmenting a bilingual sentence
pair in such a manner that the resulting segmen-
tation is the one that contains, without overlap, the
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source phrase target phrase
La the
casa house
verde green
casa verde green house
La casa verde the green house
. .
casa verde . green house .
La casa verde . the green house .

Figure 1: Consistent bilingual phrases (right) given a word alignment matrix (left).

best phrases that can be extracted from that pair is a
difficult problem. First, because of the huge num-
ber of possible segmentations that are to be con-
sidered. Second, because a measure of optimality
must be established. Consider the example:

Source: La casa verde .
Target: The green house .

When considering this example, one would proba-
bly state that a good segmentation for this bilingual
pair is {{La, The}, {casa verde , green house}, {.
, .}} . However, why is such a segmentation bet-
ter than {{La , The},{casa verde . , green house
.}}? As humans, we could argue with more or
less convincing linguistic terms in favour of the
first option, but that does not necessarily mean that
such a segmentation is the most appropriate one
for SMT. Furthermore, one could possibly think of
several linguistically motivated segmentations for
this small example.

In SMT, a variety of algorithms to extract phrase
pairs have been proposed (Tomas and Casacu-
berta, 2001; Marcu and Wong, 2002; Och and
Ney, 2003; Vogel, 2005). Typically, the bilingual
phrases that compose phrasetables are extracted
by using a heuristic algorithm (Zens et al., 2002).
Such heuristic algorithm is driven by the following
constraint: bilingual phrases must be consistent
with their corresponding word alignment matrix.
A phrase pair constitutes a consistent bilingual
phrase if all aligned words in the source phrase
are aligned with words of the target phrase and
vice versa. Figure 1 exemplifies this phrase extrac-
tion process, together with the bilingual phrases
extracted for a simple sentence. As shown, this
process generates huge phrasetables with highly
redundant phrase pairs.

The main purpose of this paper is to reduce
the extremely high redundancy in the amount of
phrase-pairs that current state-of-the-art SMT sys-
tems contain. With this purpose, we examine two
different methods to obtain one single segmenta-

tion per sentence pair. These two methods rely on
the concept of bilingual segmentation.

4.1 Bilingual segmentation
In SMT, the concept of bilingual segmentation can
be easily derived from a phrase-based alignment,
which can be stated formally as follows let x be
a source sentence and y the corresponding target
sentence in a bilingual corpus. A phrase-alignment
between x and y is defined as a set S of ordered
segment pairs included in P(x) × P(y), where
P(x) and P(y) are the set of all subsets of con-
secutive sequences of words, of x and y, respec-
tively. In addition, the ordered pairs contained in
S have to include all the words of both the source
and target sentences, without overlap. A phrase-
based alignment Ã(x,y) of lengthK of a sentence
pair (x,y) is defined as a specific one-to-one map-
ping ã between P(y) and P(x). Then, the prob-
lem of finding the best PB-alignment ÃV (x,y) (or
Viterbi phrase-alignment) between x and y can be
stated formally as

ÃV (x,y) = argmax
ã

p(ã|x,y) (3)

One would suggest that we can perform a search
process using a regular SMT system which fil-
ters its PT to obtain those translations of x that
are compatible with y. Unfortunately, such prob-
lem cannot be easily solved, since standard esti-
mation tools such as Thot (Ortiz et al., 2005) and
Moses (Koehn et al., 2007) do not guarantee com-
plete coverage of sentence pairs seen in training
due to the large number of heuristic decisions in-
volved in the estimation process. This means that it
is often the case that the SMT system is not able to
produce the correct output sentence y. This prob-
lem is exemplified in Figure 2. In this example,
which has been extracted from a real training pro-
cedure, only three phrase pairs will be extracted,
and the remaining words will not be included into
the PT. It is shown that words such as cannot
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Figure 2: Example of word alignment that results
in coverage problems. Maximum phrase length of
7 is assumed. Black squares represent word align-
ments, whereas extracted phrases are marked with
a rectangle involving one or more squares.

present multiple alignments. In order to include
target word cannot within a consistent align-
ment, one would need to include word puedo into
the alignment, but including word puedo implies
that word I is also included. Including I also
forces the two commas to be included, together
with whatever words appear between both. Con-
tinuing with this procedure leads to the necessity
of including the whole sentence pair (except for the
final dot) as a phrase before being able to include
cannot into a consistent alignment. However,
due to performance reasons, it is quite common to
restrict the maximum length of the phrases to be
extracted. If such maximum is set to e.g. 7, the
complete sentence pair will not be included into
the system, and cannot will remain unknown de-
spite having been observed in training.

We propose two different solutions to this prob-
lem. The first one pursues the goal of obtaining
true phrase-based alignments between x and y,
whereas the second one focuses on the primary
goal of this work, i.e. reducing the amount of bilin-
gual phrases derived from each sentence pair, lead-
ing to a source-driven bilingual segmentation.

4.2 True bilingual segmentation

As described in the previous section, coverage
problems inherent to state-of-the-art SMT systems
imply that it is often impossible to obtain the
Viterbi segmentation of a given sentence pair. For
this reason, a possible way of overcoming such
coverage problems is proposed in (Ortiz-Martı́nez
et al., 2008). In their work, the main idea is to

consider every source phrase of x as a possible
translation of every target phrase of y. For this
purpose, a general mechanism to assign probabili-
ties to phrase pairs is needed, regardless if they are
contained in the phrasetable or not.

Such mechanism can be implemented by means
of the application of smoothing techniques over
the phrasetable. As shown in (Foster et al., 2006),
well-known language model smoothing techniques
can be imported into the PB translation framework,
and these can also be applied to obtain phrase-
level alignments. According to (Ortiz-Martı́nez
et al., 2008), the best smoothing techniques com-
bine a maximum likelihood phrase-based model
statistical estimator with a lexical distribution
by means of linear interpolation or backing-off.
The lexical distribution uses an IBM 1 alignment
model (Brown et al., 1993) that allows to de-
compose phrase-to-phrase translation probabilities
into word-to-word translation probabilities. In our
experiments, we have combined a phrase-based
statistical estimator with a lexical distribution by
means of linear interpolation. In addition, (Ortiz-
Martı́nez et al., 2008) also proposes the use of a
log-linear model to control different aspects of the
segmentation, such as the number of phrases in
which the sentences are divided, the length of the
source and the target phrases, the re-orderings and
so on. In this work we have also adopted this strat-
egy. Hence Equation 3 can be rewritten as:

ÃV (x,y) = argmax
ã

p(ã|x,y)

= argmax
ã

p(ã,y|x)
p(x|y)

= argmax
ã

p(ã,y|x) (4)

Although it might seem that Equation 4 matches
exactly the decoding problem in SMT, this is not
so, since the maximisation takes place only over
phrase-alignments, and is subject to the constraint
that y is the actual reference sentence given.

Once the scoring function for phrase pairs has
been defined, a search algorithm to find the bilin-
gual segmentations is required. For this purpose,
a search strategy based on the well-known stack-
decoding algorithm (Jelinek, 1969) can be used.

The bilingual segmentation procedure that has
been described above allows us to compute one
true segmentation for each sentence pair. Once the
segmentations for every sentence pair have been
computed, it is possible to build a phrasetable by
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only taking into account those segments that are
contained in the set of true segmentations.

4.3 Source-driven bilingual segmentation
As it has been explained in Section 4.1, computing
ÃV (x,y) according to a given phrasetable is not
an easy task. Specifically, the phrase alignments
cannot often be generated due to coverage prob-
lems of the phrase-based alignment model. In the
previous section it has been shown how to com-
pute a true phrase-alignment between two given
sentences. However, such method must bear with
the constraint of having the output sentence fixed.
Although such restriction seems logical at training
time, it should not be underestimated that this will
not be the case in translation time, and such re-
striction may introduce a non-intended bias. The
bilingual segmentation technique described in Sec-
tion 4.2 allows to overcome coverage problems by
combining smoothing techniques with an appro-
priate search algorithm. This is done at the cost
of modifying the scoring function used during the
search process due to the application of smoothing
techniques, and also by introducing new segment
pairs. As said in Section 3, phrase-extraction is
typically done by a heuristic algorithm, which has
proved to provide appropriate bilingual segments,
and altering such segments may not be a good idea.

Since our goal is to discard unnecessary seg-
ment pairs contained in the phrasetable, we pro-
pose an alternative bilingual segmentation tech-
nique that obtains source-driven bilingual segmen-
tations, by relaxing the restriction considered in
Equation 4, leading to

ÃV (x) ≈ argmax
ã,y

p(ã,y|x) (5)

where the output sentence y is allowed to be dif-
ferent from the true reference, and the segmenta-
tion has been induced by taking into account only
the input sentence. By using ÃV (x) instead of
ÃV (x,y), we ensure that only segments present in
the current phrasetable are used, and no new seg-
ments are introduced.

The maximisation described in Equation 5 is
exactly the same problem as the one of finding
the best translation of a source sentence within a
phrase-based system. Hence, for computing ã we
simply translate each source training sentence and
include into the phrasetable those phrase pairs that
compose the output hypothesis. We are aware that
translating the source sentence will not necessarily

produce the target sentence in the training pair, but
on the other hand no artificial bilingual segments
will be introduced into the phrasetable. In addi-
tion, as shown in Section 5, experiments show that
this approach might be good enough to prune the
PT without a significant loss in translation quality.

5 Experimental Setup

Both true and source-driven segmentations were
conducted by means of a yet unpublished exten-
sion of the Thot (Ortiz et al., 2005) toolkit, which
features a log-linear model and includes a state-of-
the-art decoder and a phrase-based aligner, used
here to obtain true alignments. Although such
toolkit does not include lexical-based probabilities
or a lexical-based distortion model, Sanchis-Trilles
and Casacuberta (2008) show that the relationship
between the baseline system and the reduced sys-
tem via source-driven segmentation also holds for
the Moses toolkit. The weights of the log-linear
model were optimised by means of MERT (Och,
2003). This log-linear model includes direct and
inverse phrase-based translation models, a lan-
guage model and word and phrase penalties.

Once the source-driven or true segmentation is
obtained, the new phrase pairs were used to build
new phrasetables and new PBSFSTs. The proba-
bilities assigned to the extracted segment pairs are
obtained by normalising for the whole set of pa-
rameters resulting from the segmentation process.

Although PBSFSTs have the potential to use
a log-linear combination of features to estimate
Pr(y|x), they were only used here to model the
joint probability distribution Pr(x,y), allowing us
to determine the baseline associated to the segmen-
tation method employed.

5.1 System evaluation and corpora

In this work, we measure the translation quality by
means of BLEU and TER scores. BLEU measures
the precision of n-grams (Papineni et al., 2001),
whereas TER (Snover et al., 2006) is an error met-
ric that computes the minimum number of edits
required to modify the system hypotheses so that
they match the references. In addition to this, we
will also report the number of parameters that are
used by the translation system and the speedup of
the proposed system with respect to a conventional
system. We define the speedup by means of the
formula Sp = Tb/Tr, where Tb is the time taken
by the baseline system and Tr is the time taken by
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Subset features De En Es En
Tr

ai
ni

ng
Sentences 751k 731k
Run. words 15.3M 16.1M 15.7M 15.2M
Mean length 20.3 21.4 21.5 20.8
Vocabulary 195k 66k 103k 64k

D
ev

.

Sentences 2000 2000
Run. words 55k 59k 61k 59k
Mean length 27.6 29.3 30.3 29.3
OoV words 432 125 208 127

Te
st

Sentences 3064 3064
Run. words 82k 85k 92k 85k
Mean length 26.9 27.8 29.9 27.8
OoV words 1020 488 470 502

Table 1: Main figures of the Europarl corpus. OoV
stands for Out of Vocabulary, k for thousands of
elements, and M for millions of elements.

the system with reduced PT.
We conducted our experiments on the Europarl

corpus (Koehn, 2005), with the partition estab-
lished in the Workshop on SMT of NAACL
2006 (Koehn and Monz, 2006). The Europarl cor-
pus (Koehn, 2005) is built from the proceedings
of the European Parliament published on the web,
and was acquired in eleven different languages.
We will only focus on the German–English (De–
En) and Spanish–English (Es–En) tasks, since ex-
periments with other language pairs yielded sim-
ilar results. The corpus is divided into four sep-
arate sets: one for training, one for development,
one for test and another test set which was the one
used in the workshop for the final evaluation and
included a surprise out-of-domain subset. We per-
formed experiments on both test sets, yielding sim-
ilar results for both of them. Because of this, and to
avoid an overwhelming number of results, we only
report those results obtained with the final evalua-
tion test set, being these more interesting because
of the out-of-domain data involved. The figures of
the corpus are shown in Table 1.

6 Results

In the tables shown in this section, sizes are given
in number of entries in the PT or number of tran-
sitions of PBSFSTs. Speed is reported in words
per second (w/s), and Sp stands for speedup, as
described in Section 5.1.

Confidence intervals at a confidence level of
95% were computed, following the bootstrap tech-
nique described by Koehn (2004). These turned to

be, in every case and for BLEU and TER, around
0.65 points, and are omitted for the sake of clarity.

6.1 Phrase-based models

We carried out translation experiments using both
source-driven bilingual segmentation and true
bilingual segmentation. Results for both propos-
als and baseline system are displayed in Table 2.

In the case of the source-driven segmentation,
translation quality is not significantly affected by
the reduction of the size of the phrasetable we pro-
pose. On the one hand BLEU scores, are slightly
lower than those of the baseline system, although
confidence tests show that these differences are not
statistically significant. On the other hand, TER
scores seem to remain completely unaltered, even
though a very slight variation can be observed

As for the number of parameters of the models
used, it can be seen that such number is reduced
in two orders of magnitude, i.e. the number of pa-
rameters remaining in the phrase table after apply-
ing our pruning technique is only around 2% the
original number of parameters. Moreover, transla-
tion speed is increased by a factor between 9 and
16, all this without a significant loss in translation
quality.

In the case of true segmentation, and as opposed
to source-driven segmentation, translation quality
does drop significantly (although not consistently)
with respect to the baseline, ranging from 0.5 to
4.4 BLEU points and from 0.2 to 5.1 TER points.

6.2 Phrase-based SFSTs

Since our PBSFST estimation framework is based
on the use of monotonic bilingual segmentations,
there is no chance for the above-mentioned base-
line setup to be applied given that it relies on mul-
tiple overlapping segmentations for each bilingual
sentence pair. However, both segmentation tech-
niques proposed here could actually be employed.
As Section 6.1 has shown that source-driven
segmentation method performs best, only these
experiments were carried out then for PBSFSTs.
The corresponding results are presented in Table 3.

Although baseline PB models are able to pro-
vide better translation quality, it must be stressed
that, as described in Section 5, PBSFSTs were
used to take into account only one feature model
whereas PB models were a combination of five.
Therefore, the differences between PBSFSTs and
PB models may be welcome as an interesting
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Baseline Source-driven True
Pair BLEU TER size w/s BLEU TER size w/s Sp BLEU TER size w/s Sp

Es–En 28.2 56.0 5.0 93 27.5 56.2 0.05 1500 16 23.8 60.8 0.07 380 4
En–Es 27.6 56.6 5.1 76 27.2 56.6 0.12 700 9 24.7 60.1 0.16 250 3
De–En 21.6 64.8 4.2 100 21.1 64.8 0.06 1500 15 17.5 69.9 0.22 280 3
En–De 15.2 70.9 5.5 46 15.1 70.2 0.14 400 9 14.7 71.1 0.31 170 4

Table 2: Translation quality, number of model parameters, number of translated words per second and
speedup (Sp) obtained when using a PB translation system for both source-driven and true segmentation
techniques. Monotonic search was considered. PB model size is given in millions of phrase-pairs.

Source-driven
Pair BLEU TER size w/s Sp

Es–En 25.8 58.2 0.12 91730 986
En–Es 25.3 59.0 0.23 28411 374
De–En 18.8 68.3 0.12 41249 412
En–De 13.0 74.1 0.28 14205 309

Table 3: Translation quality, number of model pa-
rameters and number of translated words per sec-
ond for the source-driven segmentation technique
when using a PBSFST translation system. Size of
PBSFSTs given in millions of single-word edges.

trade-off to achieve acceptable quality perfor-
mance with a further increase in translation speed.
It must be remarked that PBSFSTs are able to
translate any of the test sets in just a few seconds
(vs. tens of minutes taken by baseline PB models).

7 Discussion and conclusions

In this paper, we have presented a technique to
reduce the size of the phrasetables used in state-
of-the-art SMT systems. Our approach consist on
selecting the phase pairs given by the most prob-
able segmentation of the training sentences. We
propose two different segmentation techniques.
Both segmentation techniques allow to obtain sub-
stantial reductions in the size of the phraseta-
bles as well as in the time cost of the translation
process. Particularly, source-driven segmentation
leads to important improvements in terms of de-
coding speed without a significant loss in transla-
tion quality. We think that the reductions in spatial
and time costs of the proposed techniques can sig-
nificantly help to implement state-of-the-art trans-
lation models into hand-held devices.

It is worth noting that, unexpectedly, in the ex-
periments we carried out, the true bilingual seg-
mentation technique obtained worse results than
the source-driven segmentation technique.

One key difference between the two proposed

techniques consists in the degree of similarity of
the pruned phrasetables obtained by the techniques
with respect to the original phrasetable. Although
the true bilingual segmentation allows to obtain
a complete segmentation of the source and target
sentences, this comes at the cost of introducing
smoothing techniques. Hence, the resulting seg-
mentations contain phrase pairs that are not present
in the original phrasetable. In the experiments we
carried out, the pruned phrasetables generated by
the true bilingual segmentation contained a rela-
tively high number of phrase pairs that were not
present in the original phrasetables, ranging from
10% to 50% depending on the language pair. In
contrast, the source-driven bilingual segmentation,
since it merely consists in translating the source
sentence, always generates a pruned phrasetable
that is a true subset of the original phrasetable.
This suggests that the true segmentation technique
not only prunes the original phrasetable, but also
has an important role in the estimation of new
model parameters, which could be the reason for
the degradation of the translation quality. Nev-
ertheless, a further analysis of the impact of the
smoothing techniques used by true bilingual seg-
mentation is required to better understand why this
technique is not performing as expected.
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