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Abstract

In this paper, we propose novel exten-
sions of hierarchical phrase-based systems
with a discriminative lexicalized reorder-
ing model. We compare different fea-
ture sets for the discriminative reorder-
ing model and investigate combinations
with three types of non-lexicalized re-
ordering rules which are added to the hi-
erarchical grammar in order to allow for
more reordering flexibility during decod-
ing. All extensions are evaluated in stan-
dard hierarchical setups as well as in se-
tups where the hierarchical recursion depth
is restricted. We achieve improvements
of up to +1.2 %BLEU on a large-scale
Chinese→English translation task.

1 Introduction

Lexicalized reordering models are a common com-
ponent of standard phrase-based machine trans-
lation systems. In hierarchical phrase-based
machine translation, reordering is modeled im-
plicitely as part of the translation model. Hierar-
chical phrase-based decoders conduct phrase re-
orderings based on a one-to-one relation between
the non-terminals on source and target side within
hierarchical translation rules. Non-terminals on
source and target side are linked if they result from
the same valid phrase being cut out at their posi-
tion during phrase extraction. Usually neither ex-
plicit lexicalized reordering models nor additional
mechanisms to perform reorderings that do not re-
sult from the application of hierarchical rules are
integrated into hierarchical decoders.
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In this work, we augment the grammar with
more flexible reordering mechanisms based on
additional non-lexicalized reordering rules and
integrate a discriminative lexicalized reordering
model. This kind of model has been shown to
perform well when being added to the log-linear
model combination of standard phrase-based sys-
tems. We present an extension of a hierarchical
decoder with the discriminative reordering model
and evaluate it in setups with the usual hierarchical
grammar as well as in setups with a shallow hier-
archical grammar. The shallow grammar restricts
the depth of the hierarchical recursion. Two dif-
ferent feature sets for the discriminative reorder-
ing model are examined. We report experimental
results on the large-scale NIST Chinese→English
translation task. The best translation quality is
achieved with combinations of the extensions with
additional reordering rules and with the discrim-
inative reordering model. The overall improve-
ment over the respective baseline system is +1.2
%BLEU / -0.6 %TER absolute in the standard setup
and +1.2 %BLEU / -0.5 %TER absolute in the shal-
low setup.

2 Related Work

Hierarchical phrase-based translation was pro-
posed by Chiang (2005). Iglesias et al. (2009) and
in a later journal publication Gispert et al. (2010)
present a way to limit the recursion depth for hi-
erarchical rules by means of a modification to the
hierarchical grammar. Their work is of interest to
us as a limitation of the recursion depth affects the
search space and in particular the reordering capa-
bilities of the system. It is therefore basically an-
tipodal to some of the techniques presented in this
paper, which allow for even more flexibility during
the search process by extending the grammar with
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specific non-lexicalized reordering rules. Combi-
nations of both techniques are possible, though,
and in fact Iglesias et al. (2009) also investigate
a maximum phrase jump of 1 (MJ1) reordering
model. In the MJ1 experiment, they include a swap
rule, but simultaneously withdraw all hierarchical
phrases.

Vilar et al. (2010) extend a hierarchical phrase-
based system with non-lexicalized rules that per-
mit jumps across whole blocks of symbols and
report improvements on a German→English Eu-
roparl task. Their technique is inspired by conven-
tional phrase-based IBM-style reordering (Zens et
al., 2004). In an Arabic→English NIST setup,
Huck et al. (2011) try a similar reordering exten-
sion, but conclude that it is less helpful for their
task. Other groups attempt to attain superior mod-
eling of reordering effects in their hierarchical sys-
tems by examining syntactic annotation, e.g. Gao
et al. (2011).

He et al. (2010a) combine an additional BTG-
style swap rule with a maximum entropy based
lexicalized reordering model and achieve improve-
ments on the Chinese→English NIST task. Their
approach is comparable to ours, but their reorder-
ing model requires the training of different classi-
fiers for different rule patterns (He et al., 2010b).
Extracting training instances separately for several
patterns of hierarchical rules yields a dependence
on the phrase segmentation. In the more general
approach we propose, the definition of the fea-
tures is independent of the phrase boundaries on
the source side.

In standard phrase-based systems, lexicalized
reordering models are a commonly included com-
ponent. A widely used variant is the orientation
model as implemented in the Moses toolkit (Till-
mann, 2004; Koehn et al., 2007) which distin-
guishes monotone, swap, and discontinuous phrase
orientations. Galley and Manning (2008) suggest
a refinement of the same model. A discrimina-
tively trained lexicalized reordering model as the
one employed by us has been exmanined in a stan-
dard phrase-based setting by Zens and Ney (2006).

3 Shallow-1 Grammar

Gispert et al. (2010) propose a limitation of the re-
cursion depth for hierarchical rules with shallow-n
grammars. The main benefit of the limitation is a
gain in decoding efficiency. Moreover, the mod-
ification of the grammar to a shallow version re-

stricts the search space of the decoder and may
be convenient to prevent overgeneration. We will
investigate reordering extensions to both standard
hierarchical systems and systems with a shallow-1
grammar, i.e. a grammar which limits the depth of
the hierarchical recursion to one. We refer to this
kind of rule set and the parses produced with such
a grammar as shallow, in contrast to the standard
rule set and parses which we denote as deep.

In a shallow-1 grammar, the generic non-
terminal X of the standard hierarchical approach
is replaced by two distinct non-terminals XH and
XP . By changing the left-hand sides of the rules,
lexical phrases are allowed to be derived from XP
only, hierarchical phrases from XH only. On all
right-hand sides of hierarchical rules, the X is re-
placed by XP . Gaps within hierarchical phrases
can thus be filled with contiguous lexical phrases
only, not with hierarchical phrases. The initial rule
is substituted with

S → 〈XP∼0,XP∼0〉
S → 〈XH∼0,XH∼0〉 ,

(1)

and the glue rule is substituted with

S → 〈S∼0XP∼1, S∼0XP∼1〉
S → 〈S∼0XH∼1, S∼0XH∼1〉 .

(2)

4 Reordering Rules

In this section we describe three types of reorder-
ing extensions to the hierarchical grammar. All
of them add specific non-lexicalized reordering
rules which facilitate a more flexible arrangement
of phrases in the hypotheses. We first present a
simple swap rule extension (Section 4.1), then we
suggest two different extensions with several ad-
ditional rules that allow for more complex jumps
(Section 4.2) or very constrained jumps (Sec-
tion 4.3). Furthermore, variants for deep and shal-
low grammars are proposed.

4.1 Swap Rule
4.1.1 Swap Rule for Deep Grammars

In a deep grammar, we can bring in more re-
ordering capabilities by adding a single swap rule

X → 〈X∼0X∼1,X∼1X∼0〉 (3)

supplementary to the standard initial rule and glue
rule. The swap rule allows adjacent phrases to be
transposed.
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An alternative with a comparable effect would
be to remove the standard glue rule and to add
two rules instead, one of them being as in Equa-
tion (3) and the other a monotonic concatenation
rule for the non-terminal X which is symmetric to
the swap rule. The latter rule acts as a replace-
ment for the glue rule. This is the approach He et
al. (2010a) take. Our approach to keep the stan-
dard glue rule has however one advantage: We are
still able to apply a maximum length constraint to
X . The maximum length constraint restricts the
length of the yield of a non-terminal. The lexical
span covered by X is typically restricted to 10 to
make decoding less demanding in terms of com-
putational resources. We would still be able to add
a monotonic concatenation rule to our grammar in
addition to the standard glue rule. Its benefit is
that it entails more symmetry in the grammar. In
our variant, sub-derivations which result from ap-
plications of the swap rule can fill the gap within
hierarchical phrases, while no mechanism to carry
out the same in a monotonic manner is available.
In the deep grammar, we refrain from adding a
monotonic concatenation rule as recursive embed-
dings are possible anyway. We nevertheless tried
the variant with the additional monotonic concate-
nation rule in a supplementary experiment (cf. Sec-
tion 6.2.2) to make sure that our assumption that
this rule is dispensable is correct. We were not
able to obtain improvements over the setup with
the swap rule only.

4.1.2 Swap Rule for Shallow Grammars
In a shallow grammar, several directions of in-

tegrating swaps are possible. We decided to add a
swap rule and a monotonic concatenation rule

XP → 〈XP∼0XP∼1,XP∼1XP∼0〉
XP → 〈XP∼0XP∼1,XP∼0XP∼1〉

(4)

supplementary to the standard shallow initial rules
and glue rules. The swap rule allows adjacent lex-
ical phrases to be transposed, but not hierarchi-
cal phrases. Here, we could as well have used
XH as the left-hand side of the rules. As we
chose XP and thus allow for embedding of sub-
derivations resulting from applications of the swap
rule into hierarchical phrases, which is not pos-
sible with sub-derivations resulting from applica-
tions of hierarchical rules in a shallow grammar,
we also include the monotonic concatenation rule
for symmetry reasons. A constraint can again be

applied to the number of terminals spanned by both
XP and XH . With a length constraint, building
sub-derivations of arbitrary length by applying the
rules from Equation (4) is impossible.

4.2 Jump Rules, Variant 1

Instead of employing a swap rule that transposes
adjacent phrases, we can adopt more complex ex-
tensions to the grammar that implement jumps
across blocks of symbols. Our first jump rules vari-
ant is inspired by Vilar et al. (2010), but is a gen-
eralization that facilitates an arbitrary number of
blocks per sentence to be jumped across.

4.2.1 Jump Rules for Deep Grammars

In a deep grammar, to enable block jumps, we
include the rules

S → 〈B∼0X∼1, X∼1B∼0〉 †

S → 〈S∼0B∼1X∼2, S∼0X∼2B∼1〉 †

B → 〈X∼0, X∼0〉
B → 〈B∼0X∼1, B∼0X∼1〉 ‡

(5)

in addition to the standard initial rule and glue rule.
The rules marked with † are jump rules that put
jumps across blocks (B ) on source side into ef-
fect. The rules with B on their left-hand side en-
able blocks that are skipped by the jump rules to be
translated, but without further jumps. Reordering
within these windows is just possible with hierar-
chical rules. Note that our rule set keeps the con-
venient property of the standard hierarchical gram-
mar that the initial symbol S needs to be expanded
in the leftmost cells of the CYK chart only.

A binary jump feature for the two jump rules (†)
may be added to the log-linear model combination
of the decoder, as well as a binary feature that fires
for the rule that acts analogous to the glue rule,
but within blocks that is being jumped across (‡).
A maximum jump width can be established by ap-
plying a length constraint to the non-terminal B . A
distance-based distortion model can also easily be
implemented by computing the span width of the
non-terminal B on the right-hand side of the jump
rules at each application of one of them.

4.2.2 Jump Rules for Shallow Grammars

In a shallow grammar, block jumps are realized
in the same way as in a deep one, but the number
of rules that are required is doubled.
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We include

S → 〈B∼0XP∼1, XP∼1B∼0〉 †

S → 〈B∼0XH∼1, XH∼1B∼0〉 †

S → 〈S∼0B∼1XP∼2, S∼0XP∼2B∼1〉 †

S → 〈S∼0B∼1XH∼2, S∼0XH∼2B∼1〉 †

B → 〈XP∼0, XP∼0〉
B → 〈XH∼0, XH∼0〉
B → 〈B∼0XP∼1, B∼0XP∼1〉 ‡

B → 〈B∼0XH∼1, B∼0XH∼1〉 ‡

(6)

in addition to the standard shallow initial rules and
glue rules.

4.3 Jump Rules, Variant 2
As a second jump rules variant, we try an approach
that follows (Huck et al., 2011) and allows for very
constrained reorderings. At most one contiguous
block per sentence can be jumped across in this
variant.

In a deep grammar, to enable constrained block
jumps with at most one jump per sentence, we re-
place the initial and glue rule by the rules given in
Equation (7):

S → 〈M∼0,M∼0〉
S → 〈S∼0M∼1, S∼0M∼1〉 ‡

S → 〈B∼0M∼1,M∼1B∼0〉 †

M → 〈X∼0, X∼0〉
M → 〈M∼0X∼1,M∼0X∼1〉 ‡

B → 〈X∼0, X∼0〉
B → 〈B∼0X∼1, B∼0X∼1〉 ‡

(7)

In these rules, the M non-terminal represents a
block that will be translated in a monotonic way,
and the B is a “back jump”. We omit the exposi-
tion for shallow grammars as deducing the shallow
from the deep version of the rules is straightfor-
ward from our previous explanations.

We add a binary feature that fires for the rules
that act analogous to the glue rule (‡). We further
conform to the approach of Huck et al. (2011) by
additionally including a distance-based distortion
model (dist. feature) that is computed during de-
coding whenever the back jump rule (†) is applied.

5 Discriminative Reordering Model

Our discriminative reordering extensions for hi-
erarchical phrase-based machine translation sys-
tems integrate a discriminative reordering model

e1

e2

e3

f1 f2 f3

Figure 1: Illustration of an embedding of a lexical
phrase (light) in a hierarchical phrase (dark), with
orientations scored with the neighboring blocks.

that tries to predict the orientation of neighboring
blocks. We use two orientation classes left and
right, in the same manner as described by Zens
and Ney (2006). The reordering model is applied
at the phrase boundaries only, where words which
are adjacent to gaps within hierarchical phrases are
defined as boundary words as well. The orienta-
tion probability is modeled in a maximum entropy
framework. We investigate two models that differ
in the set of feature functions:

discrim. RO (src word) The feature set of this
model consists of binary features based on the
source word at the current source position.

discrim. RO (src+tgt word+class) The feature
set of this model consists of binary features
based on the source word and word class
at the current source position and the target
word and word class at the current target
position.

Using features that depend on word classes pro-
vides generalization capabilities. We employ 100
automatically learned word classes which are ob-
tained with the mkcls tool on both source and tar-
get side.1 The reordering model is trained with the
Generalized Iterative Scaling (GIS) algorithm with
the maximum class posterior probability as train-
ing criterion, and it is smoothed with a gaussian
prior.

For each rule application during hierarchical
decoding, we apply the reordering model at all

1mkcls is distributed along with the GIZA++ package:
http://code.google.com/p/giza-pp/
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boundaries where lexical blocks are placed side
by side within the partial hypothesis. For this
purpose, we need to access neighboring bound-
ary words and their aligned source words and
source positions. Note that, as hierarchical phrases
are involved, several block joinings may take
place at once during a single rule application.
Figure 1 gives an illustration with an embed-
ding of a lexical phrase (light) in a hierarchi-
cal phrase (dark). The gap in the hierarchical
phrase 〈f1f2X∼0, e1X∼0e3〉 is filled with the lex-
ical phrase 〈f3, e2〉. The discriminative reordering
model scores the orientation of the lexical phrase
with regard to the neighboring block of the hier-
archical phrase which precedes it within the target
sequence (here: right orientation), and the block of
the hierarchical phrase which succeeds the lexical
phrase with regard to the latter (here: left orienta-
tion).

The way we interpret reordering in hierarchi-
cal phrase-based translation keeps our model sim-
ple. We are basically able to treat the orientation
of contiguous lexical blocks in almost exactly the
same way as the orientation of phrases in stan-
dard phrase-based translation. We avoid the usage
of multiple reordering models for different source
and target patterns of rules that is done by He et al.
(2010b).

6 Experiments

We present empirical results obtained with the ad-
ditional swap rule, the jump rules and the discrim-
inative reordering model on the Chinese→English
2008 NIST task.2

6.1 Experimental Setup

We employ the freely available hierarchical trans-
lation toolkit Jane (Vilar et al., 2010) to set up our
systems. In our experiments, we use the cube prun-
ing algorithm (Huang and Chiang, 2007) to carry
out the search. A maximum length constraint of 10
is applied to all non-terminals but the initial sym-
bol S . We work with a parallel training corpus of
3.0M Chinese-English sentence pairs (77.5M Chi-
nese / 81.0M English running words). Word align-
ments are created by aligning the data in both di-
rections with GIZA++ and symmetrizing the two
trained alignments (Och and Ney, 2003). The lan-
guage model is a 4-gram with modified Kneser-

2http://www.itl.nist.gov/iad/mig/tests/
mt/2008/

Ney smoothing which was trained with the SRILM
toolkit (Stolcke, 2002).

Model weights are optimized against BLEU with
Minimum Error Rate Training on 100-best lists.
We employ MT06 as development set to tune the
model weights, MT08 is used as unseen test set.
The performance of the systems is evaluated using
the two metrics BLEU and TER. The results on the
test set are checked for statistical significance over
the baseline. Confidence intervals have been com-
puted using bootstrapping for BLEU and Cochran’s
approximate ratio variance for TER (Leusch and
Ney, 2009).

6.2 Experimental Results

The empirical evaluation of our reordering exten-
sions is presented in Table 1. We report translation
results on both the development and the test cor-
pus. The figures with deep and with shallow rules
are set side by side in separate columns to facilitate
a direct comparison between them. All the setups
given in separate rows exist in a deep and a shallow
variant.

The shallow baseline is a bit worse than the
deep baseline. Adding discriminative reorder-
ing models to the baselines without additional re-
ordering rules results in an improvement of up to
+0.6 %BLEU / -0.6 %TER (in the deep setup).
The src+tgt word+class feature set for the dis-
criminative reordering model altogether seems to
perform slightly better than the src word feature
set. Adding reordering rules in isolation can also
improve the systems, in particular in the deep
setup with the swap rule or the second jump
rules variant. However, extensions with both re-
ordering rules and discriminative lexicalized re-
ordering model provide the best results, e.g. +1.0
%BLEU / -0.5 %TER with the system with deep
grammar, swap rule, binary swap feature and dis-
crim. RO (src+tgt word+class) and +1.2 %BLEU /
-0.5 %TER with the system with shallow gram-
mar, swap rule, binary swap feature and discrim.
RO (src+tgt word+class). The second jump rules
variant performs particularly well in combination
with a deep grammar and the discrim. RO (src+tgt
word+class) model, with an improvement of +1.2
%BLEU / -0.6 %TER absolute over the deep base-
line. This system provides the best translation
quality of all the setups investigated in this paper.
With a shallow grammar, the combinations of the
discrim. RO with the swap rule outperforms both
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MT06 (Dev) MT08 (Test)
deep shallow deep shallow

BLEU TER BLEU TER BLEU TER BLEU TER
[%] [%] [%] [%] [%] [%] [%] [%]

Baseline 32.6 61.2 31.4 61.8 25.2 66.6 24.9 66.6
+ discrim. RO (src word) 32.9 61.3 31.6 61.8 25.4 66.3 25.2 66.6
+ discrim. RO (src+tgt word+class) 33.0 61.3 31.6 61.6 25.8 66.0 25.1 66.3
+ swap rule 32.8 61.7 31.8 62.1 25.8 66.6 25.0 67.0

+ discrim. RO (src word) 33.0 61.2 32.5 61.4 25.8 66.1 26.0 66.2
+ discrim. RO (src+tgt word+class) 33.1 61.2 32.6 61.4 26.0 66.1 26.1 66.3
+ binary swap feature 33.2 61.0 32.1 61.8 25.9 66.2 25.7 66.5

+ discrim. RO (src word) 33.1 61.3 32.4 61.4 26.0 66.1 26.1 66.3
+ discrim. RO (src+tgt word+class) 33.2 61.3 32.9 61.0 26.2 66.1 26.1 66.1

+ jump rules, variant 1 32.9 61.3 32.1 62.4 25.6 66.4 25.1 67.5
+ discrim. RO (src word) 32.9 61.1 31.9 62.0 25.8 66.0 25.1 66.9
+ discrim. RO (src+tgt word+class) 33.2 61.0 32.1 62.0 25.9 66.1 25.6 66.5
+ binary jump feature 32.8 61.3 31.9 61.7 25.7 66.3 25.2 66.7

+ discrim. RO (src word) 32.8 61.3 32.2 61.9 25.8 66.1 25.2 66.7
+ discrim. RO (src+tgt word+class) 33.1 61.2 32.3 62.0 26.0 66.1 25.5 66.7

+ jump rules, variant 2 + dist. feature 33.0 61.5 31.5 62.0 25.8 66.5 25.3 66.3
+ discrim. RO (src word) 33.2 60.8 31.6 61.9 26.2 65.8 25.2 66.4
+ discrim. RO (src+tgt word+class) 33.2 61.0 31.7 62.1 26.4 66.0 25.5 66.3

Table 1: Experimental results for the NIST Chinese→English translation task (truecase). On the test set,
bold font indicates results that are significantly better than the baseline (p < .1).

jump rules variants.
We proceed with discussing some supplemen-

tary results obtained with the deep grammar that
are not included in Table 1. The results for Sec-
tions 6.2.2 through 6.2.4 can be found in Table 2.

6.2.1 Dropping Length Constraints
In order to find out if we lose performance by

applying the maximum length constraint of 10 to
all non-terminals but the initial symbol S during
decoding, we optimized systems with no length
constraints. When we drop the length constraint in
the baseline setup, we observe no improvement on
the dev set and +0.3 %BLEU improvement on the
test set. Dropping the length constraint in the sys-
tem with deep grammar, swap rule, discrim. RO
(src+tgt word+class) and binary jump feature re-
sults in +0.2 %BLEU / -0.2 %TER on the dev set,
but no improvement on the test set.

6.2.2 Monotonic Concatenation Rule
In this experiment, we add a monotonic concate-

nation rule

X → 〈X∼0X∼1,X∼0X∼1〉 (8)

as discussed in Section 4.1.1 to the system with
deep grammar, swap rule, binary swap feature and

discrim. RO (src+tgt word+class). As we pre-
sumed, the monotonic concatenation rule does not
improve the performance of our system.

6.2.3 Distance-Based Distortion Feature

Our second jump rules variant includes a
distance-based distortion feature (dist. feature). To
make sure that the good performance of the jump
rules variant 2 extension compared to jump rules
variant 1 is not simply due to this feature, we also
tested it in the best setup with our first jump rules
variant. Adding the distance-based distortion fea-
ture does not yield an improvement over that setup.
We tried such a feature with the swap rule as well
by just computing the length of the yield of the
left-hand side non-terminal at each swap rule ap-
plication. Here again, adding the distance-based
distortion feature does not yield an improvement.

6.2.4 Discriminative Reordering for
Reordering Rules Only

Instead of applying the discriminative reorder-
ing model at all rule applications, the model can
as well be used to score the orientation of blocks
only if they are placed side by side within the tar-
get sequence by selected rules. We conducted ex-
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deep
MT06 (Dev) MT08 (Test)
BLEU TER BLEU TER
[%] [%] [%] [%]

Baseline 32.6 61.2 25.2 66.6
+ no length contraints 32.6 61.5 25.5 66.6
+ swap rule + bin. swap feat. + discrim. RO (src+tgt word+class) 33.2 61.3 26.2 66.1

+ no length contraints 33.4 61.1 26.2 66.3
+ monotonic concatenation rule 33.2 61.6 26.0 66.4
+ dist. feature 33.4 61.4 26.2 66.2
+ discrim. RO scoring restricted to swap rule 33.1 61.4 26.0 66.4

+ jump rules 1 + bin. jump feat. + discrim. RO (src+tgt word+class) 33.1 61.2 26.0 66.1
+ dist. feature 33.2 61.1 25.9 66.1
+ discrim. RO scoring restricted to jump rules 32.8 61.3 25.9 66.3

Table 2: Supplementary experimental results with the deep grammar (truecase).

deep shallow
Baseline Best Swap System Baseline Best Swap System

used hierarchical phrases 25.8% 32.0% 17.8% 24.0%
used lexical phrases 45.8% 40.0% 47.6% 44.7%
used initial and glue rules 28.4% 26.8% 34.6% 29.5%
used swap rules - 1.2% - 1.8%
applied swap rule in sentences - 295 (22%) - 446 (33%)

Table 3: Statistics on the rule usage for the single best translation of the test set (MT08).

periments in which the discriminative reordering
scoring is restricted to the swap rule or the explicit
jump rules (marked as † in Eq. 5), respectively. The
result is in both setups slightly worse than the re-
sult with the discriminative reordering model ap-
plied to all rules.

6.3 Investigation of the Rule Usage

To figure out the influence of the swap rule on the
usage of different types of rules in the translation
process, we compare in Table 3 the baseline sys-
tems (deep and shallow) with the systems using
the swap rule, binary swap feature and discrim. RO
(denoted as Best Swap System in the table). As ex-
pected, the deep systems use in general more hi-
erarchical phrases compared to the shallow setups.
However, adding the swap rule causes an increased
usage of hierarchical phrases and less applications
of the glue rule. The swap rule by itself makes up
the smallest part, but is employed in 22% (deep)
and 33% (shallow) respectively of the 1357 test
sentences.

6.4 Translation Examples

Figure 2 depicts a translation example along with

its decoding tree from our system with deep gram-
mar, swap rule, binary swap feature and discrim.
RO (src+tgt word+class). The example is taken
from the MT08 set, with the four reference trans-
lations “But it is actually very hard to do that.”,
“However, it is indeed very difficult to achieve.”,
“But to achieve this point is actually very diffi-
cult.” and “But to be truly frank is, in fact, very
difficult.”. The hypothesis does not match any of
the references, but still is a fully convincing En-
glish translation. Note how the application of the
swap rule affects the translation. Our baseline sys-
tem with deep grammar translates the sentence as
“but to do this , it is in fact very difficult .”.

7 Conclusion

We presented novel extensions of hierarchical
phrase-based systems with a discriminative lexi-
calized reordering model. We investigated com-
binations with three variants of additional non-
lexicalized reordering rules. Our approach shows
significant improvements (up to +1.2 %BLEU)
over the respective baselines with both a deep and
a shallow-1 hierarchical grammar on a large-scale
Chinese→English translation task.
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S

X

.X

X

X

很难

,其实

X

做到这点

但

S

X

.X

X

achieve this

X

X

it is very difficult to

, in fact ,

but

Figure 2: Translation example from the system
with deep grammar, swap rule, binary swap fea-
ture and discrim. RO (src+tgt word+class).
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