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Abstract

Modern Statistical Machine Translation
(SMT) systems make their decisions based
on multiple information sources, which as-
sess various aspects of the match between
a source sentence and its possible trans-
lation(s). Tuning a SMT system consists
in finding the right balance between these
sources so as to produce the best possi-
ble output, and is usually achieved through
Minimum Error Rate Training (MERT)
(Och, 2003). In this paper, we recast
the operations implied in MERT in the
terms of operations over a specific semir-
ing, which, in particular, enables us to de-
rive a simple and generic implementation
of MERT over word lattices.

1 Introduction

Inference (decoding) in phrase-based statistical
machine translation (SMT) systems is typically
based on a log-linear model of the probability
p(e|f) = Z(f)−1 exp(λ̄ · h̄(e, f)) of obtaining a
target sentence e given an input sentence f . For
such model, the MAP decision rule selects ẽf as :

ẽf (λ̄) = arg max
e∈E

p(e|f)

= arg max
e∈E

λ̄ · h̄(e, f), (1)

whereE is the set of reachable translations, h̄(e, f)
is the vector of feature functions representing var-
ious compatibility measures of f and e, and λ̄ is
a parameter vector, each component λi of which
regulates the influence of the feature hi(e, f).
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The set of reachable translations E (also re-
ferred to as the search space) in modern decoders
is based on a set of heuristics that define the set of
possible translation of each word or phrase (up to
a maximum limit) and specify the range of possi-
ble reorderings of words or phrases during trans-
lation. Assuming that the components of E have
been defined, the actual tuning step of a SMT sys-
tem consists in finding λ̄∗ that maximizes the em-
pirical gain G on a development set F = {(f , rf )}
made of pairs of a source sentence f and corre-
sponding reference translation(s) rf :

λ̄∗ = arg max
λ̄

G(F ; λ̄) (2)

where the computation of the gain functionG, typ-
ically the BLEU score (Papineni et al., 2002) 1,
depends on the actual translations {ẽf (λ̄), f ∈ F}
achieved for a given value of λ̄ according to (1).

For the sake of performing this optimization ef-
ficiently, the search space of the decoder is often
approximated using an explicit list of n-best hy-
potheses or a directed acyclic graph (lattice) en-
coding a large number of potential translations.

Because of the form of the inference rule (1),
the learning criterion (2) is neither convex nor dif-
ferentiable. Furthermore, its exact computation is
made intractable by the typical size ofE, hence the
recourse to various heuristic optimization strate-
gies. The most successful to date is the proposal
of (Och, 2003), usually referred to as Minimum Er-
ror Rate Training (MERT). This proposal has how-
ever been repeatedly questioned for (i) its compu-
tational cost and (ii) the instability of the result-
ing solutions (Cer et al., 2008; Moore and Quirk,
2008; Foster and Kuhn, 2009). The most promis-
1At this stage, any other metrics could be used instead of
BLEU (see e.g., (Zaidan, 2009)).
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ing improvement consists in extending the approx-
imation of the search space used in (2) from n-
best lists to lattices, which both improves speed
and reduces the variability of the final outcome
(Macherey et al., 2008). Our main contribution in
this paper is to recast the algorithm of (Macherey
et al., 2008; Kumar et al., 2009) (“lattice-MERT”)
in a sound algebraic framework, using the MERT
semiring2 . Using this reformulation, we produce
an efficient implementation of lattice MERT based
on a generic finite-state toolbox (Allauzen et al.,
2007). Preliminary experimental results confirm
the main conclusions of (Macherey et al., 2008).

The rest of this paper is organized as follows.
In Section 2, we recall the main principles of the
basic algorithm of (Och, 2003), and some of the
improvements that have been proposed in the liter-
ature. Section 3 is where we introduce the MERT
semiring and its main properties. We then de-
scribe (Section 4) our own implementation of lat-
tice MERT using a generic shortest distance algo-
rithm in the appropriate semiring, and discuss var-
ious possible speed-ups. We then report machine
translation experiments that demonstrate the effec-
tiveness of our proposal (Section 5).

2 MERT and Lattice MERT

In the SMT literature, the MERT optimization
cycle is used to refer to the development phase,
where the weights of the various features/models
involved in equation (1) are to be tuned over some
development data. The whole procedure (Och,
2003) is sketched in algorithm 1.

Algorithm 1: The MERT optimization cycle
Input: initial value λ̄0 for λ̄, development data F ,

required minimum improvement ε
Output: optimal value λ̄∗ for λ̄
repeat

for (f ∈ F ) do Ht(f , λt)← Translate(f)
λ̄t+1 ← Optimize({Ht(f , λ̄t), f ∈ F}, λ̄t)
t← t+ 1

until (|λ̄t+1 − λ̄t| < ε)
λ̄∗ ← λ̄t

MERT thus implies two different kinds of oper-
ations: decoding, which basically implements the
2The notion of a MERT semiring has been alluded to in the
literature (Dyer et al., 2010). To the best of our knowledge,
this semiring has never been formally described, neither from
the algebraic, nor from the implementation standpoint. This
is a gap that we intend to fill in this work.

inference procedure and returns a set Ht(f , λt) of
hypotheses, and optimization, which we now de-
scribe. The Optimize() function relies on op-
timization techniques for non-differentiable func-
tions, such as the Powell’s search algorithm (Pow-
ell, 1964). This requires to perform a series of min-
imizations of (2) along lines λ̄ = λ̄0 +γr̄ for some
directions r̄.

Due to the log-linear form of the probability
in (1), the optimal hypothesis ẽf is given by:

ẽf (γ) = arg max
e∈E

ye + γse

where ye = λ̄0 · h̄(e, f) and se = r̄ · h̄(e, f). Each
translation hypothesis is thus associated with a line
in R2, and the most probable hypothesis for a given
γ is the one whose line dominates all the others.
The sequence of line segments that dominate all
other lines for some value of γ is called the upper
envelope (see Figure 1 and Definition 3.2).

The upper envelope identifies hypotheses that
can be selected when λ̄ is moved along the con-
sidered line. Projections of the intersections of the
envelope’s lines onto the γ-axis define the interval
boundaries; over each such interval, the optimal
hypothesis is constant. After merging the intervals
computed separately for each sentence in F , it is
possible to find γ∗ maximizing gain G by comput-
ing it on each interval and setting γ∗ to the middle
of the best interval.

During each round of optimization, MERT ex-
plores several directions r̄i and updates λ̄ = λ0 +
γ∗i∗ r̄i∗ , where i∗ is the index of the direction yield-
ing the highest increase of G.

The procedure sketched in algorithm 1 has re-
peatedly been criticized for its computational cost
and its lack of stability, which often implies the
finding of a suboptimal solution. There are two
main reasons why MERT can be very time con-
suming. The first is due to the total number of it-
erations that need to be performed to attain con-
vergence: folklore wisdom is that the number of
iterations shall be approximately proportional to
total the number of dimensions. Speed is also de-
pendent on the time required to perform one itera-
tion, which is dominated by the translation phase.
Even when distributed over several CPUs transla-
tion takes much more time and resource than op-
timization. It is thus expected that the most sig-
nificant speed improvements will be obtained by
reducing the number of iterations. The other main
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issue is the stability of the results, which, in prac-
tice, is addressed by running the optimize several
times, with different starting points. These ineffi-
ciencies have stimulated the development of alter-
native approaches3. Attempts at improving MERT
can be split into two categories: works that try
to fix the optimization procedure and works that
consider alternative, arguably easier to optimize
or better suited training criteria (Smith and Eisner,
2006; Zens et al., 2007; Watanabe et al., 2007). In
the sequel, we only discuss the former approaches,
which are more relevant to this work.

(Cer et al., 2008) provides a thorough analysis of
the optimization procedure, and suggests that im-
provements can be attained by (i) considering mul-
tiple random search directions instead of the Pow-
ell algorithm, and (ii) ensuring, through regulariza-
tion, that the optimal λ̄∗ have the ability to gener-
alize well. This analysis is completed by the works
of (Foster and Kuhn, 2009), which also suggests to
improve the exploration of the search space by us-
ing well chosen multiple restarting points at each
iteration (see also (Moore and Quirk, 2008)).

Initially proposed for n-best lists, MERT was
also generalized to the case when E is approxi-
mated by a phrase lattice (Macherey et al., 2008),
and more recently, to hypergraphs (Kumar et al.,
2009). These generalizations take advantage of the
decomposability of the feature functions h̄(e, f),
which are computed as a sum of local feature
functions. When this property holds, rather than
constructing upper envelopes for each hypothesis
in the lattice4, the envelopes are distributed over
nodes in the lattice. Working with much better
approximations of the complete search spaces not
only allows to converge in less iterations, but also
to achieve better generalization, a finding that was
recently confirmed by (Larkin et al., 2010). Our
work is a continuation of this line of research,
driven by the intuition that recasting MERT in a
clear algebraic framework, as we do in the next
section, can help develop faster, and even more ef-
ficient, implementations of MERT for complex hy-
potheses set.

3 The MERT Semiring

Recall that a semiring K over a set K is a system
〈K,⊕,⊗, 0̄, 1̄〉, where 〈K,⊕, 0̄〉 is a commutative

3Not to mention changes in the core optimization routines, as
in e.g., (Lambert and Banchs, 2006)
4They are too numerous to be efficiently enumerated.

monoid with identity element 0̄, meaning that a⊕
(b⊕c) = (a⊕b)⊕c, a⊕b = b⊕a and ∀a, a⊕ 0̄ =
0̄ ⊕ a = a. Additionally, 〈K,⊗, 1̄〉 is a monoid
with identity element 1̄; ⊗ distributes over ⊕ so
that a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (b⊕ c)⊗
a = (b ⊗ a) ⊕ (c ⊗ a) and element 0̄ annihilates
K (a ⊗ 0̄ = 0̄ ⊗ a = 0̄). A semiring is called
commutative if the operation ⊗ is commutative.

In this section, we characterize the algebraic
structure of the set of upper envelopes of a set
of lines in the plane, and show that a set of en-
velopes equipped with certain operations of addi-
tion (⊕) and multiplication (⊗) defines a commu-
tative semiring.

3.1 Lineset semiring

Consider a set D of sets dk of n lines {dki.s · x +
dki.y, i = 1 . . . n} in R2, where dki,s, d

k
i,y ∈ R are,

respectively, the slope and the y-intercept of the i-
th line in the set dk. For two sets d1, d2 ∈ D, we
define the following internal operations ⊕D and
⊗D5 as follows:

d1 ⊕D d2 =d1 ∪ d2,

d1 ⊗D d2 ={(d1
i.s + d2

j.s) · x+ (d1
i.y + d2

j.y)

| ∀d1
i ∈ d1, d2

j ∈ d2}. (3)

Proposition 3.1. D = 〈D,⊕D,⊗D, 0̄D, 1̄D〉,
where 0̄D = ∅ and 1̄D = {0 · x+ 0}, is a commu-
tative semiring.

Proof. It is well known that 〈D,⊕D〉 is a com-
mutative monoid with 0̄D as identity element.
〈D,⊗D〉 is also a commutative monoid with 1̄D as
identity element. It is finally routine to check that
⊗D is distributive over ⊕D. The additive identity
0̄D annihilates D for the⊗D operation, because of
the definition (3): as no line is contained in 0̄D the
result of multiplication by 0̄D is always empty.

3.2 Envelope semiring

Definition 3.2. The upper envelope of a set of lines
d ∈ D is a subset env(d) ⊆ d consisting of lines
di ∈ d, s.t. for each line di ∈ env(d), there exists
an non-empty interval Ii ∈ R, s.t. if x ∈ Ii, then
di.s ·x+di.y > di′.s ·x+di′.y, for any line di′ 6= di.

Two lines di and dj in env(d) are said to be
neighbors if their corresponding intervals Ii and
Ij are adjacent.

5Formally, ⊗ corresponds to the Minkowski sum of the two
sets of lines.
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Figure 1: The upper envelope of a set of lines

For MERT, it is important to know the inter-
sections of neighboring lines in the envelope. For
this purpose, an envelope can be ordered as a list
of lines with increasing slopes and each line en-
coded as a tuple (x, s, y) where x is the line’s
x-intersection with the previous line in the list.
The upper envelope can be computed by algo-
rithm 2, which is a rewrite of the sweepline al-
gorithm from (Macherey et al., 2008). We use a
separate function Sweep (algorithm 3), which will
serve in a faster implementation of the ⊕ opera-
tion.

Algorithm 2: The SweepLine algorithm
Input: sorted array S containing lines
Output: upper envelope of S
j = 0
for (i = 0; i < |S| ; + + i) do
Sweep (S, S[i], j)

end
S.resize (j)

Algorithm 3: The Sweep(S, `, j) function
Input: upper envelope S, line `, current value of j
Output: upper envelope of S ∪ `, updated value

for j
if (0 < j) then

if (S[j − 1].s = `.s) then
if (`.y <= S[j − 1].y) then continue
j ← j − 1

while (0 < j) do
`.x = (`.y − S[j − 1].y)/(S[j − 1].s− `.s)
if (S[j − 1].x < `.x) then break
j ← j − 1

end
if (0 = j) then `.x = −∞
S[j] = `
j ← j + 1

Let E be a subset of D such that env(d) = d for
each d ∈ E, and define the operations ⊕E and ⊗E
as the projections of the respective operations inD
on the set E:

d1 ⊕E d2 = env(d1 ⊕D d2),

d1 ⊗E d2 = env(d1 ⊗D d2).

Proposition 3.3. The tuple E =
〈E,⊕E ,⊗E , 0̄E , 1̄E〉, where 0̄E = ∅ and
1̄E = {0 · x+ 0}, is a commutative semiring.

Proof. It is routine to check both associative, com-
mutative and distributive properties, and that 0̄E is
a multiplicative annihilator of E.

A semiring is called weakly divisible if for any
pair of elements d1 and d2 such that d1 ⊕ d2 6= 0̄,
there exists at least one d such that d1 = (d1 ⊕
d2)⊗ d. The concept of divisibility is important as
it is a crucial requirement for optimizing transduc-
ers by determinization (Mohri, 2009). However,
one can observe that the MERT semiring is not di-
visible, which has its implication on the minimiza-
tion of the finite-state automata between iterations
of algorithm 1 (see subsection 4.2).

3.3 Shortest Distance and MERT

Let A = (Σ, Q, I, F,E) be a weighted finite state
acceptor with weights in E, meaning that the tran-
sitions (q, a, q′) in A carry a weight w in E. For-
mally, E is a mapping from (Q × Σ × Q) into E;
likewise I and F are mappings from Q into E. We
use the notations of (Mohri, 2009): if e = (q, a, q′)
is a transition in domain(E), p(e) = q (resp.
n(e) = q′) denotes its origin (resp. destination)
state, i(e) = a its label, and w(e) = E(e) its
weight. These notations extend to paths: if π is
a path in A, p(π) (resp. n(π)) is its initial (resp.
ending) state and i(π) is the label along the path.

In our setting,A is derived from a word lattice L
as follows. We assume that L has a single start and
end state, denoted respectively q0 and qF . Each arc
in L labeled with a target word a carries a vector
h̄(a, f) of local features associated with a. Given
a starting point λ̄0 and a search direction r̄, L is
turned into a weighted acceptor over E by associ-
ating with (q0) (resp. qF ) the weight 1̄ and replac-
ing h̄ with a singleton containing line di with slope
di.s = (r̄ · h̄)x and y-intercept di.y = (λ̄0 · h̄).
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The total weight of a successful path π = e1...el
in A is thus computed as:

w(π) =I(e1)⊗ [ l⊗
i=1

w(ei)
]⊗ F (el)

={λ̄0 ·
l∑

i=1

h̄(i(ei), f) + (r̄ ·
l∑

i=1

h̄(i(ei), f))x}.

This is because each weight in A contains a single
line, which means that the total weight of a path
is also a singleton line set, which corresponds to
the complete translation hypothesis read along π
as e = i(e1) . . . i(el).

The computation of the complete upper enve-
lope of all the lines corresponding to translation
hypotheses in the lattice L thus corresponds to the
envelope of the union of all these lines:

env(
⋃
π∈A

w(π)) =
⊕
π∈A

w(π). (4)

Quantities such as (4) can be efficiently com-
puted by generic shortest distance algorithms over
acyclic graphs (Mohri, 2002).

As an additional note, it is interesting to real-
ize that all the previous considerations hold if we
make the elements in E vectors of set of lines, in-
stead of just set of lines; and define the semiring
operations to be performed componentwise. This
means that the computation of (4) can be done si-
multaneously in any number of directions.

4 Implementing MERT with semiring
operations

4.1 Basic operations
Given that E is a semiring, our implementation re-
lies on the general finite-state transducer library
OpenFst (Allauzen et al., 2007) to perform the
computation of the quantities that are required by
MERT on lattices. The main benefit of adopting
this framework is that we only need to implement
the basic semiring operations to get the full power
of proven and well optimized algorithms.

We first detail the ⊗ operation, implemented as
specified in algorithm 4. In our application, the au-
tomata derived from translation lattices are acyclic
which means that, if we process states in topo-
logical order, the right-hand argument d2 in algo-
rithm 4 always contains only one line, what re-
moves the need for the inner for-loop. As multi-
plication by a single line does not change the rela-

Algorithm 4: ⊗ operation
Input: two envelopes d1, d2

Output: d1 ⊗ d2

S = ∅
for d1

i ∈ d1 do
for d2

j ∈ d2 do
S ← S ∪ {(d1

i.s + d1
j.s) · x+ (d1

i.y + d1
j.y)}

end
end
SweepLine (S);

Algorithm 5: ⊗ operation for acyclic lattices
Input: two envelopes d1, d2

Output: d1 ⊗ d2

S = ∅
for d1

i ∈ d1 do
S ← S ∪ {(d1

i.s + d1
0.s) · x+ (d1

i.y + d1
0.y)}

end

tive order of lines in the envelope, the final call to
SweepLine() is also not required (algorithm 5).

In (Macherey et al., 2008; Kumar et al., 2009),
the ⊕ operation was straight-forwardly defined as
SweepLine(d1 ∪ d2). However, for the sake of
efficiency, one can use the fact that both arguments
are sorted, which means that the envelop of their
union can be performed in linear time, by process-
ing them simultaneously (see algorithm 6).

4.2 Lattice optimization

Performing the full MERT cycle involves repeat-
edly solving the optimization problem (2) on ap-
proximations of the translation search space of
increasing quality. Standard implementation of
MERT alternate between the optimization of λ̄ and
the computation of updated lattices L (translation
hypotheses). To ensure the convergence of this
procedure and to avoid overfitting, we need to en-
sure that the lattices used at step t actually contain
all the hypotheses that have served to optimize λ̄
at iteration t−1. This requirement is typically met
by merging decoder’s outputs (latticeLt) produced
during all the previous iterations Lt−1 . . . L1.

Merging lattices is readily implemented using
the OpenFst Union operation. However, the re-
sulting acceptor might still contain a large number
of duplicated paths, corresponding to identical hy-
potheses produced for different values of t, even
after λ̄ update. This leads to a waste of time while
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Algorithm 6: ⊕ operation
Input: two envelopes d1, d2

Output: d1 ⊕ d2

j = 0; i1 = i2 = 0; S = ∅
while (i1 <

∣∣d1
∣∣ and i2 <

∣∣d2
∣∣) do

if (d1
i1.s

< d2
i2.s

) then
Sweep (S, d1

i1
, j)

i1 ← i1 + 1
else
Sweep (S, d2

i2
, j)

i2 ← i2 + 1
if (i1 =

∣∣d1
∣∣) then

for (; i2 <
∣∣d2
∣∣ ; i2 + +) do Sweep (S, d2

i2
, j)

break
if (i2 =

∣∣d2
∣∣) then

for (; i1 <
∣∣d1
∣∣ ; i1 + +) do Sweep (S, d1

i1
, j)

break
end
S.resize (j)

performing shortest distance calculation. Using
the OpenFst operation Determinize over the
MERT semiring is ruled out by the fact that the
determinization of a transducer requires (weak) di-
visibility of weights (Mohri, 2009), a property that
does not hold in the MERT semiring.

To circumvent the problem, we perform the re-
quired operations Union and Determinize in
the (min,+) (tropical) semiring as follows. Each
input lattice is first converted into an intermediate
automaton with identical arcs and states. In the
new automaton, the output label of an arc com-
pactly encodes the original output phrase and all
the model scores, and the weights of all arcs are
set to one. The tropical semiring being divisible,
so the resulting automaton can be optimized using
the standard library operations. We then restore
the original encoding so as to recover a transducer
with proper labels and weights.

4.3 Additional speed-ups and improvements

Finding the optimal λ̄∗ for a set of translation lat-
tices and the corresponding references is an itera-
tive procedure detailed in algorithm 7.

Our implementation uses the optimization strat-
egy known as Koehn’s coordinate descent (Cer et
al., 2008), which optimizes λ̄ separately for each
feature (dimension). This is a difference with
the approach of (Och, 2003) which uses Powell’s
search algorithm. This basic approach is extended

Algorithm 7: MERT workflow
Input: initial λ̄0, FST-archive A, set of restart

points P
Output: optimal λ̄∗

for all restart points p ∈ P do
for each lattice L ∈ A do

for direction r̄ ∈ Rn do
init arcs a ∈ L with singleton
{(r̄ · F̄a) · x+ λ̄ · F̄a}

end
run ShortestDistance (L)
get envelope of the final state
collect its intersections and BLEU statistics

end
merge intersections from all the lattices
find interval with maximum BLEU
set λ̄∗ as the middle of the winning interval

end
return λ̄∗

as follows: optimization can be restarted from a
number of randomly chosen points, search is also
performed in several random dimensions, which
are regenerated after each improvement of λ̄.

At each step of the MERT workflow (algo-
rithm 7), all directions are processed simultane-
ously in one single traversal of the lattice, as ex-
plained in section 3.3. As reported in (Cer et al.,
2008; Macherey et al., 2008), we have observed
that using more random directions is a simple and
effective means to gain up to 0.3-0.5 BLEU points.

In comparison, the improvements obtained with
random restarts remained limited, except than dur-
ing the first iteration. Given the time needed to
reinitialize each lattice in the archive with each
new starting point λ̄0 before recomputing the
shortest distance, we use random restart only for
the first iterations; from the second iteration on, we
initialize search only with the previous best point.

We also merged two line segments of the up-
per envelope if generated intersection point closer
than 10−3, as in (Cer et al., 2008; Macherey et al.,
2008), where it is claimed to make results more
stable. We did not, however, notice any change
in performance with or without interval merging
on small datasets. Interval merging was used for
the sake of decreasing the number of intervals,
that saved some amount of time when computing
BLEU scores for each of them. Finally note that
after each round, λ̄∗ was `1-normalized.
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small large
dev test ∆t dev test ∆t

15.03 16.88 20.47 20.98
15.19 16.63 00:42 22.57 22.82 01:52
16.74 16.43 00:45 24.76 25.43 01:42
16.83 18.30 00:44 24.75 25.46 02:01
16.93 18.33 00:50 23.10 23.36 02:03
16.93 18.32 00:55 25.10 25.54 01:24
17.04 18.59 00:52 24.93 25.35 01:36
17.04 18.59 00:50 25.05 25.46 01:35
17.06 18.56 00:53 25.29 26.10 01:36
17.07 18.56 00:56 25.28 26.11 01:38
17.06 18.55 00:57 25.28 26.13 01:49
17.06 18.56 00:57
17.06 18.56 00:58

Table 1: n-best list MERT’s dev-, test- and time-
performance on both datasets.

5 Experiments

Our experiments use the n-gram approach
of (Mariño et al., 2006) as implemented in the
N-coder system. This implementation produces
translation lattices in the form of weighted finite-
state acceptors, which greatly simplifies integra-
tion with our system. Our version of N-coder uses
11 model scores. We consider a small and a larger
task, both based on the data distributed for last year
WMT6 campaign: translation and language mod-
els in the former system use only the NewsCom-
mentary dataset, the larger ones use all the data al-
lowed in the constrained track. The smaller system
is tuned on the full development set (2051 sent.),
while the larger partitions it equally to optimize the
language model7 and MERT. Finally, both tasks
use the official WMT’10 test set (2525 sent.).

Our baseline is the MERT distributed in the
MOSES8 toolkit with 100-best list, Koehn’s coor-
dinate descend and 20 restart points. The lattice
and the baseline versions use the same ε = 10−5.

Typical runs of the baseline and our system are
reported respectively, in Table 1 and Tables 2, 3 for
different numbers nr of additional random direc-
tions (0, 20 and 50). For each value of nr, we have
3 columns: BLEU-performance on development
and test sets, as well as the time (hours:minutes)
taken for each iteration (includes decoding time)9.

Our experiments showed no clear gain in term
of BLEU, most probably due to the relatively

6www.statmt.org/wmt10
7See details in (Allauzen et al., 2010).
8www.statmt.org/moses
9All experiments were run on a server with 64G of memory
and two Xeon processors with 4 cores at 2.27 Ghz. Lattice
MERT is multi-threaded.

nr = 0 nr = 20
dev test ∆t dev test ∆t

15.03 16.88 00:00 15.03 16.88 00:00
16.64 17.95 00:32 16.97 18.39 01:43
16.83 18.17 01:26 17.02 18.47 02:02

17.02 18.46 01:20
17.02 18.46 01:39
17.03 18.46 02:11
17.03 18.46 01:54
17.03 18.46 02:02
17.03 18.46 02:19

Table 2: Lattice MERT’s dev-, test- and time-
performance on the small task.

nr = 0 nr = 20 nr = 50
dev test ∆t dev test ∆t dev test ∆t

20.47 20.97 20.47 20.97 20.47 20.98
23.71 24.19 01:29 20.74 21.17 02:15 20.66 21.03 04:15
25.26 24.59 01:20 25.35 25.84 02:12 25.72 26.29 04:01
25.29 25.92 01:48 25.67 26.26 03:40 25.97 26.18 04:24

25.72 26.41 04:00 26.00 26.24 05:21
26.01 26.24 07:09

Table 3: Lattice MERT’s dev-, test- and time-
performance on the larger task.

small number of features used in our decoder. Pa-
pers reporting lattice MERT to increase BLEU
performance typically use more features (e.g., 19
in (Larkin et al., 2010)). The main benefit here
seems to be speed, as convergence in lattice MERT
is obtained much faster than with the baseline,
which more than compensates for the increased
search time. Adding random search directions
seems to make a difference, but also comes at a
price, as the cost increases linearly with the num-
ber of dimensions. A reasonable balance seems to
be around 20-30 directions.

It may finally be noted that better stopping cri-
teria are needed to detect convergence, as lattice
MERT sometimes operates in regions where small
changes in λ̄ do not produce visible improvement
of dev-BLEU (e.g., for nr = 20 for the small set).
In these regions, continuing search is highly unde-
sirable as each subsequent iteration becomes more
and more time-consuming.

6 Future work

In this paper, we have provided a sound formaliza-
tion for the lattice MERT algorithm, resulting in
an efficient implementation based on the OpenFst
toolkit, and small improvements on our control test
set. Further experiments with richer feature sets
are needed to confirm the improvements brought
by this new tuning module.
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We believe that this procedure can still be opti-
mized in many ways. For instance, we found that
1/3 of the total time of the optimization procedure
is spent performing ⊕ operation. In comparison,
⊗ takes about 2.5 times less time. On average,
each invocation of ⊕ eliminated 55% of lines of
the union of its operand. This suggests that speed
can be gained from optimizing the computations
of envelopes. Another possible direction for future
work is to investigate means to speed up the short-
est distance calculation with heuristic search tech-
niques. While during the first iteration this may re-
produce the work of the decoder, this is especially
desirable to be applied to the merged lattices used
in the following iterations. This, together with the
use of better stopping criteria, may prevent the un-
controlled growth of lattices.
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