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Abstract

In Statistical Machine Translation, in-
domain and out-of-domain training data
are not always clearly delineated. This
paper investigates how we can still use
mixture-modeling techniques for domain
adaptation in such cases. We apply un-
supervised clustering methods to split the
original training set, and then use mixture-
modeling techniques to build a model
adapted to a given target domain. We show
that this approach improves performance
over an unadapted baseline, and several al-
ternative domain adaptation methods.

1 Introduction

As the availability of parallel data for Statistical
Machine Translation (SMT) increases, new op-
portunities and challenges for domain adaptation
arise. Some corpora may contain text from a
variety of domains, especially if they are built
from heterogeneous resources such as crawled web
pages. Many domain adaptation techniques do not
operate on a single text, but require multiple mod-
els which are then mixed.

We investigate domain adaptation in a scenario
where we have a known target domain, including
development and test data from this domain, but
where there is only a single heterogeneous train-
ing corpus. While this training corpus does con-
tain in-domain data, we assume that we have no
supervised means of extracting it.

Our basic approach is divided into two steps.
Firstly, we perform unsupervised clustering on the
parallel training data to obtain a given number of
clusters. Secondly, we apply domain adaptation

c© 2012 European Association for Machine Translation.

algorithms to compute a model from these clusters
that is adapted to the development set.

2 Related Work

The general idea in domain adaptation is to obtain
models that are specifically optimized for best per-
formance in one domain, with a potentially nega-
tive effect on its performance for other domains.
The classical domain adaptation scenario consists
of a (small) in-domain corpus, a (large) out-of-
domain corpus, and in-domain development and
test sets. Mixture-modeling approaches such as
(Koehn and Schroeder, 2007; Foster and Kuhn,
2007; Sennrich, 2012) fall into this category.

We will here give an overview of adaptation
techniques that assume less prior knowledge about
the training set and/or target domains.

Yamamoto and Sumita (2008) operate without
any predetermined domains, and without assum-
ing that either the training or the test data is ho-
mogeneous. They cluster the training text into k
clusters, and use unsupervised domain selection to
translate each test set sentence by a cluster-specific
model.

Finch and Sumita (2008) distinguish between
two classes of sentences: questions and declara-
tives (i.e. non-questions). They split the training
corpus automatically according to a simple rule
(does the target sentence end with ’?’), and for
decoding use a linear interpolation of the class-
specific and a general model, the interpolation
weight depending on the class membership of each
sentence.

Banerjee et al. (2010) focus on a scenario in
which the domains of the training texts are known,
whereas the test sets are a mix of two domains.
They use a sentence-level classifier to translate
each sentence with a domain-specific SMT system.
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Eck, Vogel and Waibel (2004) use information
retrieval techniques to find the sentences in a par-
allel corpus that are closest to the translation in-
put, then use the corresponding target sentences to
build a language model. Their approach is simi-
lar to that of Yamamoto and Sumita (2008) in that
both try to adapt models in a fully unsupervised
manner. The main difference is that Yamamoto
and Sumita (2008) compute the clusters (and the
cluster-specific models) offline, and only do clus-
ter prediction online, whereas in (Eck et al., 2004),
the whole adaptation process, i.e. selecting a sub-
set of training data, training a model, and translat-
ing with the specific model, happens online.

We will focus on a scenario which is slightly dif-
ferent from these prior studies in that we want to
build a translation system for a specific target do-
main, but with in-domain and out-of-domain train-
ing data being mixed in a heterogeneous training
set. For such a scenario, none of the outlined ap-
proaches are a perfect fit. Mixture-modeling tech-
niques presume the existence of multiple models
to mix, a condition which is not met in this sce-
nario. The unsupervised methods, on the other
hand, do not use sophisticated adaptation tech-
niques, mostly because the target domain is un-
known. We will test a hybrid approach that com-
bines unsupervised methods to cluster the training
text with known mixture-modeling techniques to
obtain a model adapted to the target domain.

3 Clustering

We compare two unsupervised sentence clustering
algorithms in order to split the training text into
clusters that can later be recombined. Both al-
gorithms are instances of k-means clustering, but
with different distance functions. Yamamoto and
Sumita (2008) use language models as centroids,
trained on all sentences in a cluster, and the lan-
guage model entropy as the distance between each
sentence and cluster. Andrés-Ferrer et al. (2010)
use word-sequence-kernels (WSK) (Cancedda et
al., 2003) as distance metric between two docu-

ments. We initially followed their proposed nor-
malization of the WSK, reproduced in equation 1.
fx(u) is the frequency of the n-gram u in docu-
ment/sentence x.1 Unfortunately, the normaliza-
tion in the proposed equation is flawed and causes
a bias towards assigning sentences to the largest
cluster. The WSK should be normalized so that
the string a is (at least) as similar to itself as to
a a (if we only consider unigrams). However,

1√
1

1√
1
< 1√

1
2√
2
. We use an alternative normal-

ization, shown in equation 2, that has no such nu-
merical bias.

Both algorithms are initialized with randomly
generated clusters, and both can be expanded to
clustering sentence pairs by taking the sum of
the distance on both language sides. In terms
of n-gram length, we follow the respective au-
thors’ practice, using unigram models for the im-
plementation of (Yamamoto and Sumita, 2008),
and m = 2 for equation 2. Note that the cluster-
ing algorithm has the objective of minimizing LM
entropy, whereas the WSK is a similarity function
and thus is maximized.

3.1 Exponential Smoothing

One drawback of sentence-level clustering is that
cluster assignment is made on the basis of very lit-
tle information, i.e. the sentence itself. If we as-
sume that the domain of a text does not rapidly
change between sentences, it is sensible to con-
sider a larger context for clustering.

We achieve this by using an exponentially de-
caying score for cluster assignment.2 In the base-
line without exponential decay (equation 3), we
assign the sentence pair i to the cluster c that

1For the full motivation of the equation, see (Andrés-Ferrer et
al., 2010). In short, for all n-grams up to a maximum length
m, the kernel sums over the product of their normalized fre-
quency in two given documents.
2The most similar use of an exponential decay that we are
aware of is by Zhong (2005), who proposes exponential de-
cay to reduce the contribution of history data in a text stream
clustering algorithm. However, the exponential decay affects
a different component, namely the centroids, and does not
serve the same purpose as our proposal.
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minimizes the distance (i.e. the LM entropy or the
negative WSK score).

ĉi = argmin
c

d(i, c) (3)

In equation 4, the distance of sentence pair i to
cluster c is smoothed by the weighted average
of the distance of each sentence j to c, with the
weight exponentially decaying as the textual dis-
tance between i and j increases, and with the decay
factor λ determining how fast the weight decays.

ĉi = argmin
c

n∑
j=1

d(j, c) · λ|i−j| (4)

Note that the equation is two-sided, meaning that
both previous and subsequent sentences are con-
sidered for the assignment.

Algorithmically, two-sided exponential smooth-
ing only slows down cluster assignment by a con-
stant factor; we do not need to sum over all
sentences for each assignment, but can store the
weighted distance of all previous sentences in a
single variable. Algorithm 1 shows the smoothed
assignment step for n sentences and k clusters.

Algorithm 1 Cluster assignment with decay
Ensure: 0 ≤ decay ≤ 1

1: let d(x, y) be a distance function for a sentence
x and a centroid y

2: let d min[n],d curr[n],ĉ[n] be arrays
3: set all elements of d min to∞
4: for c = 0 to k do
5: cache← 0
6: set all elements of d curr to 0
7: for i = 0 to n do
8: cache← decay ∗ cache
9: cache← cache+ d(i, c)

10: d curr[i]← cache
11: end for
12: cache← 0
13: for i = n to 0 do
14: cache← decay ∗ cache
15: d curr[i]← d curr[i] + cache
16: if d curr[i] < d min[i] then
17: d min[i]← d curr[i]
18: ĉ[i]← c
19: end if
20: cache← cache+ d(i, c)
21: end for
22: end for

Note that the decay factor λ determines the ex-
tent of smoothing, i.e. how strongly context is
taken into account for the assignment of each sen-
tence. A decay factor of 0 corresponds to the
unsmoothed sentence-level score (with 00 = 1).
With a decay factor of 1, the algorithm returns the
same distance for all sentence pairs. We use a de-
cay factor of 0.5 throughout the experiments. This
is a relatively fast decay: one third of the score is
determined by the sentence itself; two thirds by the
sentence and its two neighboring sentences. What
decay factor is optimal may depend on the proper-
ties of the text, i.e. how quickly documents and/or
domains change, so we will not evaluate different
decay factors in this paper.

We could extend the algorithm to reset the cache
to 0 whenever we cross a known document bound-
ary, and thus implement document-level scoring
(with a decay factor of 1), or a hybrid (with a decay
factor between 0 and 1). We did not do this since
we want to demonstrate that the approach does not
require document boundaries in the training text.

Another point to note is that we slightly mod-
ify the LM entropy method by normalizing entropy
by sentence length, which ensures that longer sen-
tences have no inflated effect on their neighbors’
cluster assignment.

4 Model Combination

Having split the training text into clusters, there are
various possibilities to exploit them. Yamamoto
and Sumita (2008) use each cluster to train a
cluster-specific model, which they interpolate with
a general model, using a constant interpolation co-
efficient. Translating a text then consists of pre-
dicting the cluster of each sentence, then translat-
ing it with this cluster-specific model. If we make
the assumption that the test set is relatively ho-
mogeneous, with all sentences belonging to the
same domain, we can perform a more sophisti-
cated adaptation to this target domain.

One potential shortcoming of the algorithm in
(Yamamoto and Sumita, 2008) is that their do-
main prediction has little information to base its
prediction on, and thus may not choose the best
cluster. Additionally to predicting the domain for
each sentence, we will test a document-level do-
main prediction, i.e. selecting the cluster with the
shortest distance to the whole test set. Even this
might be suboptimal if the number of clusters is
high. In this case, we can expect relevant data to
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be distributed over multiple clusters, in which case
it might be beneficial to not be restricted to one
cluster-specific model.

A second shortcoming is the lack of model op-
timization. Yamamoto and Sumita (2008) set the
interpolation weights between the cluster-specific
model and the general one manually after some
preliminary experiments, and re-used the model
parameters from the general model for all exper-
iments. Specifically, they use linear interpola-
tion with interpolation coefficients of 0.7 and 0.3
for the cluster-specific and the general translation
model, respectively, and a log-linear combination
for language models, with a slightly lower weight
for the domain-specific (0.4) than the general (0.6)
model.

Both the inability to consider multiple rele-
vant datasets and the need to manually set model
weights can be solved by using automatic mixture-
model methods. We will experiment with au-
tomatic adaptation methods that use perplexity
minimization to produce domain-specific models
given a development set from the domain. The
first step is again to train cluster-specific transla-
tion and language models, which we then recom-
bine into a single adapted model. We use a lin-
ear interpolation with the interpolation coefficients
set through perplexity minimization for language
model and translation model adaptation, which has
been demonstrated to be a successful technique
in SMT (Foster and Kuhn, 2007). For transla-
tion model interpolation, we use the approach de-
scribed in (Sennrich, 2012), optimizing each trans-
lation model feature separately on a parallel devel-
opment set.

The optimization itself is convex, which means
that we can easily apply it to a high number of clus-
ters. The biggest risk is that the weight vector will
be overfitted if we optimize it for a high number of
small models. Finally, we set new log-linear SMT
weights through MERT (Och and Ney, 2003) for
each experiment.

5 Experiments

The main questions that we want to answer in our
experiments are:

1. How well does unsupervised clustering split
a heterogeneous training text according to its
domains? How are the results affected by dif-
ferent distance functions and smoothing?

Data set sentences words (fr)
Alpine (in-domain) 200k 4 400k
Europarl 1 500k 44 000k
JRC Acquis 1 100k 24 000k
OpenSubtitles v2 2 300k 18 000k
Total train 5 100k 90 400k
Dev (perplexity) 1424 33 000
Dev (MERT) 1000 20 000
Test 991 21 000

Table 1: Parallel data sets for German – French
translation task.

2. How much translation quality do we lose or
gain from mixture-modeling based on un-
supervised clusters, compared to a scenario
where we start with multiple domain-specific
corpora.

5.1 Data and Methods

We perform the experiments on a German–French
data set. The parallel data sets used are listed
in table 1. The in-domain corpus is a collection
of Alpine Club publications (Volk et al., 2010).
As parallel out-of-domain data sets, we use Eu-
roparl, a collection of parliamentary proceedings
(Koehn, 2005), JRC-Acquis, a collection of leg-
islative texts (Steinberger et al., 2006), and Open-
Subtitles v2, a parallel corpus extracted from film
subtitles3 (Tiedemann, 2009).

For language model training, we used the same
90 million word corpus, plus, on the target side, the
news corpus from WMT 2011 (appr. 610 million
tokens), and appr. 8 million tokens monolingual
in-domain data. We used the following language
model settings: for clustering, unigram language
models. For domain selection, 3-gram language
models with Good-Turing smoothing. For trans-
lation, 5-gram language models with interpolated
Kneser-Ney smoothing. We clustered additional
target language data with the method described in
(Yamamoto and Sumita, 2008), i.e. one cluster as-
signment step, starting from the bilingual clusters,
and not assigning any sentences which are closest
to the general LM.

For the clustering experiments, these data sets
are concatenated to simulate a heterogeneous train-
ing set. The relative amount of in-domain data in
the training sets is 2% (monolingual) and 4% (par-
allel). Note that this makes success of our method

3http://www.opensubtitles.org
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more likely than in scenarios where there is no in-
domain training data in the training set. We do
not claim that any heterogeneous training text is
equally suited for domain adaptation.

In (Andrés-Ferrer et al., 2010), clustering qual-
ity is measured intrinsically, i.e. by calculating
the intra-cluster language model perplexity. In
our evaluation, we use an extrinsic evaluation that
compares the resulting clusters to the original four
parallel datasets. For this evaluation, we assume
that clustering is felicitous if it clusters sentences
from the same original data set together. We mea-
sure this using entropy (equation 5), with N being
the total number of sentence pairs and orig(i) be-
ing the corpus to which sentence i originally be-
longed. pc(orig(i)) is the probability that a sen-
tence in cluster c is originally from corpus orig(i),
estimated through relative frequency.

H(X) = −
k∑

c=0

∑
i∈c

1

N
log2 pc(orig(i)) (5)

If a cluster only contains sentences from one cor-
pus, its entropy is 0. The baseline is a uniform
distribution, which corresponds to an entropy of
1.698 (with the data sets from table 1).

The second evaluation is a translation task. In
terms of tools and techniques used, we mostly
adhere to the work flow described for the WMT
2011 baseline system4. The main tools are Moses
(Koehn et al., 2007), SRILM (Stolcke, 2002), and
GIZA++ (Och and Ney, 2003), with settings as de-
scribed in the WMT 2011 guide. One exception is
that we additionally filter the phrase table accord-
ing to statistical significance tests, as described by
(Johnson et al., 2007). We use two different devel-
opment sets, one for domain adaptation (through
perplexity optimization) and one for MERT, in or-
der to rule out that MERT gives too much weight
to the language and translation model which are
optimized on the same dataset.

We measure translation performance through
BLEU (Papineni et al., 2002) and METEOR 1.3
(Denkowski and Lavie, 2011). All results are low-
ercased and tokenized, measured with five inde-
pendent runs of MERT (Och and Ney, 2003). We
perform significance testing with MultEval (Clark
et al., 2011), which uses approximate randomiza-
tion to account for optimizer instability. Note that
there are other causes of instability unaccounted
4http://www.statmt.org/wmt11/baseline.
html

distance k
entropy itr.

mean stdev (avg)
no smoothing
WSK 10 0.727 0.022 21.4
LM 10 0.439 0.034 20.2
LM 100 0.344 0.008 38.8
exponential smoothing
WSK 10 0.263 0.048 13.8
LM 10 0.112 0.016 10.4
LM 100 0.064 0.013 9.0

Table 2: Entropy comparison between clustering
with different distance functions (with or without
smoothing), and different numbers of clusters (k).
Mean, standard deviation, and average number of
iterations out of 5 runs are reported. WSK: word
sequence kernels; LM: language model entropy

for, e.g. the randomness of clustering. Word align-
ment has been kept constant across all experi-
ments.

5.2 Results

In all experiments, we perform k-means clustering
with k = 10 and k = 100. A higher number of
clusters typically increases the homogeneity of the
resulting clusters, and may boost performance by
allowing us to give high weights to very specific
subdomains of the training set. On the downside,
clusters will be smaller on average, which exacer-
bates data sparseness problems. In the trivial case,
having one sentence per cluster results in an en-
tropy of 0, but this granularity would be unsuitable
for the domain adaptation methods that we evalu-
ate because of data sparseness.

Table 2 shows entropy of both sentence-level
clustering and exponential smoothing with word
sequence kernels and LM entropy as distance func-
tions. All methods achieve a strong reduction of
entropy over the uniform baseline (1.698), but LM
entropy as a distance measure outperforms word
sequence kernels, with a mean entropy of 0.439
compared to 0.727 for 10 clusters. In all experi-
ments, exponential smoothing reduces the entropy
of the resulting clusters even further. With LM en-
tropy as distance function, it is reduced from 0.439
to 0.112 for k = 10, and from 0.344 to 0.064
with k = 100. A second advantage of smooth-
ing is that the algorithm converges faster, and re-
duces the number of iterations by a factor of 2–
4. Thus, smoothing seems a good choice because
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system BLEU METEOR
general 18.5 37.3
adapted TM 18.8 37.8
adapted LM 18.8 37.8
adapted TM & LM 18.6 37.9

Table 3: Baseline SMT results DE–FR. Concate-
nation of all data and using domain adaptation with
original four datasets.

the smoothed algorithm is both faster and better at
clustering sentences from the same original dataset
into the same cluster. Whether this leads to bet-
ter SMT performance is tested in the evaluation of
translation performance.

We can compare translation performance to four
baselines, shown in table 3. The general system
(without domain adaptation) performs worst, with
a BLEU score of 18.5 and a METEOR score of
37.3. Both TM and LM adaptation significantly
increase scores by 0.3 BLEU and 0.5 METEOR
points. The system that combines TM and LM
adaptation is not significantly different from the
systems with only one model adapted in terms of
BLEU, but performs best in terms of METEOR
(0.6 points better than the general model).

For the experimental systems, we limit our-
selves to LM entropy as distance function, and
vary a number of parameters. k, the number of
clusters, is 10 in table 4, and 100 in table 5.
For both k, we test clustering without smooth-
ing (sentence-level clustering) and with exponen-
tial smoothing and a decay factor of 0.5. For
each variation of these parameters, we pick a sin-
gle clustering run at random. For model combina-
tion, we contrast the approach by Yamamoto and
Sumita (2008) (i.e. domain prediction with a fixed
interpolation), and the mixture models described in
section 4, i.e. perplexity-minimization to find the
optimal weights for the linear interpolation of the
language and translation model (Sennrich, 2012).

In sections 3.1 and 4, we have identified possi-
ble shortcomings of the original approach by (Ya-
mamoto and Sumita, 2008), and will now reiterate
and discuss them.

Firstly, we have hypothesized that unsmoothed
sentence-level clustering may fail to cluster in-
domain data together, and have proposed expo-
nential smoothing. The entropy results in table
2 support this hypothesis; if we look at transla-
tion results with document-level domain predic-

tion, the performance differences are small. A look
at the clusters that are selected in domain predic-
tion shows that smoothing improved homogene-
ity (180 000 in-domain / 20 000 out-of-domain
sentence pairs) over an unsmoothed sentence-level
clustering (146 000 in-domain / 90 000 out-of-
domain), but both approaches cluster the majority
of the 200 000 in-domain sentence pairs together
and outperform the unadapted baseline.

Secondly, we suspected that domain predic-
tion on a sentence-level would suffer from sim-
ilar data-sparseness problems, and not pick the
optimal cluster for translation. With 10 clusters,
there is little difference between sentence-level and
document-level domain prediction, both in terms
of performance and the cluster that is predicted
in domain prediction. With (smoothed or un-
smoothed) sentence-level prediction, 80-90% of
test set sentences are predicted to belong to the
same cluster. With 100 clusters, the opposite of
our hypothesis is true. Document-level domain
prediction performs worse than (smoothed or un-
smoothed) sentence-level domain prediction, and
no better than the unadapted baseline. For the in-
terpretation of this result, we must also consider
the mixture-modeling results.

Adapting models through perplexity optimiza-
tion performs better than or equally well as the
methods with domain prediction and a fixed inter-
polation between the domain-specific and the gen-
eral model. This is true for both domain predic-
tion methods, and both smoothed and unsmoothed
clustering. The best result is obtained with k = 10
and smoothed clustering, with a BLEU score of
19.2 and a METEOR score of 38.3, which is 0.7
BLEU points and 1 METEOR points above the
unadapted baseline. The system also beats the
adapted baseline, which uses the same model com-
bination algorithm on the original four datasets, by
0.6 BLEU points and 0.4 METEOR points, and
the approach by (Yamamoto and Sumita, 2008)
(sentence-level clustering and domain prediction)
by 0.3 BLEU points and 0.4 METEOR points.

With 100 clusters, perplexity minimization
yields no further performance gains, but remains
significantly better than the systems with domain
prediction and the baseline systems. As to the
reason why document-level domain prediction per-
forms poorly with 100 clusters, the main problem
is that relevant data is spread out over multiple
clusters, and that only a small amount of relevant
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clustering domain prediction model combination
adapted TM adapted TM & LM

BLEU METEOR BLEU METEOR

sentence-level
sentence-level fixed weights 18.7 37.6 18.9 37.9
document-level fixed weights 18.8 37.7 18.9 37.9
- perplexity 18.8 38.0 18.9 38.2

smoothed
smoothed fixed weights 18.9 37.8 19.0 38.0
document-level fixed weights 18.9 37.8 19.0 38.1
- perplexity 19.1 38.3 19.2 38.3

Table 4: SMT results DE–FR based on clustered training data (k = 10).

clustering domain prediction model combination
adapted TM adapted TM & LM

BLEU METEOR BLEU METEOR

sentence-level
sentence-level fixed weights 18.8 37.7 18.6 37.6
document-level fixed weights 18.5 37.5 18.5 37.5
- perplexity 19.0 38.0 19.0 38.3

smoothed
smoothed fixed weights 18.6 37.5 18.5 37.5
document-level fixed weights 18.6 37.5 18.4 37.4
- perplexity 19.1 38.1 19.1 38.2

Table 5: SMT results DE–FR based on clustered training data (k = 100).

data can be considered with document-level do-
main prediction. Sentence-level domain prediction
avoids this problem by choosing different cluster-
specific models to translate different sentences, the
perplexity mixture-models by being able to give
high weights to multiple cluster-specific models.

6 Conclusion

We demonstrate that it is possible to apply
mixture-modeling techniques to models that are
obtained through unsupervised clustering of a het-
erogeneous training text. We obtained a mod-
est performance boost from applying mixture-
modeling on the clusters rather than the original
parallel corpora. The main advantage of the clus-
tering step, however, is that it reduces the require-
ments for mixture-modeling, eliminating the need
for a homogeneous, in-domain training corpus,
and only requiring a development set from the tar-
get domain. It is thus more general and could be
applied to monolithic, heterogeneous data collec-
tions.

Compared to the fully unsupervised method by
(Yamamoto and Sumita, 2008), we observed small
performance improvements of up to 0.3 BLEU

points. In a closed-domain setting, the approach
also has the advantage of moving the domain adap-
tation cost into the offline phase, and not requir-
ing a domain prediction phase and multiple mod-
els during decoding. To support multiple target do-

mains, the approach could be combined with that
of (Banerjee et al., 2010), who discuss the prob-
lem of translating texts that contain sentences from
multiple (known) domains.

We also propose exponential smoothing during
cluster assignment to better capture slow-changing
textual properties such as their domain member-
ship, and to combat data sparseness issues when
having to do an assignment decision based on short
sentences. While the effects on our translation ex-
periments were small, the increased homogeneity
of the resulting clusters and the faster speed of con-
vergence indicate that smoothing is a beneficial en-
hancement to sentence-level k-means clustering.
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