
Learning Machine Translation from In-domain and Out-of-domain Data

Marco Turchi
European Commission JRC,

IPSC - GlobeSec
Via Fermi 2749,

21020 Ispra (VA), Italy
marco.turchi@jrc.ec.europa.eu

Cyril Goutte
Interactive Language Tech.,

National Research Council Canada,
283 Boulevard Alexandre-Taché,
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Abstract

The performance of Phrase-Based Statis-
tical Machine Translation (PBSMT) sys-
tems mostly depends on training data.
Many papers have investigated how to cre-
ate new resources in order to increase
the size of the training corpus in an at-
tempt to improve PBSMT performance.
In this work, we analyse and characterize
the way in which the in-domain and out-
of-domain performance of PBSMT is im-
pacted when the amount of training data
increases. Two different PBSMT systems,
Moses and Portage, two of the largest par-
allel corpora, Giga (French-English) and
UN (Chinese-English) datasets and several
in- and out-of-domain test sets were used
to build high quality learning curves show-
ing consistent logarithmic growth in per-
formance. These results are stable across
language pairs, PBSMT systems and do-
mains. We also analyse the respective im-
pact of additional training data for esti-
mating the language and translation mod-
els. Our proposed model approximates
learning curves very well and indicates the
translation model contributes about 30%
more to the performance gain than the lan-
guage model.

1 Introduction

With the growing availability of bilingual parallel
corpora, the past two decades saw the development
and widespread adoption of statistical machine
translation (SMT) models. Given a source (“for-
eign”) language sentence f and a target (“english”)
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language translation e, the relationship between e
and f is modelled using a statistical or probabilis-
tic model which is estimated from a large amount
of textual data, comprising bilingual and monolin-
gual corpora. The most popular class of SMT sys-
tems is Phrase-Based SMT (PBSMT, (Koehn et al.,
2003)).

In this paper, we are concerned with analyzing
and characterizing the way in which the perfor-
mance of PBSMT models evolves with increasing
amounts of training data. In the SMT community,
it is a common belief that learning curves follow
logarithmic laws. However, there are few large-
scale systematic analyses of the growth rate of the
PBSMT performance. Early work (Al-Onaizan
et al., 1999) used a relatively small training set
and perplexity as evaluation metric. (Koehn et
al., 2003) and (Suresh, 2010) show that BLEU
score has a log-linear dependency with training
corpus size, but this is limited to 350k training
sentence pairs. Learning curves were also pre-
sented in order to motivate the use of active learn-
ing for MT (Bloodgood and Callison-Burch, 2010;
Haffari et al., 2011). They attempt to address
the challenge of “diminishing returns” in learn-
ing MT, although this is again done with small
training corpora (<90k sentence pairs), and, on a
log-scale, performance seems again to increase lin-
early. (Brants et al., 2007) produced a large-scale
study, but focused on the language model training
only, with billions of (monolingual) tokens.

The first complete and systematic analysis of
PBSMT learning curves was obtained by (Turchi
et al., 2008) using the Spanish-English Europarl,
and recently extended to larger training data and
more systems by (Turchi et al., 2011). In their
work, accurate learning curves obtained over a
large range of data sizes confirm that performance
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grows linearly in the log domain.
The reason why relatively few systematic stud-

ies have been reported may be that producing ac-
curate learning curves up to large data sizes with
state-of-the-art systems requires the use of high
performance computing in a carefully set up envi-
ronment. This may seem dispensable when typical
SMT research is usually focused on maximizing
the performance that can be extracted from a given
data set, rather than analysing how this perfor-
mance evolves. However, we believe that the anal-
ysis and quantification of the way machine transla-
tion systems learn from data are important steps to
identify critical situations which affect the overall
translation performance. We also wish to charac-
terize PBSMT performance up to data sizes more
typical of current large-scale bilingual corpora.

In the following we pursue three purposes:

1. We confirm, in a systematic way, previous
findings that PBSMT performance gains con-
stant improvements for each doubling of the
data. This holds across systems, language
pairs and over a large range of data sizes.

2. We show that, somewhat surprisingly, this
extends to out-of-domain data, although the
growth is weaker in that case.

3. We analyse and quantify the relative impor-
tance of training data in language and trans-
lation model training, and show that the latter
contributes about 30% more to the gains in
performance.

In contrast with previous work, we build our
learning curves using two of the largest available
parallel training sets: the French-English Giga cor-
pus and the Chinese-English UN corpus. In addi-
tion to being large corpora, these also cover two
very distinct language pairs. We also use two PB-
SMT systems: Moses (Koehn et al., 2007) and
Portage (Ueffing et al., 2007). Finally, we analyze
in- and out-of-domain learning curves in order to
better understand and investigate the growth rate.

The following section gives a quick overview
of the models and systems we used in our exper-
iments. We then briefly describe the experimen-
tal settings and data we used. Section 4 shows
and analyzes the learning curves we obtained on
French-English and on Chinese-English, and sec-
tion 5 presents our results on the relative impor-
tance of LM and TM in the performance increase.

2 Translation Models and Systems

The standard phrase-based machine translation
systems which we analyse here rely on a log-linear
model and a set of baseline features functions.
Translations of a source sentence f is obtained by:

ê(f) = argmax
e

∑
i

λihi(e, f).

where the hi(e,a, f) are feature functions involv-
ing both the source and target sentences, and the λi

are the weights of those feature functions. Typical
examples of feature functions that compose a basic
phrase-based MT system are:

• phrase translation feature, e.g.:
hT (e, f) =

∑
k log p(fk|ek);

• language model feature, e.g.:
hL(e, f) =

∑
j log p(wj |wj−1, . . . w1)

• distortion feature, e.g.:
hD(e, f) =

∑
k ‖start(fk) - end(fk−1)− 1‖

• Word penalty and/or phrase penalty features.

where ek and fk are contiguous subsequences of
words in the source and target sentences and wj

are target words.
Parameter estimation is crucial for both the

translation and language model features. Con-
ditional probabilities are estimated from a large
training corpus using empirical counts and vari-
ous smoothing strategies. In addition, the weights
λi are also estimated from a (usually disjoint) cor-
pus of source and target sentence pairs. The size
and composition of the training data will therefore
have an influence on the quality of the predictions
ê through the estimation of both the log-linear pa-
rameters and the feature functions.

Note that alternate models such as hierarchi-
cal (Chiang, 2007) or syntax based (Zollman
and Venugopal, 2006) have been developed and
could also be studied. However their use on the
large scale necessary for creating accurate learning
curves would require solving a number of prac-
tical issues and we focus instead on the straight
PBSMT approach, which has been shown in re-
cent MT evaluations (Callison-Burch et al., 2009;
Callison-Burch et al., 2011) to offer competitive
performance.
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2.1 PBSMT Software
Several software packages are available for train-
ing PBSMT systems. In this work, we use
Moses (Koehn et al., 2007) and Portage (Ueffing
et al., 2007), two state-of-the-art systems capa-
ble of learning translation tables, language mod-
els and decoding parameters from one or several
parallel corpora. Moses is a complete open-source
phrase-based translation toolkit available for aca-
demic purposes, while Portage is a similar pack-
age, available to partners of the National Research
Council Canada.

Given a parallel training corpus, both perform
basic preprocessing (tokenization, lowercasing,
etc.) if necessary, and build the various com-
ponents of the model. Both use standard exter-
nal tools for training the language model, such
as SRILM (Stolcke, 2002). Moses uses GIZA++
(Och and Ney, 2003) for word alignments, while
Portage uses an in-house IBM model and HMM
implementation. The parameters of the log-linear
models are tuned using minimum error rate train-
ing (MERT, (Och, 2003)).

Earlier experiments performed on the Europarl
corpus with both systems showed (Turchi et al.,
2011) that despite small differences in observed
performance, both systems produce very similar
learning curves.

3 Experimental Setting

3.1 Corpora
We experiment with large corpora in two language
pairs: French-English and Chinese-English.

For French-English, we use the Giga corpus
(Callison-Burch et al., 2009) to provide the train-
ing, development and one in-domain test set. As
out-of-domain test set, we use two different sam-
ples from the EMEA corpus (Tiedemann, 2009),
which contains parallel documents from the Eu-
ropean Medicines Agency, and two News test
sets from the 2009 (Callison-Burch et al., 2009)
and 2011 (Callison-Burch et al., 2011) editions
of the Workshop on Statistical Machine Transla-
tion, containing news articles drawn from a variety
of sources and languages in different periods and
translated by human translators.

For Chinese-English, we use various parallel
corpora obtained from the Linguistic Data Con-
sortium for the NIST evaluations. The train-
ing, development and in-domain test sets are
sampled from the United Nations corpus (UN,

src Training Set Sentences Words
fr Giga 18.276 M 482,744k
ch UN 4.968 M 163,960k

Dev. Set
fr Giga 1,000 62k
ch UN 2,000 32k

Test Set
fr Giga 3,000 109k
fr Emea 3,051 45.4k
fr Emea2 3,051 46.7k
fr News 2009 2,489 70.7k
fr News 2011 3,030 85.1k
ch UN 10,000 332k
ch HKH 5,000 153k
ch NIST 1,357 42k
ch News 10,317 320k

Table 1: Number of sentences and words (source
side) for the training, dev and various test sets.

LDC2004E12). As out-of-domain test sets, we
used a sample from the Hong-Kong Hansard
(HKH, LDC2000T50), a corpus of Chinese News
translations (LDC2005T06) and the NIST 2008
Chinese evaluation set (LDC2009E09). Basic
statistics are given in Table 1.

In order to analyse the way MT performance
evolves with increasing data, we subsample (with-
out replacement) the training sets at various sizes,
averaging performance (estimated by BLEU, cf.
section 3.3) over several samples. Learning curves
are then obtained by plotting the average BLEU
score, with error bars, as training data sizes in-
creases. The relatively large amount of sentences
in most test sets will allow us to reduce the uncer-
tainty on the estimated test error, therefore produc-
ing smaller error bars.

For the French-English data, we followed the
methodology proposed in (Turchi et al., 2008) and
sampled 20 different sizes representing 5%, 10%,
etc. of the original training corpus. Due to the
large size of the corpus, only three random subsets
are sampled at each size. For the Chinese-English
dataset, we sampled at sizes corresponding to one
half, one quarter, etc. down to 1/512th (∼ 0.2%)
of the full size. At each size we produced 10 ran-
dom samples. Each random subsample produces
a model (cf. below) which is used to translate the
various test sets. The learning curves will there-
fore cover the range from around 900 thousand

307



to 18.3 million sentences for French-English, and
from around 10 thousand to 5 million sentences for
Chinese-English.

Note that the corpora, in addition to differing
in language pair, also differ in domain and ho-
mogeneity. The UN data contains only material
from the United Nations, covering a wide range
of themes, but fairly homogeneous in terms of
style and genre. The Giga corpus, on the other
hand, was obtained through a targeted web crawl
of bilingual web sites from the Canadian govern-
ment, the European Union, the United Nations,
and other international organizations. In addition
to covering a wide range of themes, they also con-
tain documents with different styles and genres.
Moreover, we estimated in an independent study
that the rate of misaligned sentence pairs in the
Giga corpus is as high as 13%.

The choice of source languages is driven by the
desire to analyze two very different languages and
by the scarcity of large publicly available bilingual
corpora, especially outside European languages.
UN data is also available in Russian or Arabic, but
by definition would be the same domain and ho-
mogeneity as the Chinese-English corpus.

3.2 PBSMT System Training
For both systems, Portage and Moses, we used the
basic configuration and features: phrase extraction
is done by aligning the corpus at the word level
(IBM models 1, 2, 3 and 4 for Moses, HMM and
IBM2 models for Portage), the parameters of the
log-linear model are set using an implementation
of Och’s MERT algorithm (Och, 2003), n-gram
language modelling uses Kneser-Ney smoothing
(3-gram using SRILM for Moses and 4-gram for
Portage) and the maximum phrase length is 7 to-
kens. In Portage, phrase pairs were filtered so that
the top 30 translations for each source phrase were
retained. In both systems, the MERT algorithm
was independently run on each sampled training
set for each experiment.

Note that we expect that there will be differ-
ences in the quality of the translation depending on
the source language. However, we are not so much
interested in the actual translation performance as
in the way this performance evolves with increas-
ing data under various conditions.

3.3 Evaluation metrics
We report performance in terms of BLEU score
(Papineni et al., 2001), the well accepted and

widespread automatic MT metric. We are well
aware that maximizing BLEU may neither be nec-
essary for, nor guarantee good translation perfor-
mance, and that automatic MT metrics may not
tell the whole story as far as translation quality is
concerned. However, our systematic study aims at
characterizing the behaviour of PBSMT systems
that are built by maximizing such metrics, and this
maximization is part of the learning system we an-
alyze. Deriving learning curves for human evalu-
ations of translation quality would be interesting,
but is clearly impractical at his point.

4 Learning Curve Analysis

We now present the results obtained under the gen-
eral framework outlined above.

We stress that in these experiments, we focus on
the growth rate of the learning curves. In particu-
lar we are interested in 1) confirming that learning
curves have logarithmic growth, and 2) possible
differences between domains, languages and sys-
tems. A common, but poorly supported belief in
PBSMT is that each doubling of the data yields a
more or less constant increase in performance. In
order to analyze and support this belief, we show
all learning curves on a log scale, where we can
check if the curve has a linear behaviour.

Note that sampling without replacement results
in an increasing overlap between samples as their
sizes grow. The size of the error bars therefore de-
creases as the training set size grows, because the
training sets, and therefore the resulting models,
are not independent. This must be kept in mind,
although we still believe that the presence of error
bars helps to better understand the stability of the
MT system’s performance.

The resulting learning curves are shown in Fig-
ures 1 and 2 for the French-English and Chinese-
English data, respectively. The plots show the
performance, averaged over samples (marks, con-
nected with dotted lines), the error bars (vertical
lines) indicating the natural variance in the perfor-
mance, and a least-squares linear fit of these points
(dashed or solid line). It is very clear that the learn-
ing curves are almost exactly linear on the log scale
in most cases (Chinese-English and most French-
English curves). The EMEA 2 and News 2009
curves display a worse fit, but the empirical results
are within error bars of the linear fit, showing that
the deviation from linearity is not statistically sig-
nificant. The instability in these last two curves
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Figure 1: French-English learning curves obtained
using the Giga corpus for training Moses on five
test sets: one in-domain and four out-of-domain.

may actually be due to the fact mentioned earlier
that the dependency between the performance esti-
mates increases for large training sizes, which may
lead to an increasing bias in the average.

These results confirm the findings of (Turchi et
al., 2008) and extend them to more language pairs
and much larger data sizes. These experiments
supports the following claims:

• The increase in performance for PBSMT sys-
tems is essentially constant for each doubling
of the data, over a wide range of training data
sizes. Note that the growth does not seem to
slow down as we near 20M training sentence
pairs.

• A corollary of that first claim is that minor,
even statistically significant increases in per-
formance due to model “tweaking” are likely
to be dwarfed by moderate increases in data
sizes. For our Chinese system, for example, a
10% increase in data produces a 0.43 BLEU
gain.

• On a linear scale, however, the addition of
massive amounts of data from the same do-
main will result in diminishing improvements
(“diminishing returns”) in the performance
after an initial fast growth (Turchi et al., 2008;
Bloodgood and Callison-Burch, 2010).

• Interestingly, the general shape of the learn-
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Figure 2: Chinese-English learning curves ob-
tained using the UN corpus for training Portage
on four test sets: one in-domain and three out-of-
domain.

ing curves is essentially the same across dif-
ferent language pairs, different PBSMT sys-
tems, and also over different sources of test
data (in-domain or out-of-domain).

• In particular, although the performance on
out-of-domain data may greatly suffer (cf.
Figure 2), the rate of increase is still linear
in the log domain, up to large data sizes.

In order to quantify these findings, we estimate
the gain per each doubling of the training set size
by fitting a simple linear model on the learning
curves in the log domain. For the Chinese-English
data, each doubling of the data yields a gain of
around 2.1 BLEU points on the in-domain data,
and only 0.6 on the out-of-domain test sets. For
the French-English data, the BLEU gain per train-
ing data doubling is around 1.5 points for the in-
domain data, 1.1 for the EMEA test sets and 0.6
for the News test sets.

One may wonder why the out-of-domain EMEA
test sets yield such high learning curves. Although
the EMEA data comes from a European agency,
we have verified that the sentences it contains are
not contained in the Giga corpus. However, it turns
out that the EMEA data is actually fairly easy to
translate. The language is relatively constrained
and repetitive, sentences are much shorter (on av-
erage∼15 words against more than 28 for the other
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corpora), and the number of out-of-vocabulary
words much lower than in the other test sets.

By contrast, all out-of-domain learning curves
on Chinese-English are much lower than the in-
domain curves (we have corroborated this with a
dozen different test sets taken from various sources
available for NIST evaluations, but omitted here
for clarity). We believe this reflects differences be-
tween the sources of our training data. The UN
corpus covers a number of topics but is very ho-
mogeneous and rather limited in genre. By con-
trast, the Giga corpus contains a wide range of doc-
uments covering many themes and genres. As a
consequence, any test set that does not come from
the UN data is distinctively different and “far” out-
of-domain. On the other hand, it is not inconceiv-
able that even for French text that does not come
from the same sources, the larger and more diverse
Giga corpus provides some measure of overlap in
topics and genre.

5 Relative Importance of TM and LM

In the previous Section, experiments have been run
using the same training set size for language and
translation models. However, there is a large dif-
ference in the cost of training data for language
and translation models. The former can be trained
using monolingual data only while the latter re-
quires bilingual texts. In recent years, several
parallel corpora have been produced, e.g. Eu-
roparl (Koehn, 2005), JRC Acquis (Steinberger et
al., 2006), and others, but they are not comparable
to the amount of freely available monolingual data.

(Brants et al., 2007) have shown that perfor-
mance improves linearly with the log of the num-
ber of tokens in the language model training set
when this quantity is huge (from billions to tril-
lions of tokens). In this section, we are interested
in understanding the trade-off between the train-
ing data size used to build language and transla-
tion models, as well as in how performance is af-
fected by that difference. We propose a mathemat-
ical model to estimate the variation in BLEU score
according to the size of the training data used by
the language model vs. that use by the translation
model. The previous section shows that the over-
all performance of a PBSMT system grows in the
logarithm of the training data size. We therefore
modelled this relation in the following way:

BLEU(dLM , dTM ) =
αLM ∗ log2(dLM ) + αTM ∗ log2(dTM ) + ε

where dLM is the amount of training data used to
build the language model, dTM is the amount of
training data used to build the Translation Model.
αLM and αTM are weighting factors that identify
the contribution of language and translation train-
ing data to the BLEU score, and ε is the residual.
Note that when dLM = dTM , we recover a simple
logarithmic relationship between performance and
data size, as illustrated in the previous section.

In order to evaluate the relation between the
amount of training data used to build language
and translation models we estimate αLM and αTM

from data. We focus on the French-English data,
and use the training data subsets at every 10% of
the full data size (10%, 20%, etc.), using the same
development and test sets as before. One instance
of a PBSMT model is learned for each combina-
tion of language and translation training data sizes,
and we compute the resulting BLEU on the test
sets. We estimate the parameters αLM and αTM

using multivariate linear regression based on least
squares (Draper and Smith, 1981), with the BLEU
scores as response variables and the log values of
the LM and TM training sizes as explanatory vari-
ables. This is done for three French-English test
sets: the in-domain Giga, Emea and News 2009.
The Emea2 and News 2011 test sets were qualita-
tively very similar.

We estimated the weighting factors using all the
data. The results in Table 2 empirically confirm
the common belief that adding data to the transla-
tion model is more important than to the language
model (αTM > αLM ). The values of αLM and
αTM vary across the test sets, and correspond to
an increase of 1 to 1.3 BLEU point per doubling of
the training data for the LM and 1.2 to 1.8 BLEU
point per doubling for the TM. However, the ratio
is rather stable, indicating that the relative impor-
tance of the TM w.r.t. the LM is stable across do-
mains. Not surprisingly, the more similar the test
set is to the training data, the larger is the BLEU
point growth. Our results are qualitatively com-
patible with the observations reported in a tutorial
by (Och, 2005), although the increments in BLEU
with each doubling of the training data size are
reported 0.5 and 2.5 points for the language and
translation models, respectively, in the context of
Arabic-English translation. The ratio we observed
in our experiments is lot more favourable to the
language model.

In order to validate this finding, we performed
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Test Set αLM αTM αTM/αLM

Giga 0.0133 0.0182 1.368
Emea 0.0134 0.0168 1.2563

News 2009 0.0097 0.0122 1.2532

Table 2: Empirical estimation of the contributions
αLM and αTM of the LM and TM, respectively, (ε
is smaller than 1×10−4), in BLEU per log2 in size.
Experiments have been performed independently
on the three test sets.

two simple experiments where we added a fairly
large, 10 million sentence corpus of monolingual
data (not included in the Giga corpus) to our LM
training data, starting with around 5 million sen-
tence of bilingual data from the Giga corpus. This
produced a 1.79 BLEU increase in performance
on News 2009 and 1.38 BLEU increase on News
2011, which is roughly consistent with a tripling
in LM training data size according to the rate esti-
mated in Table 2 (0.97× log2 3 ≈ 1.54).

6 Discussion

Although limited to two language pairs, our results
investigate the behaviour of PBSMT as a learn-
ing system over a range of different conditions:
very different language pairs, in-domain and out-
of-domain data, differing level of corpus homo-
geneity. etc. We emphasize that obtaining system-
atic and accurate learning curves requires a signif-
icant effort, even with an high performance com-
puting architecture (Figure 2 requires translating
more than 3 million test sentences with 91 mod-
els).

The learning curves obtained here suggest that,
on an absolute (linear) scale, performance gains
per fixed amount of additional data decrease. The
diminishing improvements in performance after an
early fast growth was also reported by (Uszkoreit
et al., 2010) who mined the Web to extract very
large sets of parallel documents. Starting with two
corpora (French/Spanish to English) similar in di-
mensions to the Giga training set and using the
News 2009 test sets, they report that adding more
than 4,800 M words from a different domain re-
sulted in relative small performance gains (< 2
BLEU points).

On a log-scale, on the other hand, there is no
sign that performance gains decrease as we keep
doubling the training corpus size, at least up to
20M sentence pairs. Note that although usual

MT metrics have natural bounds (0 for error-based
metrics such as TER, 1 for BLEU), this has little
practical relevance to the results presented here.
Indeed, assuming we could extrapolate the very
stable growth rates observed here, taking the per-
formance of the out-of-domain HKH test set to
where the in-domain UN data starts (for 10k sen-
tence pairs only) would require close to 180 billion
sentence pairs. For all practical purpose, we would
run out of data long before we reached even half of
the theoretical maximum BLEU score.

Finally, the analysis of the relative importance
of TM and LM estimation shows that the trans-
lation model contributes about 30% more to the
increase in performance than the language model.
Considering the crucial role of the phrase table in
the translation process, this contribution is maybe
less than one would expected. This means that the
massive addition of training data to the language
model has a substantial impact in terms of perfor-
mance, as shown by (Brants et al., 2007). It is in-
teresting that the ratio of αTM and αLM seems sta-
ble across different domains. The relation between
the translation and language model contribution to
the final BLEU score does not change whether we
translate in- or out-of-domain data.

7 Conclusion

Using state-of-the-art Phrase-Based Statistical
Machine Translation packages and large parallel
corpora, we derived very accurate learning curves
for a number of language pairs and domains. Our
results suggest that performance, as measured by
BLEU, increases by a constant factor for each
doubling of the data. Although that factor varies
depending on corpus and language pair, this re-
sult seems consistent over all experimental con-
ditions we tried. Our findings confirm the results
reported for example by (Brants et al., 2007) and
(Och, 2005), and extend and complete the findings
of (Turchi et al., 2008).

We propose a study of how performance is influ-
enced by difference sizes of data used for training
the language and translation models. Our model
gives more importance to the translation model
than the language model every doubling of train-
ing data, but we are lot more favourable to the lan-
guage model compared to other reported results in
the literature.

Even if we do not currently provide any result
that is immediately actionable to improve current
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PBSMT performance, we believe it is important
to analyse and quantify the way Machine Transla-
tion systems learn. In addition, the markedly dif-
ferent rates of performance increase for in-domain
and out-of-domain data may provide a clue to bet-
ter characterise the suitability of a MT model to
translate a given test set. Investigating features
that help us differentiate out-of-domain from in-
domain data may prove very useful to improve
practical performance of PBSMT systems.
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