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Abstract

A Statistical Machine Translation (SMT)
system generates an n-best list of candidate
translations for each sentence. A model er-
ror occurs if the most probable translation
(1-best) generated by the SMT decoder is
not the most accurate as measured by its
similarity to the human reference transla-
tion(s) (an oracle). In this paper we inves-
tigate the parametric differences between
the 1-best and the oracle translation and at-
tempt to try and close this gap by propos-
ing two rescoring strategies to push the or-
acle up the n-best list. We observe modest
improvements in METEOR scores over the
baseline SMT system trained on French–
English Europarl corpora. We present a de-
tailed analysis of the oracle rankings to de-
termine the source of model errors, which
in turn has the potential to improve overall
system performance.

1 Introduction

Phrase-based Statistical Machine Translation (PB-
SMT) systems typically learn translation, reorder-
ing, and target-language features from a large
number of parallel sentences. Such features are
then combined in a log-linear model (Och and Ney,
2002), the coefficients of which are optimized on
an objective function measuring translation quality
such as the BLEU metric (Papineni et al., 2002),
using Minimum Error Rate Training (MERT) as
described in Och (2003).

An SMT decoder non-exhaustively explores the
exponential search space of translations for each
source sentence, scoring each hypothesis using the
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formula (Och and Ney, 2002) in (1).

P (e|f) = exp(
M∑
i=1

λihi(e, f)) (1)

The variable h denotes each of the M fea-
tures (probabilities learned from language models,
translation models, etc.) and λ denotes the associ-
ated feature weight (coefficient).

The candidate translation (in the n-best list) hav-
ing the highest decoder score is deemed to be the
best translation (1-best) according to the model.
Automatic evaluation metrics measuring similarity
to human reference translations can be modified to
generate a score on the sentence level instead of at
system level. These scores can, in turn, be used
to determine the quality or goodness of a transla-
tion. The candidate having the highest sentence-
level evaluation score is deemed to be the most ac-
curate translation (oracle).

In practice, it has been found that the n-best list
rankings can be fairly poor (i.e. low proportion
of oracles in rank 1), and the oracle translations
(the candidates closest to a reference translation as
measured by automatic evaluation metrics) occur
much lower in the list. Model errors (Germann et
al., 2004) occur when the optimum translation (1-
best) is not equivalent to the most accurate transla-
tion (oracle). The aim of this paper is to investigate
these model errors by quantifying the differences
between the 1-best and the oracle translations, and
evaluate impact of the features used in decoding
(tuned using MERT) on the positioning of oracles
in the n-best list.

After a brief overview of related approaches in
section 2, we describe in section 3 a method to
identify the oracles in the n-best lists, and our an-
alytical approach to determine whether the basic
features (used in decoding) help or hurt the oracle
rankings. Section 4 lists our experiments on mod-
ifying the feature weights to help push the oracles
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up the n-best list, followed by discussion in sec-
tion 5. We conclude with our remarks on how to
obtain the best of the available n translations from
the MT system together with avenues for further
research on incorporating our methods in main-
stream reranking paradigms.

2 Related Work

One manner to minimize the problem of low rank-
ing of higher quality translation candidates in the
n-best lists has been to extract additional features
from the n-best lists and rescore them discrimina-
tively. These reranking approaches differ mainly
in the type of features used for reranking and the
training algorithm used to determine the weights
needed to combine these features.

Och et al. (2004) employed nearly 450 syn-
tactic features to rerank 1000-best translation can-
didates using MERT optimized on BLEU. These
same features were then trained in a discrimina-
tive reranking model by replacing MERT with a
perceptron-like splitting algorithm and ordinal re-
gression with an uneven margin algorithm (Shen et
al., 2004). Unlike the aforementioned approaches,
Yamada and Muslea (2009) trained a perceptron-
based classifier on millions of features extracted
from shorter n-best lists of size 200 of the entire
training set for reranking, and computed BLEU on
a sentence level rather than corpus level as we do
here.

Hasan et al. (2007) observed that even after the
reference translations were included in the n-best
list, less than 25% of the references were actually
ranked as the best hypotheses in their reranked sys-
tem. They concluded that better reranking mod-
els were required to discriminate more accurately
amongst the n-best lists. In this paper we take a
step in that direction by trying to observe the im-
pact of existing features (used in MERT and de-
coding) on the positioning of oracle-best hypothe-
ses in the n-best lists to motivate new features for
a reranking model.

Our work is most related to Duh and Kirchhoff
(2008) in that they too devise an algorithm to re-
compute the feature weights tuned in MERT. How-
ever, they focus on iteratively training the weights
of additional reranking features to move towards a
non-linear model, using a relatively small dataset.
While most papers cited above deal with feature-
based reranking (and as such are not directly re-
lated to our proposed approach), they constitute

a firm foundation and serve as motivation for our
oracle-based study. We focus on the features used
in decoding itself and recompute their weights to
determine the role of these features in moving ora-
cles up (and down) the n-best list.

3 Methodology

The central thrust of our oracle-based training is
the study of the position of oracle translations in
the n-best lists and an analysis of sentences where
the most likely translation (1-best) does not match
with the best-quality translation (oracle). In this
section, we describe the selection procedure for
our oracles followed by an overview of the base-
line system settings used in all our experiments,
the rescoring strategies, and a filtering strategy to
increase oracle confidence.

3.1 N-best Lists and Oracles

The oracle sentence is selected by picking the
candidate translation from amongst an n-best list
closest to a given reference translation, as mea-
sured by an automatic evaluation metric. We chose
BLEU for our experiments, as despite shortcom-
ings such as those pointed out by (Callison-Burch
et al., 2006), it remains the most popular met-
ric, and is most often used in MERT for opti-
mizing the feature weights. Our rescoring exper-
iments focus heavily on these weights. Note that
BLEU as defined in (Papineni et al., 2002) is a
geometric mean of precision n-grams (usually 4),
and was not designed to work at the sentence-
level, as is our requirement for the oracle selection.
Several sentence-level implementations known as
smoothed BLEU have been proposed (Lin and
Och, 2004; Liang et al., 2006). We use the one
proposed in the latter, as shown in (2).

SBLEU =
4∑

i=1

BLEUi(cand, ref)
24−i+1

(2)

Figure 1 shows a sample of 10 candidate En-
glish translations from an n-best list for a French
sentence. The first column gives the respective
decoder cost (log-linear score) used to rank an n-
best list and the third column displays the sBLEU
(sentence-level BLEU score) for each candidate
translation. The candidate in the first position in
the figure is the 1-best according to the decoder.
The 7th-ranked sentence is most similar to the ref-
erence translation and hence awarded the highest
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Decoder Sentence sBLEU
-5.32 is there not here two weights , two measures ? 0.0188
-5.50 is there not here double standards ? 0.147
-5.66 are there not here two weights , two measures ? 0.0125
-6.06 is there not double here ? 0.025
-6.15 is there not here double ? 0.025
-6.17 is it not here two sets of standards ? 0.0677
-6.28 is there not a case of double standards here ? 0.563
-6.37 is there not here two weights and two yardsticks ? 0.0188
-6.38 is there no double here ? 0.0190
-6.82 is there not here a case of double standards ? 0.563

Figure 1: Sample from an n-best list of

translation candidates for the input sentence

N’y a-t-il pas ici deux poids, deux mesures?,

whose reference translation is: Is this not a

case of double standards?

sBLEU score. This sentence is the oracle trans-
lation for the given French sentence. Note that
there may be ties where the oracle is concerned
(the 7th and the 10th ranking sentence have the
same sBLEU score). Such issues are discussed and
dealt with in section 3.4. Oracle-best hypotheses
are a good indicator of what could be achieved if
our MT models were perfect, i.e. discriminated
properly between good and bad hypotheses.

3.2 Baseline System

The set of parallel sentences for all our exper-
iments is extracted from the WMT 20091 Eu-
roparl (Koehn, 2005) dataset for the language
pair French–English after filtering out sentences
longer than 40 words (1,050,398 sentences for
training and 2,000 sentences each for development
(test2006 dataset) and testing (test2008 dataset)).
We train a 5-gram language model using SRILM
2 with Kneser-Ney smoothing (Kneser and Ney
, 1995). We train the translation model us-
ing GIZA++ 3 for word alignment in both di-
rections followed by phrase-pair extraction using
grow-diag-final heuristic described in Koehn et al.,
(2003). The reordering model is configured with
a distance-based reordering and monotone-swap-
discontinuous orientation conditioned on both the
source and target languages with respect to previ-
ous and next phrases.

We use the Moses (Koehn et al., 2007) phrase-
based beam-search decoder, setting the stack size
to 500 and the distortion limit to 6, and switch-
ing on the n-best-list option. Thus, this baseline
model uses 15 features, namely 7 distortion fea-
tures (d1 through d7), 1 language model feature
(lm), 5 translation model features (tm1 through
tm5), 1 word penalty (w), and 1 unknown word
penalty feature. Note that the unknown word fea-

1http://www.statmt.org/wmt09/
2http://www-speech.sri.com/projects/srilm/
3http://code.google.com/p/giza-pp/

ture applies uniformly to all the candidate transla-
tions of a sentence, and is therefore dropped from
consideration in our experiments.

3.3 Recalculating Lambdas

In contrast to mainstream reranking approaches in
the literature, this work analyzes the 14 remaining
baseline features optimized with MERT and used
by the decoder to generate an initial n-best list of
candidates. No new features are added, the exist-
ing feature values are not modified, and we only
alter the feature weights used to combine the indi-
vidual features in a log-linear model. We are in-
terested in observing the influence of each of these
baseline features on the position of oracles in the
n-best lists. This is achieved by comparing a spe-
cific feature value for a 1-best translation against
its oracle. These findings are then used in a novel
way to recompute the lambdas using one of the fol-
lowing two formulae.

• RESCsum: For each of the 14 features, the
new weight factors in the difference between
the mean feature value of oracles and the
mean feature value of the 1-bests.

λnew = λold + (f̄oracle − f̄1best) (3)

• RESCprod: For each of the 14 features, the
new weight factors in the ratio of the mean
feature value of oracles to the mean feature
value of the 1-bests.

λnew = λold ∗ f̄oracle

f̄1best
(4)

Both formulae aim to close the gap between
feature values of oracle translations and those of
the baseline 1-best translations. The recalculated
weights are then used to rescore the n-best lists, as
described in section 4.
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Accordingly, our experiments are essentially fo-
cused on recomputing the original set of feature
weights rather than the feature values. We reiterate
that the huge mismatch between oracles and 1-best
translations implies that MERT is sub-optimal (He
and Way , 2009) despite being tuned on translation
quality measures such as (document-level) BLEU.
In recomputing weights using oracle translations,
the system tries to learn translation hypotheses
which are closest to the reference. These compu-
tations and rescorings are learned on the develop-
ment set (devset), and then carried over to rescor-
ing the n-best lists of the testset (blind dataset).

3.4 Oracle Filtering

A system composed of all the oracle hypotheses
serves as an upper bound on any improvement due
to reranking. However, one must carefully eval-
uate these so-called oracle translations. There is
inherent noise due to:

• the existence of a large population of identical
surface-level hypotheses (but different phrase
segmentations) in the n-best list;

• the tendency of BLEU and other metrics to
award the same score to sentences differing
in the order or lexical choice of one or two
words only.

Revisiting the n-best list given in Figure 1, note
that both the 7th and the 10th sentence as well as
the 1st and 8th sentence were awarded the same
sBLEU score. There is no way to distinguish be-
tween the two as far as the oracle is concerned.
Furthermore, note that this sample was carefully
selected to show the variety of the n-best list. That
is, in reality, approximately 20 hypotheses (iden-
tical to the 1-best hypothesis at the surface-level)
occur between the 1st and the 2nd sentence in the
figure.

N-BEST DIFF DIVERSE ACCEPTED
100 62.10% 48.55% 27.10%

500 55.50% 57.75% 30.50%

1000 54.05% 61.40% 32.80%

Table 1: Statistics of % of oracle sentences consid-
ered for rescoring experiments

Since the underlying strength of all our experi-
ments relies primarily on the goodness of oracles,

we explore a combination of two filtering strate-
gies to increase the confidence in oracles, namely
DIFFERENCE and DIVERSITY.

The DIFFERENCE filter computes the difference
in the sentence-level BLEU scores of the hypothe-
ses at rank 1 and rank 2. Note that it is often
the case that more than one sentence occupies the
same rank. Thus when we compute the difference
between rank 1 and rank 2, these are in actuality a
cluster of sentences having the same scores. The
purpose of this filter is to ensure that oracles (rank
1) are “different enough” compared to the rest of
the sentences (rank 2 and beyond).

The DIVERSITY filter aims at ensuring that the
specific sentence has a wide variety of hypothe-
ses leading to a distinguishing oracle (selected us-
ing the previous filter). This is computed from the
proportion of n-best translations represented by the
sentences in rank 1 and rank 2 clusters (based on
how many sentences are present in rank 1 or 2).
The motivation behind this filter is to drop sen-
tences whose n-best lists contain no more than 2
or 3 clusters. In such cases, all the hypotheses
are very similar to each other, when scored by the
sBLEU metric. We used both filters in tandem be-
cause this ensured that the sentences selected in
our final list had an oracle which was significantly
different from the rest of the n-best list, and the n-
best list itself had a good variety of hypotheses to
choose from.

Thresholds for both filters were empirically de-
termined to approximate the average of their re-
spective mean and median values. Sentences
which possessed a value above both thresholds
constituted the set of true oracles used to recal-
culate the lambdas for our rescoring experiments.
Table 1 shows the number of sentences passing
the Difference filter (column 2), the Diversity filter
(column 3) and both (column 4: the accepted set
of true oracles). Experiments were carried out for
3 different sizes of n-best lists. It is observed that
all three sets follow the same trend.

4 Experimental Analysis

Our analyses of the differences between the 1-best
and the oracle translations follows. We perform
all our experiments on 3 different n-best list sizes–
100, 500, and 1000.
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(a) DEVSET (b) TESTSET
RANGE 100-BEST 500-BEST 1000-BEST 100-BEST 500-BEST 1000-BEST
Rank 1 725 402 308 725 415 324
Rank 2 to 5 194 87 68 176 95 69
Rank 6 to 10 121 52 37 125 67 53
Rank 11 to N 960 1459 1587 974 1423 1554

Table 2: Number of times an oracle occurs in a particular range of ranks in the n-best lists of (a)DEVSET

and (b)TESTSET

4.1 Distribution of Oracles

Before proceeding with our rescoring experiments,
it is important to determine how the oracle trans-
lations are distributed across the space of the base-
line systems. Table 2 gives a summary of where (at
what rank) each oracle candidate is placed in the
n-best list of the development and test sets of 2000
sentences each. It is evident that with increasing n-
best list size, the number of oracles in the top ranks
decreases. This is alarming as this increases the
complexity of our problem with increasing n-best
list sizes. This is another reason why we filter or-
acles, as described in the previous section. Oracle
filtering clearly shows that not all sentences have a
good quality oracle. This balances the tendency of
high-ranking translations to be placed lower in the
list.

4.2 System-level Evaluation

We extract the 14 baseline features for sentences
from the devset of 2000 sentences using the
test2006 dataset selected via oracle filtering men-
tioned previously. For each of these sentences, we
compare the 1-best and oracle-best features and
compute the mean value per feature. This is then
used to compute two new sets of weights using the
RESCsum and RESCprod rescoring strategies, de-
scribed in the previous section. We implemented
our rescoring strategies on the devset and then ap-
plied the 2 new sets of weights computed on the
testset of n-bests. Evaluation is done at a sys-
tem level for both the development and testsets us-
ing BLEU (Papineni et al., 2002) and METEOR
(Banerjee and Lavie, 2005). We also evaluate how
many sentences contain the oracle candidates in
the top position (rank 1). This is shown in Table
3. The last row in each subsection labeled OR-
ACLE gives the upper bound on each system, i.e.
performance if our algorithm was perfect and all
the oracles were placed at position 1.

We also perform a Top5-BLEU oracle evalua-
tion (shown in Table 4). The difference between
the evaluations in Tables 3 and 4 is that the lat-

ter evaluates on a list of top-5 hypotheses for each
sentence instead of the usual comparison of a sin-
gle translation hypothesis with the reference trans-
lation. The sentences used in Table 3 are present
in the top 1 position of sentences used in Table
4. This means that when BLEU and METEOR
scores are evaluated at system-level, for each sen-
tence, the translation (among 5) with the highest
sBLEU score is selected as the translation for that
sentence. This is similar to the post-editing sce-
nario where human translators are shown n trans-
lations and are asked to either select the best or
rank them. Some studies have used as many as 10
translations together (Koehn and Haddow, 2009).
We only use 5 in our evaluation.

We observe that overall the RESCsum system
shows a modest improvement over the baseline in
terms of METEOR scores, but not BLEU scores.
This trend is consistent across all the 3 n-best list
sizes. We speculate that perhaps the reliance of
METEOR on both precision and recall as opposed
to precision-based BLEU is a factor for this dis-
agreement between metrics. We also observe that
the degree of improvement in the BLEU and ME-
TEOR scores of each system from top-1 (Table 3)
to top-5 (Table 4) is more obvious in the rescored
systems RESCsum and RESCprod compared to the
baseline. This gives weight to our observation that
the oracles have moved up, just not to the top po-
sition.

4.3 Per feature Comparison

Figure 2 analyses which features favour how many
oracles over 1-best translations. The figures are
in percentages. We only give values for 1000-best
lists, because the results are consistent across the
various n-best list sizes.

The oracles seems to be favoured by d2 (mono-
tone orientation) and tm5 (phrase penalty) fea-
tures. Note that this selection is arbitrary and
changes when the dataset changes. This means
that if we use a different DEVSET, a different set
of features will favour the oracle rankings. Further
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(a) DEVSET (b) TESTSET
SYSTEM BLEU MET ORC BLEU MET ORC

rescored on 100-best list
BASE 32.17 61.34 36.25 32.47 61.80 36.25
RESCsum 31.99 61.45 36.55 32.33 61.75 35.65
RESCprod 32.13 61.35 36.30 32.46 61.78 35.60
ORACLE 34.90 63.65 100 35.26 64.01 100

rescored on 500-best list
BASE 32.17 61.34 20.10 32.47 61.80 20.75
RESCsum 31.56 61.62 20.15 31.99 62.00 19.65
RESCprod 32.08 61.30 20.15 32.43 61.75 20.65
ORACLE 36.45 64.70 100 36.80 65.12 100

rescored on 1000-best list
BASE 32.17 61.34 15.4 32.47 61.80 16.2
RESCsum 31.45 61.48 15.7 31.84 61.87 15.45
RESCprod 32.04 61.26 15.6 32.41 61.73 16.2
ORACLE 37.05 65.14 100 37.50 65.65 100

Table 3: Summary of the Fr–En translation results on WMT (a)test2006 (devset) and (b)test2008 (testset)
data, using BLEU and METEOR metrics. The column labeled ORC refers to the % of sentences selected
as the oracle w.r.t. BLEU metric.

(a) DEVSET (b) TESTSET
SYSTEM BLEU MET ORC BLEU MET ORC

rescored on 100-best list
BASE5 32.83 61.95 45.95 33.17 62.34 45.05
RESCsum5 32.72 62.04 45.75 33.08 62.40 45.65
RESCprod5 32.78 61.92 45.80 33.16 62.34 45.00
ORACLE 34.90 63.65 100 35.26 64.01 100

rescored on 500-best list
BASE5 32.83 61.95 24.45 33.17 62.34 25.50
RESCsum5 32.49 62.31 27.20 32.95 62.71 27.90
RESCprod5 32.74 61.89 24.75 33.12 62.30 25.80
ORACLE 36.45 64.70 100 36.80 65.12 100

rescored on 1000-best list
BASE5 32.83 61.95 18.80 33.17 62.34 19.65
RESCsum5 32.45 62.27 20.90 32.85 62.68 21.85
RESCprod5 32.70 61.88 18.60 33.13 62.30 19.85
ORACLE 37.05 65.14 100 37.50 65.65 100

Table 4: Top5 Eval: Summary of the Fr–En translation results on WMT (a)test2006 (devset) and
(b)test2008 (testset) data, using BLEU and METEOR metrics on best of top 5 hypotheses. The col-
umn labeled ORC refers to the % of sentences selected as the oracle w.r.t. BLEU metric.

experimentation is required to determine whether
there is a pattern to this. Nevertheless, this com-
putation provides some clue as to how the baseline
feature weights change during rescoring.

4.4 Movement in Rankings

Table 5 shows the number (n) of sentences (out of
2000) which were moved up (↑), moved up to a
position in the top-5, moved down (↓), or moved
down from a position in the top-5, and the average
number of positions moved (p) for both our rescor-
ing strategies. We observe that RESCsum is more
effective in promoting oracles than RESCprod. Per-
haps it is no surprise that the RESCsum formula
resembles the highly effective perceptron formula
(without the iterative loop) of Liang et al., (2006).
The similarity between the number of positions

moved up and down explains why our rescoring
strategies fail to record a more marked improve-
ment at the system level.

5 Discussion and Future Work

5.1 Impact of MERT features on oracles

We try to re-estimate the weights of the baseline
features and observe the impact of them on oracle
reranking. While a substantial amount of oracles
are moved to the top-5 ranks (not necessarily to
the top-1), it does not automatically imply a better
BLEU score. However, there is up to a 0.5% rela-
tive improvement in the METEOR scores. Perhaps
this implies low quality oracles for at least some of
the sentences. Note that although we filter away
sentences before recomputing lambdas, we imple-
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(a) DEVSET (b) TESTSET
SYS n↑ p↑ n5 ↑ n↓ p↓ n5 ↓ n↑ p↑ n5 ↑ n↓ p↓ n5 ↓

rescored on 100-best list
Rsum 637 24 267 776 23 278 627 24 260 794 22 278
Rprod 590 10 94 534 11 89 559 10 93 587 12 93

rescored on 500-best list
Rsum 840 122 212 875 121 185 869 129 277 850 111 199
Rprod 856 54 75 722 74 64 831 55 84 739 69 80

rescored on 1000-best list
Rsum 908 237 180 878 248 147 933 247 198 870 215 176
Rprod 918 114 63 758 163 51 895 117 73 785 148 66

Table 5: Movement of oracles in n-bests of (a) development set and (b) test set after rescoring the baseline
system with weights learned from RESCsum and RESCprod : how many & how much?

Figure 2: Results for a 1000-best list of filtered or-
acles: For how many sentences (% given on the X-
axis) does a baseline feature (given on the Y-axis)
favour the oracle translation (black bar) over the
1-best translation (light grey bar). The dark grey
bar (third band in each bar) denotes percentage of
sentences having the same value for its oracle and
1-best hypothesis

.

ment our rescoring strategies on the entire set (i.e.
no filtering). Therefore the devset and testset may
contain noise which makes it difficult for any im-
provements to be seen. Overall, there are certain
baseline features (see section 4.3), which favour
oracles and help in pushing them up the n-best list.

Duh and Kirchhoff, (2008) conclude that log-
linear models often underfit the training data in
MT reranking and that is the main reason for the
discrepancy between oracle-best hypothesis and
reranked hypothesis of a system. We agree with
this statement (cf. figure 2). However, we believe
that there is scope for improvement on the baseline
features (used in decoding) before extracting more
complex features for reranking.

5.2 Role of oracles in boosting translation
accuracy

We believe oracle-based training to be a viable
method. In future work, we intend to explore more
features (especially those used in the reranking lit-
erature such as Och et al., (2004)) to help promote
oracles. We believe that our oracle-based method
can help select better features for reranking. We
also plan to use a host of reranking features (Shen
et al., 2004) and couple them with our RESCsum

rescoring strategy. We will also generate a feature
based on our rescoring formula and use it as an ad-
ditional feature in discriminative reranking frame-
works. We have used here sentence-level BLEU as
opposed to system-level BLEU as used in MERT
for oracle identification. We plan to use metrics
better suited for sentence-level like TER (Snover
et al., 2006).

6 Conclusion

We analyze the relative position of oracle transla-
tions in the n-best list of translation hypotheses to
help reranking in a PB-SMT system. We propose
two new rescoring strategies. In general, the im-
provements provided by reranking the n-best lists
is dependent on the size of n and the type of trans-
lations produced in the n-best list. We see an im-
provement in METEOR scores. To conclude, ora-
cles have much to contribute to the ranking of bet-
ter translations and reducing the model errors.
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