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Abstract

We tackle the problem of domain adapta-
tion of Statistical Machine Translation by
exploiting domain-specific data acquired
by domain-focused web-crawling. We de-
sign and evaluate a procedure for auto-
matic acquisition of monolingual and par-
allel data and their exploitation for train-
ing, tuning, and testing in a phrase-based
Statistical Machine Translation system. We
present a strategy for using such resources
depending on their availability and quan-
tity supported by results of a large-scale
evaluation on the domains of Natural En-
vironment and Labour Legislation and two
language pairs: English–French, English-
-Greek. The average observed increase of
BLEU is substantial at 49.5% relative.

1 Introduction

Recent advances of Statistical Machine Transla-
tion (SMT) have improved Machine Translation
(MT) quality to such an extent that it can be suc-
cessfully used in industrial processes (Flournoy
and Duran, 2009). However, this mostly happens
in very specific domains for which ample train-
ing data is available (Wu et al., 2008). Using
in-domain1 data for training has a substantial ef-
fect on the final translation quality: SMT, as any
other machine-learning application, is not guaran-
teed to perform optimally if the data for training
and testing are not identically (and independently)
distributed, which is often the case in practice. The
main problem is usually vocabulary coverage: spe-
cific domain texts typically contain vocabulary that
is not likely to be found in texts from other do-
mains (Banerjee et al., 2010). Other problems can
be caused by divergence in style or genre where the
difference is not only in lexis but also in grammar.

© 2012 European Association for Machine Translation.
1In this work, in-domain always refers to the domain of test data.

In order to achieve optimal performance, an
SMT system should be trained on data from the
same domain, genre, and style as it is applied to.
For many domains, though, in-domain data of
a size sufficient to train a full system is hard to find.
Recent experiments have shown that even small
amounts of such data can be used to adapt a sys-
tem to the domain of interest (Koehn et al., 2007).

In this work, we present a strategy for automatic
web-crawling and cleaning of domain-specific
data. Further, our exhaustive experiments, car-
ried out for the Natural Environment (env) and
Labour Legislation (lab) domains and English–
French (EN–FR) and English–Greek (EN–EL) lan-
guage pairs (in both directions), demonstrate how
the crawled data improves SMT quality.

After an overview of related work, we discuss
the possibility of adapting a general-domain SMT
system by using various types of in-domain data.
Then, we present our web-crawling procedure fol-
lowed by a description of a series of experiments
exploiting the data we acquired. Finally, we report
on the results and conclude with recommendations
for similar attempts to domain adaptation in SMT.

2 Related work and state of the art

2.1 Domain-focused web crawling
A key challenge for a focused crawler that as-
pires to build domain-specific web collections is
the prioritisation of the links to follow. Several
algorithms have been exploited for selecting the
most promising links. The Best-First algorithm
(Cho et al., 1998) sorts the links with respect
to their relevance scores and selects a predefined
amount of them as the seeds for the next crawl-
ing cycle. Menczer and Belew (2000) proposed an
adaptive population of agents, called InfoSpiders,
and searched for pages relevant to a domain us-
ing evolving query vectors and Neural Networks
to decide which links to follow. Hybrid models
and modifications of these crawling strategies have
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language pair (L1–L2) dom set source sentence pairs L1 tokens / vocabulary L2 tokens / vocabulary
English–French gen train Europarl 5 1,725,096 47,956,886 73,645 53,262,628 103,436

dev WPT 2005 2,000 58,655 5,734 67,295 6,913
test WPT 2005 2,000 57,951 5,649 66,200 6,876

English–Greek gen train Europarl 5 964,242 27,446,726 61,497 27,537,853 173,435
dev WPT 2005 2,000 58,655 5,734 63,349 9,191
test WPT 2005 2,000 57,951 5,649 62,332 9,037

Table 1: Detailed statistics of the general-domain data sets obtained from the Europarl corpus and the WPT 2005 workshop.

also been proposed (Gao et al., 2010) with the aim
of reaching relevant pages rapidly.

Apart from the crawling algorithm, classifica-
tion of web content as relevant to a domain or
not also affects the acquisition of domain-specific
resources, on the assumption that relevant pages
are more likely to contain links to more pages in
the same domain. Qi and Davison (2009) review
features and algorithms used in web page clas-
sification. In most of the algorithms reviewed,
on-page features (i.e. textual content and HTML
tags) are used to construct a corresponding fea-
ture vector and then, several machine-learning ap-
proaches, such as SVMs, Decision Trees, and Neu-
ral Networks, are employed (Yu et al., 2004).

Considering the Web as a parallel corpus,
Resnik and Smith (2003) proposed the STRAND
system, in which they used Altavista to search for
multilingual websites and examined the similarity
of the HTML structures of the fetched web pages
in order to identify pairs of potentially parallel
pages. Similarly, Esplà-Gomis and Forcada (2010)
proposed Bitextor, a system that exploits shallow
features (file size, text length, tag structure, and
list of numbers in a web page) to mine paral-
lel documents from multilingual web sites. Be-
sides structure similarity, other systems either filter
fetched web pages by keeping only those contain-
ing language markers in their URLs (Désilets et al.,
2008), or employ a predefined bilingual wordlist
(Chen et al., 2004), or a naive aligner (Zhang et al.,
2006) in order to estimate the content similarity of
candidate parallel web pages.

2.2 Domain adaptation in SMT

The first attempt towards domain adaptation in
SMT was made by Langlais (2002) who integrated
in-domain lexicons into the translation model.
Eck et al. (2004) presented a language model
adaptation technique applying an information re-
trieval approach based on selecting similar sen-
tences from available training data. Hildebrand et
al. (2005) applied the same approach on the trans-
lation model. Wu et al. (2005) proposed an align-

ment adaptation approach to improve domain-
-specific word alignment. Munteanu and Marcu
(2005) automatically extracted in-domain bilin-
gual sentence pairs from large comparable (non-
-parallel) corpora to enlarge the in-domain bilin-
gual corpus. Koehn and Schroeder (2007) in-
tegrated in-domain and out-of-domain language
models as log-linear features in the Moses (Koehn
et al., 2007) phrase-based SMT system with mul-
tiple decoding paths for combining multiple do-
main translation tables. Nakov (2008) combined
in-domain translation and reordering models with
out-of-domain models into Moses. Finch and
Sumita (2008) employed a probabilistic mixture
model combining two models for questions and
declarative sentences with a general model. They
used a probabilistic classifier to determine a vector
of probability representing class membership.

In general, all approaches to domain adapta-
tion of SMT depend on the availability of domain-
-specific data. If the data is available, it can be
directly used to improve components of the MT
system. Otherwise, it can be extracted from a pool
of texts from different domains or even from the
web, which is also the case in our work.

3 Resources and their acquisition

In this section, we review the existing resources we
used for training the general-domain systems and
present the acquisition procedures of in-domain
data used for domain adaptation of these systems.

3.1 Existing general domain data
For the baseline, a general-domain system, we
exploited the widely used data provided for the
SMT workshops (WPT 2005 – WMT 2010): the
Europarl parallel corpus (Koehn, 2005) as training
data for translation and language models, and
WPT 2005 development and test sets as develop-
ment and test data for general-domain parameter
optimization and testing, respectively (Table 1).
Europarl is extracted from the European Parliament
proceedings and for practical reasons we consider
this corpus to contain general-domain texts.
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initial phase main phase
language dom sites pages stored / sampled / acc (%) sites pages visited / stored (∆%) / dedup (∆%) t (h)
English env 146 505 224 92.9 3,181 90,240 34,572 38.3 28,071 18.8 47

lab 150 461 215 91.6 1,614 121,895 22,281 18.3 15,197 31.8 50
French env 106 543 232 95.7 2,016 160,059 35,488 22.2 23,514 33.7 67

lab 64 839 268 98.1 1,404 186,748 45,660 27.2 26,675 41.6 72
Greek env 112 524 227 97.4 1,104 113,737 31,524 27.7 16,073 49.0 48

lab 117 481 219 88.1 660 97,847 19,474 19.9 7,124 63.4 38
Average 94.0 25.6 39.7

Table 2: Statistics from the initial (focused on domain-classification accuracy estimation) and main phases of crawling mono-
lingual data: stored refers to the visited pages classified as in-domain, dedup refers to pages after near-duplicate removal, time
is the total duration (in hours), acc is accuracy estimated on the sampled pages, ∆ refers to reduction w.r.t. pages visited.

language dom paragraphs all / clean (∆%) / unique (∆%) sentences tokens vocabulary
English env 5,841,059 1,088,660 18.6 693,971 11.9 1,700,436 44,853,229 225,650

lab 3,447,451 896,369 26.0 609,696 17.7 1,407,448 43,726,781 136,678
French env 4,440,033 1,069,889 24.1 666,553 15.0 1,235,107 42,780,009 246,177

lab 5,623,427 1,382,420 24.6 822,201 14.6 1,232,707 46,992,912 180,628
Greek env 3,023,295 672,763 22.3 352,017 11.6 655,353 20,253,160 324,544

lab 2,176,571 521,109 23.9 284,872 13.1 521,358 15,583,737 273,602
Average 23.3 14.0

Table 3: Statistics from the cleaning stage of the monolingual data acquisition procedure and of the final data set: clean refers
to paragraphs classified as non-boilerplate, unique to those kept after duplicate removal, ∆ to reduction w.r.t. paragraphs all.

3.2 Web-crawling for monolingual data

To acquire monolingual in-domain corpora used in
improving language models, we enhanced a work-
flow described in Pecina et al. (2011). Consid-
ering the small size of crawled data in that work
(repeated here as col. 3–6 in Table 2), we imple-
mented a focused monolingual crawler that adopts
a distributed computing architecture based on Bixo
(2011), an open source web mining toolkit. More-
over, an out-link relevance score l was calculated
as: l = p/N +

∑M
i=1 ni · wi, where p is the rel-

evance score of its source page as in Pecina et al.
(2011), N is the amount of links originating from
the source page, M is the number of entries in a
domain definition consisting of relevant terms ex-
tracted from Eurovoc2, ni denotes the number of
occurrences of the i-th term in the surrounding text
and wi is the weight of the i-th term. Further pro-
cessing steps include boilerplate detection and lan-
guage identification at paragraph level. These en-
hancements resulted in acquiring much more in-
domain data (col. 8 in Table 2). In addition, the
evolutions of the crawls were satisfactory since the
ratio of pages classified as in-domain with the vis-
ited ones is 25.6% on average (col. 9 in Table 2).

Then, near-duplicates were removed by em-
ploying the deduplication strategy included in the
Nutch framework3. The relatively high percent-
ages of documents removed (col. 13 in Table 2) are
2http://eurovoc.europa.eu/
3http://nutch.apache.org

in accordance with Baroni et al.’s (2009) observa-
tion that during building of the Wacky corpora the
amount of documents was reduced by more than
50% after deduplication. Another observation is
that the percentages of duplicates for the lab do-
main are much higher than the ones for env. This
can be explained by the fact that lab web pages
are mainly legal documents or press releases repli-
cated on many websites.

Final processing of the monolingual data (see
Table 3) concerned the exclusion of paragraphs an-
notated as not in the targeted language or as boil-
erplate, which reduced their total amount to 23.3%
on average (col. 5). Removal of duplicate para-
graphs then reduced their total number to 14.0%
on average (col. 7). However, most of the removed
paragraphs were very short chunks of text (such as
navigation links). In terms of tokens, the reduction
is only to 50.6%. The last three columns in Ta-
ble 3 refer to the final monolingual data sets used
for training language models. For EN and FR, we
acquired about 45 million tokens for each domain;
for EL, which is less frequent on the web, we ob-
tained only about 15–20 million tokens.

3.3 Web-crawling for parallel data

Some steps involved in parallel data acquisition
(including language identification and cleaning)
were discussed in the previous subsection as a part
of the monolingual data acquisition. To guide the
focused bilingual crawler we used sets of bilin-
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language pair dom sites docs sentences all / paired (∆%) / good (∆%) / unique (∆%) / sampled / corrected
English–French env 6 559 19,042 14,881 78.1 14,079 73.9 13,840 72.7 3,600 3,392

lab 4 900 35,870 31,541 87.9 27,601 76.9 23,861 66.5 3,600 3,411
English–Greek env 14 288 17,033 14,846 87.2 14,028 82.4 13,253 77.8 3,600 3,000

lab 7 203 13,169 11,006 83.6 9,904 75.2 9,764 74.1 2,700 2,506
Average 84.2 77.1 72.8

Table 4: Statistics from the parallel data acquisition: document pairs (docs), source sentences (sentences all), aligned sentence
pairs (paired), those of sufficient translation quality (good); after duplicate removal (unique); sentences randomly selected for
manual correction (sampled) and those really corrected (corrected). ∆ always refers to percentages w.r.t. the previous step.

gual topic definitions. In order to construct the
list of seed URLs we selected web pages that
were collected during the monolingual crawls and
originated from in-domain multilingual web sites.
Since it is likely that these multilingual sites con-
tain parallel documents, we initialize the crawler
with these seed URLs and force the crawler to fol-
low only links internal to these sites. After down-
loading in-domain pages from the selected web
sites, we employed Bitextor to identify pairs of
documents that could be considered parallel.

3.4 Parallel sentence extraction

After identification of parallel documents, the next
steps aimed at extraction of parallel sentences.
For each document pair free of boilerplate para-
graphs, we applied these steps: sentence split-
ting and tokenization by the Europarl tools, and
sentence alignment by Hunalign (Varga et al.,
2005). Hunalign implements a heuristic, language-
-independent method for identification of parallel
sentences in parallel texts which can be improved
by providing an external bilingual dictionary of
word forms. Without having such dictionaries for
EN–FR and EN–EL at hand, we realign data in
these languages from Europarl by Hunalign and
used the dictionaries produced by this tool.

For each sentence pair identified as parallel, Hu-
nalign provides a confidence score which reflects
the level of parallelness. We manually investigated
a sample of sentence pairs extracted by Hunalign
from the pool data (about 50 sentence pairs for
each language pair and domain), by relying on the
judgement of native speakers, and estimated that
sentence pairs with a score above 0.4 are of a good
translation quality. We kept sentence pairs with 1:1
alignment only (one sentence on each side) and re-
moved those with scores below this threshold. Fi-
nally, we also removed duplicate sentence pairs.

The statistics from the parallel data acquisition
procedure are given in Table 4. On average, 84.2%
of the source sentences extracted from the parallel
documents were aligned in the 1:1 fashion (col. 7),

10% of them were removed due to low translation
quality, and after discarding duplicate sentences
pairs we acquired 72.8% of the original source sen-
tences aligned to their target sides (col. 11).

The translation quality of the parallel sentences
obtained by the procedure described above is not
guaranteed in any sense. Tuning the procedure and
focusing on high-quality translations is possible
but leads to a trade-off between quality and quan-
tity. For translation model training, high transla-
tion quality of the data is not as essential as for
testing. Bad phrase pairs can be removed from
the translation tables based on their low translation
probabilities. However, a development set contain-
ing sentence pairs which are not good translations
of each other might lead to sub-optimal values of
model weights which would harm system perfor-
mance. If such sentence pairs are used in the test
set, the evaluation would clearly be unreliable.

In order to create reliable test and development
sets for each language pair and domain, we per-
formed the following low-cost procedure. From
the data obtained by the steps described in the
previous section, we selected a random sample of
3,600 sentence pairs (2,700 for EN–EL in the lab
domain, for which less data was available) and
asked native speakers to check and correct them.
The task consisted of checking that the sentence
pairs belonged to the right domain, the sentences
within a sentence pair were equivalent in terms of
content, and the translation quality was adequate
and (if needed) correcting it. The goal was to ob-
tain at least 3,000 correct sentence pairs for each
domain and language pair; thus the correctors did
not have to correct every sentence pair. They were
allowed to skip (remove) misaligned sentence pairs
and asked to remove those sentence pairs that were
obviously from a very different domain (despite
being correct translations). The number of cor-
rected sentences is in the last column of Table 4.

According to the human judgements (see Table
5), 53–72% of sentence pairs were accurate trans-
lations, 22–34% needed only minor corrections, 1–
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category EN–EL / env EN–FR / lab
1. perfect translation 53.49 72.23
2. minor corrections done 34.15 21.99
3. major corrections needed 3.00 0.33
4. misaligned sentence pair 5.09 1.58
5. wrong domain 4.28 3.86

Table 5: Results (%) of the manual correction of parallel data.

3% would require major corrections (which was
not necessary, as the accurate sentence pairs to-
gether with those requiring minor corrections were
enough to reach our goal of at least 3,000 sentence
pairs in most cases), 2–5% of sentence pairs were
misaligned and would have had to be translated
completely, and about 4% were from a different
domain (despite being correct translations).

Further, we selected 2,000 pairs from the cor-
rected sentences for the test set and left the re-
maining part for the development set. The paral-
lel sentences which were not selected for correc-
tions were used as training sets. See further statis-
tics in Table 6. The correctors confirmed that the
manual corrections were about 5–10 times faster
than translating the sentences from scratch, so this
can be viewed as low-cost method for acquiring
in-domain test and development sets for SMT.

4 Domain adaptation experiments

In this section, we present experiments that exploit
all the acquired in-domain data in eight different
evaluation scenarios involving two domains (env,
lab) and two language pairs (EN–FR, EN–EL) in
both directions. Our primary evaluation measure
is BLEU (Papineni et al., 2002). For detailed anal-
ysis we also present NIST (Doddington, 2002) and
METEOR (Banerjee and Lavie, 2005) in Table 8.

4.1 System description

Our MT system is based on Moses (Koehn et al.,
2007). For training the baseline system, training
data is tokenized and lowercased using the Eu-
roparl tools. The original (non-lowercased) target
sides of the parallel data are kept for training the
Moses recaser. The lowercased versions of the tar-
get sides are used for training an interpolated 5-
-gram language model with Kneser-Ney discount-
ing using the SRILM toolkit (Stolcke, 2002).
Translation models are trained on the relevant parts
of the Europarl corpus, lowercased and filtered on
sentence level; we kept all sentence pairs having
less than 100 words on each side and with length
ratio within the interval 〈0.11,9.0〉. The maximum

pair dom set sents L1 tokens / voc L2 tokens / voc
env train 10,240 300,760 10,963 362,899 14,209

dev 1,392 41,382 4,660 49,657 5,542
test 2,000 58,865 5,483 70,740 6,617

lab train 20,261 709,893 12,746 836,634 17,139
dev 1,411 52,156 4,478 61,191 5,535

E
ng

lis
h–

Fr
en

ch

test 2,000 71,688 5,277 84,397 6,630
env train 9,653 240,822 10,932 267,742 20,185

dev 1,000 27,865 3,586 30,510 5,467
test 2,000 58,073 4,893 63,551 8,229

lab train 7,064 233,145 7,136 244,396 14,456
dev 506 15,129 2,227 16,089 3,333

E
ng

lis
h–

G
re

ek

test 2,000 62,953 4,022 66,770 7,056

Table 6: Details of the in-domain parallel data sets obtained
by web-crawling and manual correction: sentence pairs (sents),
source (L1 ) and target (L2 ) tokens and vocabulary size (voc).

length of aligned phrases is set to 7 and the re-
ordering models are generated using parameters:
distance, orientation-bidirectional-fe. The model
parameters are optimized by Minimum Error Rate
Training (Och, 2003, MERT) on development sets.

For decoding, test sentences are tokenized, low-
ercased, and translated by the tuned system. Letter
casing is then reconstructed by the recaser and ex-
tra blank spaces in the tokenized text are removed
in order to produce human-readable text.

4.2 Using out-of-domain test data
A number of previous experiments (Wu et al.,
2008; Banerjee et al., 2010, e.g.) showed signif-
icant degradation of translation quality if an SMT
system was applied to out-of-domain data. In or-
der to verify this observation we trained and tuned
our system on general-domain data and compared
its performance on test sets from general (gen) and
specific (env, lab) domains (the results are referred
to as vX and v0 in Table 7, respectively). The aver-
age decrease in BLEU is 44.3%: while on general-
-domain test sets we observe scores in the interval
42.24–57.00, the scores on the specific-domain test
sets are in the range 20.20–31.79. This is presum-
ably caused by the divergence of training and test
data: the out-of-vocabulary (OOV) rate increased
from 0.25% to 0.90% (see col. 4 and 16 in Table 7).

4.3 Using in-domain development data
Optimization of parameters of the SMT log-linear
models is known to have a big influence on the
performance. The first step towards domain adap-
tation of a general-domain system it to use in-
-domain development data. Such data usually
comprises of a small set of parallel sentences
which are repeatedly translated while the model
parameters are adjusted towards their optimal val-
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direction dom vX / OOV dom v0 / OOV v1 / ∆% v2 / ∆% v3 / ∆% v4 / ∆% / OOV
English–Fench gen 49.12 0.11 env 28.03 0.98 35.81 27.8 39.23 40.0 40.53 44.6 40.72 45.3 0.65

lab 22.26 0.85 30.84 35.6 34.00 52.7 39.55 77.7 39.35 76.8 0.48
Fench–English gen 57.00 0.11 env 31.79 0.81 39.04 22.5 40.57 27.6 42.23 32.8 42.17 32.7 0.54

lab 27.00 0.68 33.52 23.7 38.07 41.0 44.14 63.5 43.85 62.4 0.38
English–Greek gen 42.24 0.22 env 20.20 1.15 26.18 29.1 32.06 58.7 33.83 67.5 34.50 70.8 0.82

lab 22.92 0.47 28.79 25.7 33.59 46.6 33.54 46.3 33.71 47.1 0.40
Greek–English gen 44.15 0.56 env 29.23 1.53 34.15 16.8 36.93 26.3 39.13 33.9 39.18 34.0 1.20

lab 31.71 0.69 37.55 18.4 40.17 26.7 40.44 27.5 40.33 27.2 0.62
Average 0.25 0.90 25.5 40.0 49.2 49.5 0.64

Table 7: BLEU scores from domain adaptation of the baseline general-domain systems (v0) by exploiting: corrected devel. data
(v1), monolingual training data (v2), parallel training data (v3), both monolingual and parallel training data (v4); vX refers to
the baseline systems applied to general-domain test sets, OOV to out-of-vocabulary rates, ∆ to relative improvement over v0.

ues. The minimum number of development sen-
tences is not strictly given. The only requirement
is that the optimization procedure (MERT in our
case) must converge, which might not happen if
the set is too small. By using the parallel data
acquisition procedure (see Section 3.2), we ac-
quired development sets (506–1,411 sentence pairs
in each) which proved to be very beneficial: com-
pared to the baseline systems trained and tuned on
general-domain data only (v0), systems trained on
general-domain data and tuned on in-domain data
(v1) improved BLEU scores by 25.5% on aver-
age. Taking into account that the development sets
contain only several hundreds of parallel sentences
each, such improvement is remarkable (compare
columns v0 and v1 in Table 7).

4.4 Adding in-domain monolingual data

Improving an SMT system by adding in-domain
monolingual training data cannot reduce the rel-
atively high OOV rate observed when general-
-domain systems were applied on test sets from
specific domains. However, such data can im-
prove the language models and contribute to bet-
ter estimations of probabilities of n-grams consist-
ing of known words. To verify this hypothesis,
we trained systems (v2) on general-domain paral-
lel training data, in-domain development data, and
a concatenation of general-domain and in-domain
monolingual data described in Section 3.2.1 (com-
prising 15–45 million words). Compared to the
systems v1, the BLEU scores were improved by
additional 14.5% absolute on average. In compari-
son with the baseline systems v0, the total increase
of BLEU is 40.0% on average. The most substan-
tial improvement over the system v1 is achieved
for translations to Greek (23.0% for env, 16.2% for
lab) despite the smallest size of the monolingual
data acquired for this language (Table 3) which is
probably due to the complex Greek morphology.

4.5 Adding in-domain parallel training data

Parallel data is essential for building translation
models of SMT systems. While a good language
model can improve an SMT system by preferring
better translation options in given contexts, it has
no effect if the translation model offers no trans-
lation at all, which is the case for OOV words.
In the next experiment, we use in-domain parallel
training data acquired as described in Section 3.2.3
(7–20 thousand sentence pairs). First, we trained
systems (v3) on a concatenation of general-domain
and in-domain parallel training data, in-domain de-
velopment data, and a general-domain monolin-
gual data only which outperformed the previous
systems (v2) by additional 9.2% absolute on aver-
age (49.2% over the baseline). In some scenarios,
the overall improvement was above 70%.

To provide a complete picture we also trained
fully adapted systems (v4) using both general-
-domain and in-domain sets of parallel and mono-
lingual data and tuned on the corrected in-domain
development sets. In most scenarios the difference
of results of these systems compared to systems v3
are not statistically significant (p=0.05). The aver-
age relative improvement over the baseline (v0) is
49.5%, which is almost identical to 49.2% from the
previous experiment (v3). In practice, this means
that using additional monolingual in-domain data
on top of the in-domain parallel data has no ef-
fect on the translation quality. Although additional
experiments would verify whether larger monolin-
gual data could bring any additional improvement
or not, it seems that parallel data is more important.

5 Conclusions

We presented two methods for the acquisition
of domain-specific monolingual and parallel data
from the web. They employ existing open-source
tools for normalization, language identification,
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Natural Environment Labour Legislation
sys BLEU /∆% NIST /∆% MET / ∆% WER / ∆% BLEU /∆% NIST /∆% MET / ∆% WER / ∆%
v0 28.03 0.0 7.03 0.0 63.32 0.0 63.70 0.0 22.26 0.0 6.27 0.0 56.73 0.0 69.93 0.0
v1 35.81 27.7 8.10 15.2 68.44 8.0 53.78 -15.5 30.84 38.5 7.42 18.3 62.94 10.9 57.99 -17.0
v2 39.23 39.9 8.43 19.9 70.35 11.1 51.34 -19.4 34.00 52.7 7.68 22.4 65.56 15.5 57.06 -18.4
v3 40.53 44.6 8.61 22.4 71.10 12.2 50.04 -21.4 39.55 77.6 8.37 33.4 69.82 23.0 52.04 -25.5

E
ng

lis
h-

Fr
en

ch

v4 40.72 45.2 8.63 22.7 71.23 12.4 49.92 -21.6 39.35 76.7 8.34 33.0 69.79 23.0 52.29 -25.2
v0 31.79 0.0 7.77 0.0 66.25 0.0 57.09 0.0 27.00 0.0 7.07 0.0 59.90 0.0 61.57 0.0
v1 39.04 22.8 8.75 12.6 69.17 4.4 48.26 -15.4 33.52 24.1 7.98 12.8 63.70 6.3 53.39 -13.2
v2 40.57 27.6 8.90 14.5 70.23 6.0 47.19 -17.3 38.07 41.0 8.47 19.8 66.88 11.6 50.35 -18.2
v3 42.23 32.8 9.09 16.9 71.40 7.7 46.07 -19.3 44.14 63.4 9.22 30.4 71.24 18.9 45.49 -26.1

Fr
en

ch
-E

ng
lis

h

v4 42.17 32.6 9.09 16.9 71.32 7.6 46.05 -19.3 43.85 62.4 9.17 29.7 71.07 18.6 45.81 -25.6
v0 20.20 0.0 5.73 0.0 82.81 0.0 67.83 0.0 22.92 0.0 5.93 0.0 87.27 0.0 65.88 0.0
v1 26.18 29.6 6.57 14.6 84.19 1.6 60.80 -10.3 28.79 25.6 6.80 14.6 87.91 0.7 58.20 -11.6
v2 32.06 58.7 7.24 26.3 84.52 2.0 56.68 -16.4 33.59 46.5 7.36 24.1 88.34 1.2 54.71 -16.9
v3 33.83 67.4 7.63 33.1 86.10 3.9 53.47 -21.1 33.54 46.3 7.34 23.7 89.55 2.6 54.68 -17.0

E
ng

lis
h-

G
re

ek

v4 34.50 70.7 7.57 32.1 85.91 3.7 54.16 -20.1 33.71 47.0 7.34 23.7 89.42 2.4 54.71 -16.9
v0 29.23 0.0 7.50 0.0 60.57 0.0 54.69 0.0 31.71 0.0 7.76 0.0 62.42 0.0 52.34 0.0
v1 34.16 16.8 8.01 6.8 64.98 7.2 51.15 -6.4 37.55 18.4 8.28 6.7 67.36 7.9 49.02 -6.3
v2 36.93 26.3 8.27 10.2 66.60 9.9 49.40 -9.6 40.17 26.6 8.58 10.5 68.67 10.0 47.03 -10.1
v3 39.13 33.8 8.55 14.0 68.24 12.6 47.94 -12.3 40.44 27.5 8.61 10.9 68.91 10.4 46.78 -10.6

G
re

ek
-E

ng
lis

h

v4 39.18 34.0 8.54 13.8 68.19 12.5 47.94 -12.3 40.33 27.1 8.60 10.8 68.83 10.2 47.00 -10.2

Table 8: Complete results of the domain adaptation experiments. With the exception of NIST, all scores are percentages; MET
denotes METEOR, system identifiers refer to those in Table 7, and ∆ to relative improvement over the baseline systems v0.

cleaning, deduplication, and parallel sentence ex-
traction. These methods were applied to acquire
monolingual and parallel data for two language
pairs and two domains with only minimal manual
intervention (domain definitions and seed URLs).

The acquired resources were then successfully
used to adapt general-domain SMT systems to
the new domains. The average relative improve-
ment of BLEU achieved in eight scenarios was a
substantial 49.5%. Based on our experiments
we made the following observations: even small
amounts of in-domain parallel data is more im-
portant for translation quality than large amounts
of in-domain monolingual data. As few as 500–
1,000 sentence pairs can be used as development
data with expected 25% relative improvement of
BLEU. Additional parallel data can be used to im-
prove translation models: 7,000–20,000 sentences
pairs in our experiments increased BLEU by other
25% relative on average. If such data is not avail-
able, a general-domain system can benefit from us-
ing additional in-domain monolingual data, how-
ever quite large amounts (tens of million words)
are necessary to obtain a moderate improvement.

Acknowledgments

This research was supported by the EU FP7
project PANACEA (contract no. 7FP-ITC-248064)
and by the Czech Science Foundation (grant no.

P103/12/G084). We thank Victoria Arranz, Olivier
Hamon, and Khalid Choukri for their help with
manual correction of the EN–FR data; Maria Gi-
agkou and Voula Giouli for construction of the do-
main definitions and correction of the EN–EL data.

References
Banerjee, S. and A. Lavie. 2005. METEOR: An Au-

tomatic Metric for MT Evaluation with Improved
Correlation with Human Judgments. In Proc. of the
ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summa-
rization, pp 65–72, Ann Arbor, Michigan.

Banerjee, P., J. Du, B. Li, S. Naskar, A. Way, and J. van
Genabith. 2010. Combining Multi-Domain Statis-
tical Machine Translation Models using Automatic
Classifiers. In The Ninth Conference of the Associa-
tion for MT in the Americas, pp 141–150.

Baroni, M., S. Bernardini, A. Ferraresi, and
E. Zanchetta. 2009. The WaCky Wide Web: a
collection of very large linguistically processed
web-crawled corpora. Language Resources and
Evaluation, 43(3):209–226.

Bixo. 2011. Web mining toolkit. http://openbixo.org/.
Chen, J., R. Chau, and C.-H. Yeh. 2004. Discover-

ing parallel text from the World Wide Web. In Proc.
of the 2nd workshop on Australasian information se-
curity, Data Mining and Web Intelligence, and Soft-
ware Internationalisation, volume 32, pp 157–161,
Darlinghurst, Australia.

Cho, J., H. Garcia-Molina, and L. Page. 1998. Ef-
ficient crawling through URL ordering. Comput.
Netw. ISDN Syst., 30:161–172.

151



Désilets, A., B. Farley, M. Stojanovic, and G. Pate-
naude. 2008. WeBiText: Building Large Heteroge-
neous Translation Memories from Parallel Web Con-
tent. In Proc. of Translating and the Computer (30),
London, UK.

Doddington, G. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proc. of the second international con-
ference on Human Language Technology Research,
pp 138–145, San Diego, California.

Eck, M., S. Vogel, and A. Waibel. 2004. Language
Model Adaptation for Statistical Machine Transla-
tion based on Information Retrieval. In International
Conference on Language Resources and Evaluation,
Lisbon, Portugal.

Esplà-Gomis, M. and M. L. Forcada. 2010. Com-
bining Content-Based and URL-Based Heuristics to
Harvest Aligned Bitexts from Multilingual Sites with
Bitextor. The Prague Bulletin of Mathemathical Lin-
gustics, 93:77–86.

Finch, A. and E. Sumita. 2008. Dynamic model inter-
polation for statistical machine translation. In Proc.
of the Third Workshop on Statistical Machine Trans-
lation, pp 208–215, Columbus, Ohio, USA.

Flournoy, R. and C. Duran. 2009. Machine translation
and document localization at Adobe: from pilot to
production. In MT Summit XII: proc. of the twelfth
Machine Translation Summit, pp 425–428.

Gao, Z., Y. Du, L. Yi, Y. Yang, and Q. Peng. 2010.
Focused Web Crawling Based on Incremental Learn-
ing. Journal of Comp. Information Systems, 6:9–16.

Hildebrand, A. S., M. Eck, S. Vogel, and A. Waibel.
2005. Adaptation of the Translation Model for Sta-
tistical Machine Translation based on Information
Retrieval. In Proc. of the 10th Annual Conference of
the European Association for Machine Translation,
pp 133–142, Budapest, Hungary.

Hua, W., W. Haifeng, and L. Zhanyi. 2005. Alignment
model adaptation for domain-specific word align-
ment. In 43rd Annual Meeting on Association for
Computational Linguistics, pp 467–474, Ann Arbor,
Michigan, USA.

Koehn, P. and J. Schroeder. 2007. Experiments in do-
main adaptation for statistical machine translation.
In Proc. of the Second Workshop on Statistical Ma-
chine Translation, pp 224–227, Prague, Czech Rep.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: open source toolkit for
statistical machine translation. In Proc. of the 45th
Annual Meeting of the ACL on Interactive Poster and
Demo Sessions, pp 177–180, Prague, Czech Rep.

Koehn, P. 2005. Europarl: A Parallel Corpus for Sta-
tistical Machine Translation. In Conference Proc.:
the tenth Machine Translation Summit, pp 79–86,
Phuket, Thailand.

Kohlschütter, C., P. Fankhauser, and W. Nejdl. 2010.
Boilerplate detection using shallow text features. In

Proc. of the 3rd ACM International Conference on
Web Search and Data Mining, pp 441–450, NY.

Langlais, P. 2002. Improving a general-purpose Statis-
tical Translation Engine by terminological lexicons.
In COLING-02 on COMPUTERM 2002: second in-
ternational workshop on computational terminology
- Volume 14, pp 1–7, Taipei, Taiwan.

Menczer, F. and R. K. Belew. 2000. Adaptive Retrieval
Agents: Internalizing Local Contextand Scaling up
to the Web. Machine Learning, 39:203–242.

Munteanu, D. S. and D. Marcu. 2005. Improving Ma-
chine Translation Performance by Exploiting Non-
Parallel Corpora. Comput. Linguist., 31:477–504.

Nakov, P. 2008. Improving English-Spanish statistical
machine translation: experiments in domain adapta-
tion, sentence paraphrasing, tokenization, and recas-
ing. In Proc. of the Third Workshop on Statistical
Machine Translation, pp 147–150, Columbus, USA.

Och, F. J. 2003. Minimum error rate training in statis-
tical machine translation. In 41st Annual Meeting on
Association for Computational Linguistics, pp 160–
167, Sapporo, Japan.

Papineni, K., S. Roukos, T. Ward, and W.-J. Zhu. 2002.
BLEU: a method for automatic evaluation of ma-
chine translation. In 40th Annual Meeting on Asso-
ciation for Computational Linguistics, pp 311–318,
Philadelphia, USA.

Pecina, P., A. Toral, A. Way, V. Papavassiliou, P. Proko-
pidis, and M. Giagkou. 2011. Towards Using Web-
Crawled Data for Domain Adaptation in Statistical
Machine Translation. In Proc. of the 15th Annual
Conference of the European Associtation for Ma-
chine Translation, pp 297–304, Leuven, Belgium.

Qi, X. and B. D. Davison. 2009. Web page classifi-
cation: Features and algorithms. ACM Computing
Surveys, 41:12:1–12:31.

Resnik, P. and N. A. Smith. 2003. The Web as a paral-
lel corpus. Computational Linguistics, 29:349–380.

Stolcke, A. 2002. SRILM-an extensible language
modeling toolkit. In Proc. of International Confer-
ence on Spoken Language Processing, pp 257–286,
Denver, Colorado, USA.

Varga, D., L. Németh, P. Halácsy, A. Kornai, V. Trón,
and V. Nagy. 2005. Parallel corpora for medium
density languages. In Recent Advances in Natural
Language Processing, pp 590–596.

Wu, H., H. Wang, and C. Zong. 2008. Domain adap-
tation for statistical machine translation with do-
main dictionary and monolingual corpora. In Proc.
of the 22nd International Conference on Computa-
tional Linguistics - Volume 1, pp 993–1000.

Yu, H., J. Han, and K. C.-C. Chang. 2004. PEBL:
Web Page Classification without Negative Examples.
IEEE Transactions on Knowledge and Data Engi-
neering, 16(1):70–81.

Zhang, Y., K. Wu, J. Gao, and P. Vines. 2006. Auto-
matic Acquisition of Chinese-English Parallel Cor-
pus from the Web. In Proc. of the 28th European
Conference on Information Retrieval, pp 420–431.

152




