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Abstract

Production of parallel training corpora for the
development of statistical machine translation
(SMT) systems for resource-poor languages
usually requires extensive manual effort. Ac-
tive sample selection aims to reduce the la-
bor, time, and expense incurred in produc-
ing such resources, attaining a given perfor-
mance benchmark with the smallest possible
training corpus by choosing informative, non-
redundant source sentences from an available
candidate pool for manual translation. We
present a novel, discriminative sample selec-
tion strategy that preferentially selects batches
of candidate sentences with constructs that
lead to erroneous translations on a held-out de-
velopment set. The proposed strategy supports
a built-in diversity mechanism that reduces
redundancy in the selected batches. Simu-
lation experiments on English-to-Pashto and
Spanish-to-English translation tasks demon-
strate the superiority of the proposed approach
to a number of competing techniques, such
as random selection, dissimilarity-based se-
lection, as well as a recently proposed semi-
supervised active learning strategy.

1 Introduction

Resource-poor language pairs present a significant
challenge to the development of statistical machine
translation (SMT) systems due to the latter’s depen-
dence on large parallel texts for training. Bilingual
human experts capable of producing the requisite
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data resources are often in short supply, and the task
of preparing high-quality parallel corpora is labori-
ous and expensive. In light of these constraints, an
attractive strategy is to construct the smallest pos-
sible parallel training corpus with which a desired
performance benchmark may be achieved.

Such a corpus may be constructed by selecting the
most informative instances from a large collection
of source sentences for translation by a human ex-
pert, a technique often referred to asactive learn-
ing. A SMT system trained with sentence pairs thus
generated is expected to perform significantly better
than if the source sentences were chosen using, say,
a näıve random sampling strategy.

Previously, Eck et al. (2005) described a selec-
tion strategy that attempts to maximize coverage by
choosing sentences with the highest proportion of
previously unseenn-grams. Depending on the com-
position of the candidate pool with respect to the
domain, this strategy may select irrelevant outliers.
They also described a technique based on TF-IDF to
de-emphasize sentences similar to those that have al-
ready been selected, thereby encouraging diversity.
However, this strategy is bootstrapped by random
initial choices that do not necessarily favor sentences
that are difficult to translate. Finally, they worked
exclusively with the source language and did not use
any SMT-derived features to guide selection.

Haffari et al. (2009) proposed a number of fea-
tures, such as similarity to the seed corpus, transla-
tion probability,n-gram and phrase coverage, etc.,
that drive data selection. They also proposed a
model in which these features combine linearly to
predict a rank for each candidate sentence. The
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top-ranked sentences are chosen for manual transla-
tion. However, this approach requires that the pool
have the same distributional characteristics as the
development sets used to train the ranking model.
Additionally, batches are chosen atomically. Since
similar or identical sentences in the pool will typi-
cally meet the selection criteria simultaneously, this
can have the undesired effect of choosing redundant
batches with low diversity.

The semi-supervised active learning strategy pro-
posed by Ananthakrishnan et al. (2010) uses multi-
layer perceptrons (MLPs) to rank candidate sen-
tences based on various features, including domain
representativeness, translation difficulty, and batch
diversity. A greedy, incremental batch construction
technique encourages diversity. While this strat-
egy was shown to be superior to random as well
asn-gram based dissimilarity selection, its coarse
granularity (reducing a candidate sentence to a low-
dimensional feature vector for ranking) makes it un-
suitable for many situations. In particular, it is seen
to have little or no benefit over random selection
when there is no logical separation of the candidate
pool into “in-domain” and “out-of-domain” subsets.

This paper introduces a novel, active sample se-
lection technique that identifies translation errors on
a held-out development set, and preferentially se-
lects candidate sentences with constructs that are
incorrectly translated in the former. A discrimina-
tive pairwise comparator function, trained on the
ranked development set, is used to order candidate
sentences and pick sentences that provide maximum
potential reduction in translation error. The feature
functions that power the comparator are updated af-
ter each selection to encourage batch diversity. In
the following sections, we provide details of the pro-
posed sample selection approach, and describe sim-
ulation experiments that demonstrate its superiority
over a number of competing strategies.

2 Error-Driven Active Learning

Traditionally, unsupervised selection strategies have
dominated the active learning literature for natural
language processing (Hwa, 2004; Tang et al., 2002;
Shen et al., 2004). Sample selection for SMT has
followed a similar trend. The work of Eck et al.
(2005) and most of the techniques proposed by Haf-

fari et al. (2009) fall in this category. Notable ex-
ceptions include the linear ranking model of Haf-
fari et al. (2009) and the semi-supervised selection
technique of Ananthakrishnan et al. (2010), both of
which use one or more held-out development sets to
train and tune the sample selector. However, while
the former uses the posterior translation probability
and the latter, a sentence-level confidence score as
part of the overall selection strategy, current active
learning techniques for SMT do not explicitly target
the sources of error.

Error-driven active learning attempts to choose
candidate instances that potentially maximize error
reduction on a reference set (Cohn et al., 1996;
Meng and Lee, 2008). In the context of SMT, this
involves decoding a held-out development set with
an existing baseline (seed) SMT system. The selec-
tion algorithm is then trained to choose, from the
candidate pool, sentences containing constructs that
give rise to translation errors on this set. Assum-
ing perfect reference translations and word align-
ment in subsequent SMT training, these sentences
provide maximum potential reduction in translation
error with respect to the seed SMT system. It is asu-
pervisedapproach to sample selection. We assume
the following are available.

• A seed parallel corpusS for training the initial
SMT system.

• A candidate pool of monolingual source sen-
tencesP from which samples must be selected.

• A held-out development setD for training the
selection algorithm and for tuning the SMT.

• A test setT for evaluating SMT performance.

We further make the following reasonable as-
sumptions: (a) the development setD and the test
setT are drawn from the same distribution and (b)
the candidate poolP consists of both in- and out-
of-domain source sentences, as well as an allowable
level of redundancy (similar or identical sentences).

Using translation errors on the development set to
drive sample selection has the following advantages
over previously proposed active learning strategies
for SMT.

• The seed training corpusS need not be derived
from the same distribution asD andT. The seed
SMT system can be trained with any available
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parallel corpus for the specified language pair.
This is very useful if, as is often the case, lit-
tle or no in-domain training data is available to
bootstrap the SMT system. This removes a criti-
cal restriction present in the semi-supervised ap-
proach of Ananthakrishnan et al. (2010).

• Sentences chosen are guaranteed to be relevant
to the domain, because selection is based onn-
grams derived from the development set. This
alleviates potential problems with approaches
suggested by Eck et al. (2005) and several tech-
niques used by Haffari et al. (2009), where ir-
relevant outliers may be chosen simply because
they contain previously unseenn-grams, or are
deemed difficult to translate.

• The proposed technique seeks to minimize
held-out translation error rather than maximize
training-set coverage. This is the more intuitive,
direct approach to sample selection for SMT.

• Diversity can be encouraged by preventingn-
grams that appear in previously selected sen-
tences from playing a role in choosing subse-
quent sentences. This provides an efficient alter-
native to the cumbersome “batch diversity” fea-
ture proposed by Ananthakrishnan et al. (2010).

The proposed implementation of error-driven ac-
tive learning for SMT, discriminative sample selec-
tion, is described in the following section.

3 Discriminative Sample Selection

The goal of active sample selection is to induce an
ordering of the candidate instances that satisfies an
objective criterion. Eck et al. (2005) ordered can-
didate sentences based on the frequency of unseen
n-grams. Haffari et al. (2009) induced a ranking
based on unseenn-grams, translation difficulty, etc.,
as well as one that attempted to incrementally max-
imize BLEU using two held-out development sets.
Ananthakrishnan et al. (2010) attempted to order the
candidate pool to incrementally maximize sourcen-
gram coverage on a held-out development set, sub-
ject to difficulty and diversity constraints.

In the case of error-driven active learning, we at-
tempt to learn an ordering model based on errors
observed on the held-out development setD. We
achieve this in an innovative fashion by casting the

ranking problem as a pairwise sentence compari-
son problem. This approach, inspired by Ailon and
Mohri (2008), involves the construction of a binary
classifier functioning as a relational operator that can
be used to order the candidate sentences. The pair-
wise comparator is trained on an ordering ofD that
ranks constituent sentences in decreasing order of
the number of translation errors. The comparator is
then used to rank the candidate pool in decreasing
order of potential translation error reduction.

3.1 Maximum-Entropy Pairwise Comparator

Given a pair of source sentences(u, v), we define,
adopting the notation of Ailon and Mohri (2008), the
pairwise comparatorh(u, v) as follows:

h(u, v) =

{

1, u < v

0, u >= v
(1)

In Equation 1, the binary comparatorh(u, v)
plays the role of the “less than” (“<”) relational op-
erator, returning1 if u is preferred tov in an or-
dered list, and0 otherwise. As detailed in Ailon and
Mohri (2008), the comparator must satisfy the con-
straint thath(u, v) andh(v, u) be complementary,
i.e. h(u, v) + h(v, u) = 1 to avoid ambiguity. How-
ever, it need not satisfy the triangle inequality.

We implementh(u, v) as a combination of dis-
criminative maximum entropy classifiers triggered
by feature functions drawn fromn-grams ofu andv.
We definep(u, v) as the conditional posterior prob-
ability of the Bernoulli eventu < v given (u, v) as
shown in Equation 2.

p(u, v) = Pr(u < v | u, v) (2)

In our implementation,p(u, v) is the output of
a binary maximum-entropy classifier trained on the
development set. However, this implementation
poses two problems.

First, if we use constituentn-grams ofu and v

as feature functions to trigger the classifier, there is
no way to distinguish between(u, v) and (v, u) as
they will trigger the same feature functions. This
will result in identical values forp(u, v) andp(v, u),
a contradiction. We resolve this issue by intro-
ducing a set of “complementary” feature functions,
which are formed by simply appending a recogniz-
able identifier to the existingn-gram feature func-

628



u: how are you
v: i am going

f(u) = {how:1, are:1, you:1, how*are:2, are*you:2, how*are*you:3}
f(v) = {i:1, am:1, going:1, i*am:2, am*going:2, i*am*going:3}

f
′(u) = {!how:1, !are:1, !you:1, !how*are:2, !are*you:2, !how*are*you:3}
f
′(v) = {!i:1, !am:1, !going:1, !i*am:2, !am*going:2, !i*am*going:3}

Table 1: Standard and complementary trigram feature functions for a source pair(u, v).

tions. Then, to evaluatep(u, v), for instance, we
invoke the classifier with standard feature functions
for u and complementary feature functions forv.
Similarly, p(v, u) is evaluated by triggering comple-
mentary feature functions foru and standard feature
functions forv. Table 1 illustrates this with a simple
example.

Note that each feature function is associated with
a real value, whose magnitude is an indicator of its
importance. In our implementation, ann-gram fea-
ture function (standard or complementary) receives
a value equal to its length. This is based on our intu-
ition that longern-grams play a more important role
in dictating SMT performance.

Second, the introduction of complementary trig-
gers implies that evaluation ofp(u, v) and p(v, u)
now involves disjoint sets of feature functions. Thus,
p(u, v) is not guaranteed to satisfy the complemen-
tarity condition imposed onh(u, v), and therefore
cannot directly be used as the binary pairwise com-
parator. We resolve this by normalizing across the
two possible permutations, as follows:

h′(u, v) =
p(u, v)

p(u, v) + p(v, u)
(3)

h′(v, u) =
p(v, u)

p(u, v) + p(v, u)
(4)

Sinceh′(u, v) + h′(v, u) = 1, the complemen-
tarity constraint is now satisfied, andh(u, v) is just
a binarized (thresholded) version ofh′(u, v). Thus,
the binary pairwise comparator can be constructed
from the permuted classifier outputs.

3.2 Training the Pairwise Comparator

Training the maximum-entropy classifier for the
pairwise comparator requires a set of target labels

and input feature functions, both of which are de-
rived from the held-out development setD. We be-
gin by decoding the source sentences inD with the
seed SMT system, followed by error analysis using
the Translation Edit Rate (TER) measure (Snover
et al., 2006). TER measures translation quality by
computing the number of edits (insertions, substitu-
tions, and deletions) and shifts required to transform
a translation hypothesis to its corresponding refer-
ence. We then rankD in decreasing order of the
number of post-shift edits, i.e. the number of in-
sertions, substitutions, and deletions after the shift
operation is completed. Since shifts are often due to
word re-ordering issues within the SMT decoder (es-
pecially for phrase-based systems), we do not con-
sider them as errors for the purpose of rankingD.
Sentences at the top of the ordered listD

′ contain
the maximum number of translation errors.

For each pair of sentences(u, v) : u < v in D
′,

we generate two training entries. The first, signify-
ing thatu appears beforev in D

′, assigns the label
true to a trigger list consisting of standard feature
functions derived fromu, and complementary fea-
ture functions derived fromv. The second, reinforc-
ing this observation, assigns the labelfalseto a trig-
ger list consisting of complementary feature func-
tions fromu, and standard feature functions fromv.
The labeled training set (feature:label pairs) for the
comparator can be expressed as follows:

∀(u, v) ∈ D
′ : u < v,

{f(u) f
′(v)} : true

{f ′(u) f(v)} : false

Thus, if there ared sentences inD′, we obtain a
total ofd(d− 1) labeled examples to train the com-
parator. We use the standard L-BFGS optimization
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algorithm (Liu and Nocedal, 1989) to estimate the
parameters of the maximum entropy model.

3.3 Greedy Discriminative Selection

The discriminatively-trained pairwise comparator
can be used as a relational operator to sort the candi-
date poolP in decreasing order of potential transla-
tion error reduction. A batch of pre-determined size
K can then be selected from the top of this list to
augment the existing SMT training corpus. Assum-
ing the pool containsN candidate sentences, and
given a fast sorting algorithm such as Quicksort, the
complexity of this strategy isO(N logN). Batches
can be selected iteratively until a specified perfor-
mance threshold is achieved.

A potential downside of this approach reveals it-
self when there is redundancy in the candidate pool.
Since the batch is selected in a single atomic opera-
tion from the sorted candidates, and because similar
or identical sentences will typically occupy the same
range in the ordered list, it is likely that this approach
will result in batches with low diversity. Whereas
we desire diverse batches for better coverage and ef-
ficient use of manual translation resources. This is-
sue was previously addressed in Shen et al. (2004) in
the context of named-entity recognition, where they
used a two-step procedure to first select the most in-
formative and representative samples, followed by a
diversity filter. Ananthakrishnan et al. (2010) used a
greedy, incremental batch construction strategy with
an integrated, explicit batch diversity feature as part
of the ranking model. Based on these ideas, we de-
sign a greedy selection strategy using the discrimi-
native relational operator.

Rather than perform a full sort onP, we sim-
ply invoke theminh(u,v)(· · · ) function to find the
sentence that potentially minimizes translation er-
ror. The subscript indicates that our implementation
of this function utilizes the discriminative relational
operator trained on the development setD. The best
choice sentences is then added to our batch at the
current position (we begin with an empty batch). We
then remove the standard and complementary fea-
ture functionsf(s) andf ′(s) triggered bys from the
global pool of feature functions obtained fromD,
so that they do not play a role in the selection of
subsequent sentences for the batch. Subsequently,
a candidate sentence that is similar or identical to

Algorithm 1 Greedy Discriminative Selection
B← ()
for k = 1 toK do
s← minh(u,v)(P)
B(k)← s

P← P− {s}
f(D)← f(D)− f(s)
f
′(D)← f

′(D)− f
′(s)

end for
return B

s will not be preferred, because the feature func-
tions that previously caused it to rank highly will
no longer trigger. Algorithm 1 summarizes our se-
lection strategy in pseudocode. Since each call to
minh(u,v)(· · · ) is O(N), the overall complexity of
greedy discriminative selection isO(K ·N).

4 Experiments and Results

We conduct a variety of simulation experiments
with multiple language pairs (English-Pashto and
Spanish-English) and different data configurations
in order to demonstrate the utility of discrimina-
tive sample selection in the context of resource-poor
SMT. We also compare the performance of the pro-
posed strategy to numerous competing active and
passive selection methods as follows:

• Random: Source sentences are uniformly sam-
pled from the candidate poolP.

• Similarity: Choose sentences fromP with the
highest fraction ofn-gram overlap with the seed
corpusS.

• Dissimilarity: Select sentences fromP with the
highest proportion ofn-grams not seen in the
seed corpusS (Eck et al., 2005; Haffari et al.,
2009).

• Longest: Pick the longest sentences from the
candidate poolP.

• Semi-supervised: Semi-supervised active learn-
ing with greedy incremental selection (Anan-
thakrishnan et al., 2010).

• Discriminative: Choose sentences that po-
tentially minimize translation error using a
maximum-entropy pairwise comparator (pro-
posed method).
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Identical low-resource initial conditions are ap-
plied to each selection strategy so that they may be
objectively compared. A very small seed corpusS is
sampled from the available parallel training data; the
remainder serves as the candidate pool. Following
the literature on active learning for SMT, our simula-
tion experiments are iterative. A fixed-size batch of
source sentences is constructed from the candidate
pool using one of the above selection strategies. We
then look up the corresponding translations from the
candidate targets (simulating an expert human trans-
lator), augment the seed corpus with the selected
data, and update the SMT system with the expanded
training corpus. The selected data are removed from
the candidate pool. This select-update cycle is then
repeated for either a fixed number of iterations or
until a specified performance benchmark is attained.
At each iteration, we decode the unseen test setT

with the most current SMT configuration and eval-
uate translation performance in terms of BLEU as
well as coverage (defined as the fraction of untrans-
latable source words in the target hypotheses).

We use a phrase-based SMT framework similar to
Koehn et al. (2003) for all experiments.

4.1 English-Pashto Simulation

Our English-Pashto (E2P) data originates from a
two-way collection of spoken dialogues, and con-
sists of two parallel sub-corpora: a directional E2P
corpus and a directional Pashto-English (P2E) cor-
pus. Each sub-corpus has its own independent train-
ing, development, and test partitions. The direc-
tional E2P training, development, and test sets con-
sist of 33.9k, 2.4k, and 1.1k sentence pairs, respec-
tively. The directional P2E training set consists of
76.5k sentence pairs. The corpus was used as-is, i.e.
no length-based filtering or redundancy-reduction
(i.e. removal of duplicates, if any) was performed.
The test-set BLEU score with the baseline E2P SMT
system trained from all of the above data was 9.5%.

We obtained a seed training corpus by randomly
sampling 1,000 sentence pairs from the directional
E2P training partition. The remainder of this set, and
the entire reversed P2E training partition were com-
bined to create the pool (109.4k sentence pairs). In
the past, we have observed that the reversed direc-
tional P2E data gives very little performance gain
in the E2P direction even though its vocabulary is

similar, and can be considered “out-of-domain” as
far as the E2P translation task is concerned. Thus,
our pool consists of 30% in-domain and 70% out-
of-domain sentence pairs, making for a challeng-
ing active learning problem. A pool training set of
10k source sentences is sampled from this collection
for the semi-supervised selection strategy, leaving us
with 99.4k candidate sentences, which we use for all
competing techniques. The data configuration used
in this simulation is identical to Ananthakrishnan et
al. (2010), allowing us to compare various strategies
under the same conditions. We simulated a total of
20 iterations with batches of 200 sentences each; the
original 1,000 sample seed corpus grows to 5,000
sentence pairs and the end of our simulation.

Figure 1(a) illustrates the variation in BLEU
scores across iterations for each selection strategy.
The proposed discriminative sample selection tech-
nique performs significantly better at every iteration
than random, similarity, dissimilarity, longest, and
semi-supervised active selection. At the end of 20
iterations, the BLEU score gained 3.21 points, a rel-
ative improvement of 59.3%. This was followed by
semi-supervised active learning, which improved by
2.66 BLEU points, a 49.2% relative improvement.
Table 2 summarizes the total number of words se-
lected by each strategy, as well as the total area
under the BLEU curve with respect to the base-
line. The latter, labeled BLEUareaand expressed in
percent-iterations, is a better measure of the over-
all performance of each strategy across all iterations
than comparing BLEU scores at the final iteration.

Figure 1(b) shows the variation in coverage (per-
centage of untranslatable source words in target
hypotheses) for each selection technique. Here,
discriminative sample selection was better than all
other approaches except longest-sentence selection.

4.2 Spanish-English Simulation

The Spanish-English (S2E) training corpus was
drawn from the Europarl collection (Koehn, 2005).
To prevent length bias in selection, the corpus was
filtered to only retain sentence pairs whose source
ranged between 7 and 15 words (excluding punc-
tuation). Additionally, redundancy was reduced by
removing all duplicate sentence pairs. After these
steps, we obtained approximately 253k sentence
pairs for training. The WMT10 held-out develop-
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(a) Variation in BLEU (E2P)

(b) Variation in coverage (E2P)

Figure 1: Simulation results for E2P data selection.
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(a) Variation in BLEU (S2E)

(b) Variation in coverage (S2E)

Figure 2: Simulation results for S2E data selection.
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Method E2P size E2P BLEUarea S2E size S2E BLEUarea

Random 58.1k 26.4 26.5k 45.0
Similarity 30.7k 21.9 24.7k 13.2
Dissimilarity 39.2k 12.4 24.2k 54.9
Longest 173.0k 27.5 39.6k 48.3
Semi-supervised 80.0k 34.1 27.6k 45.6
Discriminative 109.1k 49.6 31.0k 64.5

Table 2: Source corpus size (in words) and BLEUareaafter 20 sample selection iterations.

ment and test sets (2k and 2.5k sentence pairs, re-
spectively) were used to tune our system and eval-
uate performance. Note that this data configuration
is different from that of the E2P simulation in that
there is no logical separation of the training data into
“in-domain” and “out-of-domain” sets. The baseline
S2E SMT system trained with all available data gave
a test-set BLEU score of 17.2%.

We randomly sampled 500 sentence pairs from
the S2E training partition to obtain a seed train-
ing corpus. The remainder, after setting aside an-
other 10k source sentences for training the semi-
supervised strategy, serves as the candidate pool. We
again simulated a total of 20 iterations, except in
this case, we used batches of 100 sentences in an at-
tempt to obtain smoother performance trajectories.
The training corpus grows from 500 sentence pairs
to 2,500 as the simulation progresses.

Variation in BLEU scores and coverage for the
S2E simulation are illustrated in Figures 2(a) and
2(b), respectively. Discriminative sample selection
outperformed all other selection techniques across
all iterations of the simulation. After 20 iterations,
we obtained a 4.51 point gain in BLEU, a rela-
tive improvement of 142.3%. The closest com-
petitor was dissimilarity-based selection, which im-
proved by 4.38 BLEU points, a 138.1% relative
improvement. The proposed method also outper-
formed other selection strategies in improving cov-
erage, with significantly better results especially in
the early iterations. Table 2 summarizes the number
of words chosen, and BLEUarea, for each strategy.

5 Conclusion and Future Directions

Building SMT systems for resource-poor language
pairs requires significant investment of labor, time,
and money for the development of parallel training

corpora. We proposed a novel, discriminative sam-
ple selection strategy that can help lower these costs
by choosing batches of source sentences from a large
candidate pool. The chosen sentences, in conjunc-
tion with their manual translations, provide signifi-
cantly better SMT performance than numerous com-
peting active and passive selection techniques.

Our approach hinges on a maximum-entropy pair-
wise comparator that serves as a relational operator
for comparing two source sentences. This allows us
to rank the candidate pool in decreasing order of po-
tential reduction in translation error with respect to
an existing seed SMT system. The discriminative
comparator is coupled with a greedy, incremental se-
lection technique that discourages redundancy in the
chosen batches. The proposed technique diverges
from existing work on active sample selection for
SMT in that it uses machine learning techniques in
an attempt to explicitly reduce translation error by
choosing sentences whose constituents were incor-
rectly translated in a held-out development set.

While the performance of competing strategies
varied across language pairs and data configurations,
discriminative sample selection proved consistently
superior under all test conditions. It provides a pow-
erful, flexible, data selection front-end for rapid de-
velopment of SMT systems. Unlike some selection
techniques, it is also platform-independent, and can
be used as-is with a phrase-based, hierarchical, syn-
tactic, or other SMT framework.

We have so far restricted our experiments to simu-
lations, obtaining expert human translations directly
from the sequestered parallel corpus. We are now
actively exploring the possibility of linking the sam-
ple selection front-end to a crowd-sourcing back-
end, in order to obtain “non-expert” translations us-
ing a platform such as the Amazon Mechanical Turk.

634



References

Nir Ailon and Mehryar Mohri. 2008. An efficient reduc-
tion of ranking to classification. InCOLT ’08: Pro-
ceedings of the 21st Annual Conference on Learning
Theory, pages 87–98.

Sankaranarayanan Ananthakrishnan, Rohit Prasad, David
Stallard, and Prem Natarajan. 2010. A semi-
supervised batch-mode active learning strategy for
improved statistical machine translation. InCoNLL
’10: Proceedings of the 14th International Conference
on Computational Natural Language Learning, pages
126–134, July.

David A. Cohn, Zoubin Ghahramani, and Michael I. Jor-
dan. 1996. Active learning with statistical models.
Journal of Artificial Intelligence Research, 4(1):129–
145.

Matthias Eck, Stephan Vogel, and Alex Waibel. 2005.
Low cost portability for statistical machine translation
based in N-gram frequency and TF-IDF. InProceed-
ings of IWSLT, Pittsburgh, PA, October.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar.
2009. Active learning for statistical phrase-based ma-
chine translation. InNAACL ’09: Proceedings of Hu-
man Language Technologies: The 2009 Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics, pages 415–423,
Morristown, NJ, USA. Association for Computational
Linguistics.

Rebecca Hwa. 2004. Sample selection for statistical
parsing.Computational Linguistics, 30:253–276.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. InNAACL
’03: Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology,
pages 48–54, Morristown, NJ, USA. Association for
Computational Linguistics.

Philipp Koehn. 2005. Europarl: A parallel corpus
for statistical machine translation. InMT Summit X:
Proceedings of the 10th Machine Translation Summit,
pages 79–86.

D. C. Liu and J. Nocedal. 1989. On the limited mem-
ory bfgs method for large scale optimization.Math.
Program., 45(3):503–528.

Qinggang Meng and Mark Lee. 2008. Error-driven
active learning in growing radial basis function net-
works for early robot learning.Neurocomputing, 71(7-
9):1449–1461.

Dan Shen, Jie Zhang, Jian Su, Guodong Zhou, and Chew-
Lim Tan. 2004. Multi-criteria-based active learning
for named entity recognition. InACL ’04: Proceed-
ings of the 42nd Annual Meeting on Association for

Computational Linguistics, pages 589–596, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings AMTA, pages 223–231, August.

Min Tang, Xiaoqiang Luo, and Salim Roukos. 2002. Ac-
tive learning for statistical natural language parsing.
In ACL ’02: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages
120–127, Morristown, NJ, USA. Association for Com-
putational Linguistics.

635


