
A Phrase Table without Phrases:
Rank Encoding for Better Phrase Table Compression

Marcin Junczys-Dowmunt
Faculty of Mathematics and Computer Science
Adam Mickiewicz University, Poznań, Poland

junczys@amu.edu.pl

Abstract

This paper describes the first steps towards
a minimum-size phrase table implemen-
tation to be used for phrase-based statis-
tical machine translation. The focus lies
on the size reduction of target language
data in a phrase table. Rank Encoding (R-
Enc), a novel method for the compression
of word-aligned target language in phrase
tables is presented. Combined with Huff-
man coding a relative size reduction of 56
percent for target phrase words and align-
ment data is achieved when compared to
bare Huffman coding without R-Enc. In
the context of the complete phrase table the
size reduction is 22 percent.

1 Introduction

As the size of available parallel corpora increases,
the size of translation phrase tables used for sta-
tistical machine translation extracted from these
corpora increases even faster. Although phrase ta-
ble filtering methods (Johnson et al., 2007) have
been described and physical memory as well as
disk space are cheap, even current high-end sys-
tems can be pushed to their limits. The current in-
memory representation of a phrase-table in Moses
(Koehn et al., 2007), a widely used open-source
statistical machine toolkit, is unusable for anything
else but toy-size translation models or prefiltered
test set data. A binary on-disk implementation of
a phrase table is generally used, but its on-disk size
requirements are significant.1

The goal of this paper is to describe the first
steps towards a compact phrase table implementa-

c© 2012 European Association for Machine Translation.
1The need for a more compact phrase-table implementation
arose during the author’s collaboration with the MT team at
WIPO. The space requirements of the binary representations
of the phrase table and the reordering table for a single lan-
guage pair exceeded the space available on a single SSD hard
drive.

tion that can be used as a drop-in replacement for
both, the binary phrase table implementation and
the in-memory phrase table available in Moses.
An important requirement is the faithful produc-
tion of translations identical to translations gener-
ated from the original phrase table implementation
if the same settings are provided.

The general idea is to trade in processor time
for disk and memory space. Instead of keeping
fully constructed target phrases in the phrase table,
they are stored as Huffman compressed sequences
of bytes. On demand, they are decompressed, de-
coded, and constructed as objects during run-time.
As we show later, this does not necessarily mean
that performance is negatively affected.

Even better compression can be achieved with
a dedicated encoding method of target words de-
veloped for translation phrase tables. Rank En-
coding (R-Enc) exploits the fact that target phrase
words can be reduced to abstract symbols that de-
scribe properties of source phrase words rather
than target words. The statistical distribution of
these abstract symbols in the phrase table allows
for a much better choice of Huffman codes.

2 Related Work

Zens and Ney (2007) describe a phrase table archi-
tecture on which the binary phrase table of Moses
is based. The source phrase index consists of a pre-
fix tree. Memory requirements are low due to on-
demand loading. Disk space requirements how-
ever are substantial.

Promising alternatives to the concept of fixed
phrase tables are suffix-array based implementa-
tion of phrase tables (Callison-burch and Bannard,
2005; Zhang and Vogel, 2005; Lopez, 2008; Lev-
enberg et al., 2010) that can create phrase pairs
on-demand more or less directly from a parallel
corpus. However, we do not compare this ap-
proach with ours, as we are not concerned with
on-demand phrase table creation.

Proceedings of the 16th EAMT Conference, 28-30 May 2012, Trento, Italy

245

Other approaches, based on phrase table filter-
ing (Johnson et al., 2007) can be seen as a type of
compression. They reduce the number of phrases
in the phrase table by significance filtering and thus
reduce space usage and improve translation qual-
ity at one stroke. An important advantage of this
approach is that can be easily combined with any
fixed phrase table, including ours.

The architecture of the source phrase index of
the discussed phrase table has been inspired by
the efforts concerned with language model com-
pression and randomized language models (Talbot
and Brants, 2008; Guthrie et al., 2010). Guthrie
et. al (2010) who describe a language model imple-
mentation based on a minimal perfected hash func-
tion and fingerprints generated with a random hash
function is the greatest influence. The idea to use
the CMPH2 library (Belazzougui et al., 2009) and
MurmurHash33 for our phrase table implementa-
tion originates from that paper.

The problem of parallel text compression has
been addressed by only few works (Nevill-
Manning and Bell, 1992; Conley and Klein,
2008; Sanchez-Martinez et al., 2012), most
other works are earlier variants of Sanchez-
Martinez et al. (2012). Conley and Klein (2008)
propose to use an encoding scheme based on word
alignment and source words. They require the ex-
istence of lemmatizers and other knowledge-heavy
language related data. Also, compression results
are reported without taking into account the addi-
tionally needed data. Conley and Klein claim to
use phrase pairs for compression, but in our opin-
ion their method is essentially word based, since
pointers to all inflected words of a phrase need to
be stored. The most recent work in the field is
Sanchez-Martinez et al. (2012) who propose to use
generalized biwords to compress running parallel
data. A generalized biword consists of a source
word, a sequence of target words aligned with the
source word and a corresponding sequence of off-
sets. Their Translation Relationship-based En-
coder (TRE) encodes a biword as a pair consist-
ing of a source language word and a position in-
formation in a dictionary of generalized biwords.
Rank-Encoding, though developed independently,
is a combination of the methods presented by Con-
ley and Klein and the TRE introduced by Sanchez-
Martinez et al.

2http://cmph.sourceforge.net/
3http://code.google.com/p/smhasher/wiki/MurmurHash3

Phrase pairs: 3.36× 108

Distinct source phrases: 2.15× 108

Distinct target language words: 550,446
Distinct phrase scores: 1.36× 107

Distinct alignment points: 49
Running source language words: 1.06× 109

Running target language words: 1.62× 109

Running phrase scores: 1.68× 109

Running alignment points: 1.52× 109

Total running target symbols: 4.84× 109

Total running symbols: 5.89× 109

Table 1: Coppa phrase table statistics

3 Experimental Data

The presegmented version of Coppa, the Corpus
Of Parallel Patent Applications (Pouliquen and
Mazenc, 2011), a parallel English-French corpus
of WIPO’s patent applications published between
1990 and 2010, is chosen for phrase table genera-
tion. It comprises more than 8.7 million parallel
segments with 198.8 million English tokens and
232.3 million French tokens. The Coppa phrase
table that is used throughout this paper has been
created using the standard training procedure of
Moses with included word alignment information.
Table 1 gives a set of figures for the phrase table.

The file size of the Moses binary phrase table is
given in Table 3 (Section 5.3) along with the space
and memory requirements of the variants of our
phrase table implementation.

4 Compact phrase table implementation

Figure 1 illustrates the architecture of the dis-
cussed phrase table implementation. Its main mod-
ules are described in more detail in the following
subsections.

4.1 Source Phrase Index

The structure of the source phrase index is inspired
by Guthrie et al. (2010) who use a similar imple-
mentation for huge n-gram language models. The
most important part of the index is a minimal per-
fect hash function (MPH) that maps a set S of
n source phrases to n consecutive integers. This
hash function has been generated with the CHD
algorithm included in the CMPH library (Belaz-
zougui et al., 2009). The CHD algorithm generates
very small MPH (in this case 109 Mbytes) in linear
time.

246

Source phrase index

Fingerprints

Reordering

Target phrase storage

Murmur
Hash

CMPH

Source phrase Target phrase collection

Target phrase decoder

Huffman
Codes

Symbol
Tables

Ordered
Lexical

Translation
Table*

Byte vector

Byte offsets

Figure 1: Simplified phrase table implementation schema

The MPH is only guaranteed to map known el-
ements from S to their correct integer identifier. If
a source phrase is given that has not been seen in
S during the construction of the MPH, a random
integer will be assigned to it. This can lead to false
assignments of target phrase collections to unseen
source phrases. Guthrie et. al (2010) propose to
use a random hash algorithm (MurmurHash3) dur-
ing construction and store its values as fingerprints
for each phrase from S. For querying, it suffices
to generate the fingerprint for the input phrase and
compare it with the fingerprint stored at the posi-
tion returned by the MPH function. If it matches,
the phrase has been seen and can be further pro-
cessed. For 32 bit fingerprints there is a prob-
ability of 2−32 of an unseen source phrase slip-
ping through. During our experiments it never
happened for such false assignments to surface to
a translation.

The MPH generated by the CHD algorithm is
not order-preserving, hence the original position
of the source phrase in an ordered set S is stored
together with each fingerprint. Order-preservation
is crucial if any kind of disk IO is involved. In
Moses, source phrases are queried by moving the
start point of a phrase to each word of a sentence
and increasing the phrase length until the length
limit or the end of the sentence is reached. There-
fore for each start word the querying order is a lex-
icographical order. In a phrase table representation
that preserves the lexicographical source phrase
order for corresponding target phrase collections,
the results for lexicographically ordered queries
will lie close or next to each other. If the data is

stored on disk, this translates directly to physical
proximity of the data chunks on the drive and less
movement of the magnetic head. Without order-
preservation the positions assigned by the MPH are
random which can render a memory-mapped ver-
sion of the phrase-table near unusable.

This phrase table does not contain any represen-
tation of source phrases besides the MPH function.
Source phrases can be checked for inclusion, but
not recovered.

4.2 Target Phrase Storage

The target phrase storage consists of a byte vec-
tor that stores target phrase collections consecu-
tively according to the order of their corresponding
source phrases. A target phrase collection consists
of one or more target phrases, again stored con-
secutively. A target phrase is a sequence of target
word symbols followed by a special stop symbol,
a fixed-length sequence of scores, and a sequence
of alignment points followed again by a special
stop symbol.

Random access capability is added by the byte
offset vector. For every target phrase collection, it
stores the byte offset at which this collection starts.
By inspecting the next offset the end position of
a target phrase collection can be determined.

Size reduction is achieved by compressing the
symbol sequence of a target phrase collection us-
ing symbol-wise Huffman coding (Huffman, 1952;
Moffat, 1989). Target phrase words, scores, and
alignment points are encoded with different sets of
Huffman codes which are switched during coding
and decoding.

247

a bacillus strain une souche de bacille 0-0 2-1 1-3
(a) Example phrase pair with alignment

Source Target Rank

a un 0
a une 1
a de 2
a la 3

bacillus bacillus 0
bacillus bacille 1
bacillus bacilles 2

strain souche 0
strain contrainte 1
strain déformation 2

of de 0
of d’ 1
of du 2

(b) Bilingual dictionary

Step Result Alignment

0. une souche de bacille 0-0 2-1 1-3
1. une[0] souche[2] de bacille[1] ∅
2. une[0,1] souche[2,0] de bacille[1,1] ∅
3. [0,1] [2,0] de [1,1] ∅
4. [1] [2,0] de [1,1] ∅

(c) Target phrase encoding procedure

Step Result Alignment

0. [1] [2,0] de [1,1] ∅
1. [0,1] [2,0] de [1,1] ∅
2. (a)[1] (strain)[0] de (bacillus)[1] 0-0 2-1 1-3
3. une souche de bacille 0-0 2-1 1-3

(d) Target phrase decoding procedure

Figure 2: An encoding/decoding example

While the byte vector is just a large array of
bytes, the byte offset vector is a more sophisticated
structure. Instead of keeping offsets as 8-byte inte-
gers4 differences between the offsets are stored. A
synchronization point with the full offset value is
inserted and tracked for every 32 values.5

This turns the byte offset vector into a list of
rather small numbers, even more so when the byte
array is compressed. Techniques from inverted list
compression for search engine indexes are used to
reduce the size further, Simple-9 encoding (Anh
and Moffat, 2004) for offset differences and Vari-
able Byte Length encoding (Scholer et al., 2002)
for synchronization points. As both techniques use
less space if smaller numbers are compressed, the
size of the structure keeps decreasing with decreas-
ing offset differences. Therefore a better compres-
sion method for the byte array results automati-
cally in a smaller byte offset vector. For the base-
line phrase table, the roughly 215 million offsets
use 260 Mbytes, but only 220 Mbytes for the rank-
encoded variant.

4.3 The Phrase Decoder

The target phrase decoder contains the data that is
needed to decode the compressed byte streams. It
includes source and target word lists with indexes,
the Huffman code sets, and if Rank Encoding is
used, a sorted lexical translation table. The word
lists and the translation table do not account for

44-byte integers could hold byte offsets up to 4GB only.
5This an arbitrarily set step size.

more than 30 Mbytes. Huffman codes are stored as
canonical Huffman codes, a memory efficient rep-
resentation. The size of the target phrase decoder
is treated as part of the size required to represent
target phrases.

4.4 Baseline implementation

In the baseline implementation three different sets
of Huffman codes are used to encode target words,
scores, and alignments; encoding and decoding re-
lies on switching between the three types of Huff-
man codes. For target phrase words and alignment
points one special stop symbol has to be added.
Scores and alignment points are encoded directly,
target phrase words have an intermediate represen-
tation as integer identifiers which are looked up in
a target word table. This implementation is re-
ferred to as “Baseline”. See Table 3 for the size
characteristics of this implementation.

5 Rank Encoding

In this section Rank Encoding (R-Enc), a method
for the compression of parallel texts, is presented.
Strictly speaking, it is not a compression method
by itself, but prepares the data in such a way that
traditional compression is more efficient.

5.1 Outline of the Method

The main idea is to modify the probability distri-
bution of symbols in the target data in such a way
that the average length of the Huffman codes de-
creases. Bilingual data (a phrase table is nothing

248

else) has a property that helps with this problem.
Given a source phrase, a target phrase, and

a bilingual dictionary of source and target words,
it can be told for most target words which source
words they are translations of. This information
can be encoded into the target phrase and the sur-
face forms of the target words can be dropped.

Figure 2 illustrates the procedure in more de-
tail for an example phrase pair (2a) consisting of
a source phrase, a target phrase, and alignment
data. The available alignment information sim-
plifies the process of finding correspondences be-
tween source and target words. Also a sample
bilingual dictionary (2b) is included. The encod-
ing procedure (2c) can be performed in four steps:

1. Alignments are moved to target words.

2. The source word is looked up in the dictio-
nary and the position (rank) of the target word
among the translations is recorded.

3. Aligned target words are dropped.

4. If positions of target and source word are
equal, the alignment is dropped.

The target phrase consists now of three differ-
ent types of symbols: ranks, ranks with alignment
information, and target words.

The decoding procedure (2d) is as simple:

1. Alignment information is added to rank-only
symbols based on their position in the pattern.

2. The original alignment data is reconstructed
and source words are determined by their po-
sition in the source phrase.

3. Based on source words and ranks of their
translation the target words are re-inserted.

In this example the alignment been reduced to
the empty set, as it happens in most cases.

The counterparts of a source word in the dic-
tionary are ordered by their decreasing translation
probability p(t|s). The lexical translation table
generated during Moses training can be used for
this. The lower the rank of a translation the higher
is its probability. Symbols with low ranks are
therefore more likely to occur, for a probability-
based compression algorithm as Huffman coding
this is highly desirable.

The described encoding scheme removes the ac-
tual target phrases from the phrase table, similarly

as the MPH in the source index removes source
phrases, hence, the title of the paper. Source and
target phrases can only be recovered during query-
ing. Compression is thus achieved by moving in-
formation to the query.

5.2 Formal Description of Algorithms

Two functions for dictionary querying are defined:
the rank r(s, t) of a target word t relative to
a source word s is the position of t within the list of
translations of s. Conversely, given a source word
s and a rank r the target word t = t(s, r) is ob-
tained from the lexical table.

For each of the three symbols types an encoding
function is defined. Plain target words are encoded
with e1, symbols that contain implicit alignments
with e2, and e3 encodes pairs of source position
and target rank. The inverse functions e−1

1 , e−1
2 ,

and e−1
3 decode numerical values to symbols.

The codomains of e1, e2, and e3 are required to
be pair-wise distinct. Then the decision function
d can determine the type of a given symbol based
on its encoded numerical value. Based on that, the
correct decoding function is applied.6

Algorithm 1 formalizes the encoding procedure.
First, source word positions are partitioned into n
sets Ji of positions of source words aligned with ti.
That way, worst-time complexity is O(mn) if the
given alignment contains all possible m×n align-
ments points. Average time complexity is O(n) for
alignments with about n alignment points.7

The algorithm processes the target phrase t of
length n from left to right. For each target word ti
all source words that are aligned with ti are exam-
ined. If ti is not aligned with any source word, it is
encoded as a plain symbol of type 1.

For an aligned target word ti, the minimal rank
r of ti relative to any of these source words is de-
termined. If for the minimal rank there is more
than one source word aligned with ti, the left-most
source word position k is chosen. This two-fold
selection of minimal values is crucial for the size-
reduction effect of the later compression. Lower
values of rank and position appear more often and
are assigned shorter Huffman codes. If k = i, i.e.
source and target word occupy the same position,

6The implementation of the decision, encoding, decoding
functions relies on bitwise operations on integer values, but
in fact any representation can be used if it fulfills the previous
requirements.
7According to the statistics for the Coppa phrase table there
are actually less alignment points than target words.

249

Function EncodePhrase(s, t, A)
begin

t̂← 〈 〉
Â← A
foreach 〈j, i〉 ∈ A do

Ji ← Ji ∪ {j}
end
foreach i ∈ {1, . . . , |t|} do

if Ji = ∅ then
t̂← t̂ · 〈e1(ti)〉

else
r ← min{r(sj , ti) : j ∈ Ji}
k ← min{j : j ∈ Ji ∧ r(sj , ti) = r}
if k = i then

t̂← t̂ · 〈e2(ti)〉
else

t̂← t̂ · 〈e3(ti)〉
end
Â← Â \ {〈k, i〉}

end
end
return 〈̂t, Â〉

end
Algorithm 1: Rank encoding

only the rank r is encoded (symbol type 2). Other-
wise, k and r are encoded together as one symbol
(symbol type 3). Alignment points used during en-
coding are dropped from the input alignment. Only
the unused alignment points in Â are saved in the
alignment of the encoded target phrase.

Decoding (algorithm 2) is straightforward. The
encoded target phrase pattern t̂ is processed from
left to right. Each symbol is decoded using the ap-
propriate decoding function based on the symbol
type. For symbols of type 1 no alignment point is
restored. Symbols of type 2 are decoded to a rank
value and looked up using the source phrase word
that is located at same position i as the current tar-
get phrase word ti, an alignment point 〈i, i〉 is re-
stored. For symbols of type 3, the source word
position j is recovered from the symbol and the
target word is looked-up, a point 〈j, i〉 is added to
the alignment. Average and worst-case time com-
plexity is equal to O(n). Phrase tables without ex-
plicit alignment data can be encoded by providing
a Cartesian product of source and target word po-
sitions instead. Average complexity for encoding
is then equal to the worst case complexity O(nm).
Decoding time complexity is unchanged.

Function DecodePhrase(s, t̂, Â)
begin

t← 〈 〉
A← Â

foreach i ∈ {1, . . . , |̂t|} do
switch d(t̂i) do

case 1

t← t · 〈e−1
1 (t̂i)〉

case 2

r ← e−1
2 (t̂i)

t← t · 〈t(si, r)〉
A← A ∪ {〈i, i〉}

case 3

〈j, r〉 ← e−1
3 (t̂i)

t← t · 〈t(sj , r)〉
A← A ∪ {〈j, i〉}

endsw
end
return 〈t, A〉

end
Algorithm 2: Rank decoding

5.3 Results

Table 2 summarizes the results for Rank Encoding
applied to target phrases of the Coppa phrase table.
Here, only figures for target words and alignment
points are compiled as we want to evaluate the per-
formance of Rank Encoding alone.

Rank Encoding reduces the number of distinct
target words from 550,446 to 86,367. In the base-
line phrase table the first 100 most frequent sym-
bols account for 52 percent of the running target
words, but for 91 percent if Rank Encoding is used.
These different distributions of symbols and fre-
quencies affect the later applied Huffman coding
significantly. The number of bits per running tar-
get words decreases from 10.8 to 6.5. The size
reduction is even more substantial for alignment
points as the number of bits per running align-
ment point drops from 5.4 to 0.5. This is the ef-
fect of the majority of alignment points being en-
coded into target words symbols. Of ca. 1.5 bil-
lion alignment points only 55 million (3.7 percent)
are compressed explicitly. Bit numbers include the
overhead introduced by stop symbols, for R-Enc
the bilingual dictionary is added as well. The total
size of target phrases with alignments is reduced
by 56 percent from 3,096 Mbytes to 1,351 Mbytes.
In the context of the complete phrase table (in Ta-
ble 3) the size reduction is 22 percent.

250

Baseline R-Enc

Distinct target words: 550,446 86,367
Bytes per target phrase (without scores): 9.7 4.2
Bits per target word: 10.8 6.5
Bits per alignment point: 5.4 0.5
Bits per symbol (words & alignment): 8.2 3.6
Total space (Mbytes): 3,096 1,351

Table 2: Results for rank-encoded target words and alignments

Moses Baseline R-Enc

Total size in Mbytes (ordered) : 29,418 7,681 5,967

Ordered source phrase index (Mbytes): 5,953 1,750

Target phrase storage (Mbytes): 23,441 5,873 4,127
Target phrase decoder (Mbytes): — 59 90
Bytes per target phrase: 73.1 18.5 13.2
Bits per symbol (words & score & alignment): 40.6 10.3 7.2

Translation time (1st run): 1606 s 1322 s 1450 s
Translation time (2nd run): 1051 s 940 s 957 s
Memory usage peak: 1.6 G 2.7 G 2.8 G

Table 3: Comparison of phrase table implementations

We measured the speed of our phrase table vari-
ants and the Moses phrase table on the first unique
thousand sentence pairs from test set provided by
WIPO8. Two scenarios are considered: During the
“1st run” operation system IO caches are dropped
before translation. During the “2nd run” the trans-
lation process is started with the same parameters,
but IO caches of the previous run are available.
Caching as provided by Moses is enabled.

Concerning speed, our phrase table implemen-
tations outperforms the Moses binary phrase ta-
ble. The difference is more noticeable for first
runs. One has to keep in mind, that the search for
translation options occupies only a small percent-
age of time during the translation. The decoding
process itself is much more time consuming. Im-
proved performance for first runs can be explained
by greatly reduced disk access which levels out
increased processing requirements due to decom-
pression. Speed is more similar for second runs,
where all phrase table variants can take advantage
of the IO caching mechanism of the operation sys-
tem. The Moses phrase table fares well when peak

8http://www.wipo.int/patentscope/translate/coppa/testset2011
.tmx.tgz

memory consumption is compared. The Baseline
and the rank encoded variant use over 1 GB more
memory than the binary Moses phrase table. This
due to the source phrase index which at the mo-
ment is fully kept in memory. 9

6 Conclusions and Future Work

Rank Encoding if combined with Huffman coding
reduces the size of a phrase tables substantially
when compared to bare Huffman coding. Trans-
lation speed is faster or comparable to the binary
phrase table in Moses. Memory requirements are
currently higher. In the presented phrase table im-
plementation compression has been achieved by
removing actual representation of source and tar-
get phrases from the phrase table. Both can only be
recovered when the phrase table is being queried
with potential source phrases.

There is still much potential for further size re-
ductions. In this work the focus lay mainly on tar-

9After submission of this paper, we managed to reduce the
space requirements of the index and to implement a lazy load-
ing procedure. Instead of 1.7 GBytes only 300 MBytes are
consumed for the translation of the test set. The methods used
to achieve this reduction will be described in a forthcoming
paper.

251

get words and alignment information. Now scores
take up a majority of space in a target phrase and
can surely be reduced by mathematically grounded
smoothing methods without a noticeable impact on
translation quality. Also, since a translation table is
already used for R-Enc on-line calculation of lexi-
cal probabilities can be considered an option. The
source phrase index needs to be optimized. Other
order preserving or monotonous hash functions or
indexing methods are to be reviewed and tested.
The impact of fingerprint bit length on translation
quality should be examined.

Concerning R-Enc, other similar encoding tech-
niques need to be investigated, especially extend-
ing the described approach to full bilingual phrase
pairs instead of word pairs. Due to the highly
repetitive nature of phrase tables this might be a
promising course of research.

Acknowledgments

This research is funded by the Polish Ministry of
Science and Higher Education (grant no. N N516
480540). The idea for this work was conceived
during a stay of the author’s at WIPO in Geneva,
while working on the in-house MT system.

References
Anh, Vo Ngoc and Alistair Moffat. 2004. Index com-

pression using fixed binary codewords. In Proceed-
ings of the 15th Australasian database conference,
pages 61–67.

Belazzougui, Djamal, Fabiano C. Botelho, and Martin
Dietzfelbinger. 2009. Hash, displace, and compress.
In Proceedings of the 17th European Symposium on
Algorithms. Springer LNCS.

Callison-burch, Chris and Colin Bannard. 2005. Scal-
ing phrase-based statistical machine translation to
larger corpora and longer phrases. In In Proceedings
of ACL, pages 255–262.

Conley, Ehud S. and Shmuel T. Klein. 2008. Using
Alignment for Multilingual Text Compression. Int.
J. Found. Comput. Sci., 19(1):89–101.

Guthrie, David, Mark Hepple, and Wei Liu. 2010. Ef-
ficient Minimal Perfect Hash Language Models. In
Proceedings of the Seventh Language Resources and
Evaluation Conference.

Huffman, David. 1952. A Method for the Construc-
tion of Minimum-Redundancy Codes. Proceedings
of the IRE, 40(9):1098–1101.

Johnson, J. Howard, Joel Martin, George Fost, and
Roland Kuhn. 2007. Improving translation quality

by discarding most of the phrasetable. In In Pro-
ceedings of EMNLP-CoNLL07, pages 967–975.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Annual Meeting of the ACL, Prague.

Levenberg, Abby, Chris Callison-Burch, and Miles Os-
borne. 2010. Stream-based translation models for
statistical machine translation. In Proceedings of
NAACL-HLT 2010, Los Angeles, pages 394–402.

Lopez, Adam. 2008. Tera-scale translation models via
pattern matching. In Proceedings of the 22nd In-
ternational Conference on Computational Linguis-
tics, COLING ’08, pages 505–512, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Moffat, A. 1989. Word-based Text Compression.
Softw. Pract. Exper., 19(2):185–198.

Nevill-Manning, Craig G. and Timothy C. Bell. 1992.
Compression of Parallel Texts. Inf. Process. Man-
age., 28(6):781–794.

Pouliquen, Bruno and Christophe Mazenc. 2011.
COPPA, CLIR and TAPTA: three tools to assist in
overcoming the language barrier at WIPO. In MT-
Summit 2011.

Sanchez-Martinez, Felipe, Rafael C. Carrasco,
Miguel A. Martinez-Prieto, and Joaquin Adiego.
2012. Generalized Biwords for Bitext Compression
and Translation Spotting. Journal of Artificial
Intelligence Research, 43:389–418.

Scholer, Falk, Hugh E. Williams, John Yiannis, and
Justin Zobel. 2002. Compression of inverted in-
dexes for fast query evaluation. In Proceedings of
the 25th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, SIGIR ’02, pages 222–229.

Talbot, David and Thorsten Brants. 2008. Random-
ized Language Models via Perfect Hash Functions.
In Proceedings of ACL-08: HLT, pages 505–513,
Columbus, Ohio, June. Association for Computa-
tional Linguistics.

Zens, Richard and Hermann Ney. 2007. Efficient
Phrase-table Representation for Machine Translation
with Applications to Online MT and Speech Transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-
NAACL), Rochester, NY.

Zhang, Ying and Stephan Vogel. 2005. An effi-
cient phrase-to-phrase alignment model for arbitrar-
ily long phrase and large corpora. In Proceedings of
the 10th Conference of the European Association for
Machine Translation (EAMT-05, pages 30–31.

252

