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Abstract

We report on investigations into hierarchi-
cal phrase-based translation grammars based
on rules extracted from posterior distributions
over alignments of the parallel text. Rather
than restrict rule extraction to a single align-
ment, such as Viterbi, we instead extract rules
based on posterior distributions provided by
the HMM word-to-word alignment model. We
define translation grammars progressively by
adding classes of rules to a basic phrase-based
system. We assess these grammars in terms
of their expressive power, measured by their
ability to align the parallel text from which
their rules are extracted, and the quality of the
translations they yield. In Chinese-to-English
translation, we find that rule extraction from
posteriors gives translation improvements. We
also find that grammars with rules with only
one nonterminal, when extracted from posteri-
ors, can outperform more complex grammars
extracted from Viterbi alignments. Finally, we
show that the best way to exploit source-to-
target and target-to-source alignment models
is to build two separate systems and combine
their output translation lattices.

1 Introduction

Current practice in hierarchical phrase-based trans-
lation extracts regular phrases and hierarchical rules
from word-aligned parallel text. Alignment models
estimated over the parallel text are used to generate
these alignments, but these models are then typically
used no further in rule extraction. This is less than
ideal because these alignment models, even if they

are not suitable for direct use in translation, can still
provide a great deal of useful information beyond a
single best estimate of the alignment of the parallel
text. Our aim is to use alignment models to generate
the statistics needed to build translation grammars.
The challenge in doing so is to extend the current
procedures, which are geared towards the use of a
single alignment, to make more of what can be pro-
vided by alignment models. The goal is to extract a
richer and more robust set of translation rules.

There are two aspects to hierarchical phrase-based
translation grammars which concern us. The first
is expressive power, which we take as the ability
to generate known reference translations from sen-
tences in the source language. This is determined
by the degree of phrase movements and the trans-
lations allowed by the rules of the grammar. For a
grammar with given types of rules, larger rule sets
will yield greater expressive power. This motivates
studies of grammars based on the rules which are ex-
tracted and the movement the grammar allows. The
second aspect is of course translation accuracy. If
the expressive power is adequate, then the desire is
that the grammar assigns a high score to a correct
translation.

We use posterior probabilities over parallel data to
address both of these aspects. These posteriors allow
us to build larger rule sets with improved transla-
tion accuracy. Ideally, for a sentence pair we wish to
consider all possible alignments between all possi-
ble source and target phrases within these sentences.
Given a grammar allowing certain types of move-
ment, we would then extract all possible parses that
are consistent with any alignments of these phrases.
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To make this approach feasible, we consider only
phrase-to-phrase alignments with a high posterior
probability under the alignment models. In this way,
the alignment model probabilities guide rule extrac-
tion.

The paper is organized as follows. Section 2 re-
views related work on using posteriors to extract
phrases, as well as other approaches that tightly in-
tegrate word alignment and rule extraction. Sec-
tion 3 describes rule extraction based on word and
phrase posterior distributions provided by the HMM
word-to-word alignment model. In Section 4 we de-
fine translation grammars progressively by adding
classes of rules to a basic phrase-based system, mo-
tivating each rule type by the phrase movement it is
intended to achieve. In Section 5 we assess these
grammars in terms of their expressive power and the
quality of the translations they yield in Chinese-to-
English, showing that rule extraction from posteriors
gives translation improvements. We also find that
the best way to exploit source-to-target and target-
to-source alignment models is to build two sepa-
rate systems and combine their output translation
lattices. Section 6 presents the main conclusions of
this work.

2 Related Work

Some authors have previously addressed the limita-
tion caused by decoupling word alignment models
from grammar extraction. For instance Venugopal
et al. (2008) extract rules from n-best lists of align-
ments for a syntax-augmented hierarchical system.
Alignment n-best lists are also used in Liu et al.
(2009) to create a structure called weighted align-
ment matrices that approximates word-to-word link
posterior probabilities, from which phrases are ex-
tracted for a phrase-based system. Alignment pos-
teriors have been used before for extracting phrases
in non-hierarchical phrase-based translation (Venu-
gopal et al., 2003; Kumar et al., 2007; Deng and
Byrne, 2008).

In order to simplify hierarchical phrase-based
grammars and make translation feasible with rela-
tively large parallel corpora, some authors discuss
the need for various filters during rule extraction
(Chiang, 2007). In particular Lopez (2008) enforces
a minimum span of two words per nonterminal,

Zollmann et al. (2008) use a minimum count thresh-
old for all rules, and Iglesias et al. (2009) propose
a finer-grained filtering strategy based on rule pat-
terns. Other approaches include insisting that target-
side rules are well-formed dependency trees (Shen et
al., 2008).

We also note approaches to tighter coupling be-
tween translation grammars and alignments. Marcu
and Wong (2002) describe a joint-probability
phrase-based model for alignment, but the approach
is limited due to excessive complexity as Viterbi
inference becomes NP-hard (DeNero and Klein,
2008). More recently, Saers et al. (2009) report
improvement on a phrase-based system where word
alignment has been trained with an inversion trans-
duction grammar (ITG) rather than IBM models.
Pauls et al. (2010) also use an ITG to directly align
phrases to nodes in a string-to-tree model. Bayesian
methods have been recently developed to induce a
grammar directly from an unaligned parallel corpus
(Blunsom et al., 2008; Blunsom et al., 2009). Fi-
nally, Cmejrek et al. (2009) extract rules directly
from bilingual chart parses of the parallel corpus
without using word alignments. We take a differ-
ent approach in that we aim to start with very strong
word alignment models and use them to guide gram-
mar extraction.

3 Rule Extraction from Alignment
Posteriors

The goal of rule extraction is to generate a set of
good-quality translation rules from a parallel cor-
pus. Rules are of the formX→〈γ,α,∼〉 , where
γ, α ∈ {X ∪T}+ are the source and target sides of
the rule,T denotes the set of terminals (words) and
∼ is a bijective function1 relating source and target
nonterminalsX of each rule (Chiang, 2007). For
eachγ, the probability over translationsα is set by
relative frequency over the extracted examples from
the corpus.

We take a general approach to rule extraction, as
described by the following procedure. For simplic-
ity we discuss the extraction of regular phrases, that
is, rules of the formX→〈w,w〉, wherew ∈ {T}+.
Section 3.3 extends this procedure to rules with non-

1This function is defined if there are at least two nontermi-
nals, and for clarity of presentation will be omitted in thispaper
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terminal symbols.
Given a sentence pair (fJ

1 , eI
1), the extraction al-

gorithm traverses the source sentence and, for each
sequence of terminalsf j2

j1
, it considers all possible

target-side sequencesei2
i1

as translation candidates.
Each target-side sequence that satisfies the align-
ment constraintsCA is ranked by the functionfR.
For practical reasons, a set of selection criteriaCS is
then applied to these ranked candidates and defines
the set of translations of the source sequence that are
extracted as rules. Each extracted rule is assigned a
countfC .

In this section we will explore variations of this
rule extraction procedure involving alternative def-
initions of the ranking and counting functions,fR

andfC , based on probabilities over alignment mod-
els.

Common practice (Koehn et al., 2003) takes a set
of word alignment linksL and defines the alignment
constraintsCA so that there is aconsistency between
the links in the(f j2

j1
, ei2

i1
) phrase pair. This is ex-

pressed by∀(j, i) ∈ L : (j ∈ [j1, j2]∧ i ∈ [i1, i2])∨
(j 6∈ [j1, j2] ∧ i 6∈ [i1, i2]). If these constraints
are met, then alignment probabilities are ignored and
fR = fC = 1. We call this extraction Viterbi-based,
as the set of alignment links is generally obtained
after applying a symmetrization heuristic to source-
to-target and target-to-source Viterbi alignments.

In the following section we depart from this ap-
proach and apply novel functions to rank and count
target-side translations according to their quality in
the context of each parallel sentence, as defined by
the word alignment models. We also depart from
common practice in that we do not use a set of links
as alignment constraints. We thus find an increase
in the number of extracted rules, and consequently
better relative frequency estimates over translations.

3.1 Ranking and Counting Functions

We describe two alternative approaches to modify
the functionsfR andfC so that they incorporate the
probabilities provided by the alignment models.

3.1.1 Word-to-word Alignment Posterior
Probabilities

Word-to-word alignment posterior probabilities
p(lji|f

J
1 , eI

1) express how likely it is that the words
in source positionj and target positioni are aligned

given a sentence pair. These posteriors can be effi-
ciently computed for Model 1, Model 2 and HMM,
as described in (Brown et al., 1993; Venugopal et al.,
2003; Deng and Byrne, 2008).

We will use these posteriors in functions to
score phrase pairs. For a simple non-disjoint case
(f j2

j1
, ei2

i1
) we use:

fR(f j2
j1

, ei2
i1

) =
j2∏

j=j1

i2∑

i=i1

p(lji|f
J
1 , eI

1)

i2 − i1 + 1
(1)

which is very similar to the score used for lexical
features in many systems (Koehn, 2010), with the
link posteriors for the sentence pair playing the role
of the Model 1 translation table.

For a particular source phrase, Equation 1 is not
a proper conditional probability distribution over all
phrases in the target sentence. Therefore it cannot be
used as such without further normalization. Indeed
we find that this distribution is too sharp and over-
emphasises short phrases, so we usefC = 1. How-
ever, it does allow us to rank target phrases as pos-
sible translations. In contrast to the common extrac-
tion procedure described in the previous section, the
ranking approach described here can lead to a much
more exhaustive extraction unless selection criteria
are applied. These we describe in Section 3.2.

We note that Equation 1 can be computed us-
ing link posteriors provided by alignment models
trained on either source-to-target or target-to-source
translation directions.

3.1.2 Phrase-to-phrase Alignment Posterior
Probabilities

Rather than limit ourselves to word-to-word
link posteriors we can define alignment proba-
bility distributions over phrase alignments. We
do this by defining the set of alignmentsA as
A(j1, j2; i1, i2) = {aJ

1 : aj ∈ [i1, i2] iff j ∈
[j1, j2]}, whereaj is the random process that de-
scribes word-to-word alignments. These are the
alignments from which the phrase pair(f j2

j1
, ei2

i1
)

would be extracted.
The posterior probability of these alignments

given the sentence pair is defined as follows:

p(A|eI
1, f

J
1 ) =

∑
aJ

1
∈A p(fJ

1 , aJ
1 |e

I
1)

∑
aJ

1

p(fJ
1 , aJ

1 |e
I
1)

(2)
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G0 G1 G2 G3

S→〈X,X〉 X→〈w X,X w〉 X→〈w X,X w〉 X→〈w X,X w〉
S→〈S X,S X〉 X→〈X w,w X〉 X→〈X w,w X〉 X→〈X w,w X〉

X→〈w,w〉 X→〈w X,w X〉 X→〈w X,w X〉
X→〈w X w,w X w〉

Table 1: Hierarchical phrase-based grammars containing different types of rules. The grammar expressivity is greater
as more types of rules are included. In addition to the rules shown in the respective columns,G1, G2 andG3 also
contain the rules ofG0.

With IBM models 1 and 2, the numerator and de-
nominator in Equation 2 can be computed in terms
of posterior link probabilities (Deng, 2005). With
the HMM model, the denominator is computed us-
ing the forward algorithm while the numerator can
be computed using a modified forward algorithm
(Deng, 2005).

These phrase posteriors directly define a proba-
bility distribution over the alignments of translation
candidates, so we use them both for ranking and
scoring extracted rules, that isfR = fC = p. This
approach assigns a fractional count to each extracted
rule, which allows finer estimation of the forward
and backward translation probability distributions.

3.2 Alignment Constraints and Selection
Criteria

In order to keep this process computationally
tractable, some extraction constraints are needed. In
order to extract a phrase pair(f j2

j1
, ei2

i1
), we define

the following:

• CA requires at least one pair of positions(j, i) :
(j ∈ [j1, j2] ∧ i ∈ [i1, i2]) with word-to-word
link posterior probabilityp(lji|f

J
1 , eI

1) > 0.5,
and that there is no pair of positions(j, i) : (j ∈
[j1, j2]∧i 6∈ [i1, i2])∨(j 6∈ [j1, j2]∧i ∈ [i1, i2])
with p(lji|f

J
1 , eI

1) > 0.5

• CS allows only thek best translation candidates
to be extracted. We usek = 3 for regular
phrases, andk = 2 for hierarchical rules.

Note that we do not discard rules according to
their scoresfC at this point (unlike Liu et al.
(2009)), since we prefer to add all phrases from
all sentence pairs before carrying out such filtering
steps.

Once all rules over the entire collection of paral-
lel sentences have been extracted, we require each
rule to occur at leastnobs times and with a forward
translation probabilityp(α|γ) > 0.01 to be used for
translation.

3.3 Extraction of Rules with Nonterminals

Extending the procedure previously described to
the case of more complex hierarchical rules includ-
ing one or even two nonterminals is conceptually
straightforward. It merely requires that we traverse
the source and target sentences and consider possi-
bly disjoint phrase pairs. Optionally, the alignment
constraints can also be extended to apply on the non-
terminalX.

Equation 1 is then only modified in the limits
of the product and summation, whereas Equation
2 remains unchanged, as long as the set of valid
alignmentsA is redefined. For example, for a rule
of the form X→〈w X w,w X w〉, we useA ≡
A(j1, j2; j3, j4; i1, i2; i3, i4).

4 Hierarchical Translation Grammar
Definition

In this section we define the hierarchical phrase-
based synchronous grammars we use for translation
experiments. Each grammar is defined by the type of
hierarchical rules it contains. The rule type can be
obtained by replacing every sequence of terminals
by a single symbol ‘w’, thus ignoring the identity of
the words, but capturing its generalized structure and
the kind of reordering it encodes (this was defined as
rule pattern in Iglesias et al. (2009)).

A monotonic phrase-based translation grammar
G0 can be defined as shown in the left-most col-
umn of Table 1; it includes all regular phrases, repre-
sented by the rule typeX→〈w,w〉, and the two glue
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(G0) R1: S→〈X,X〉
(G0) R2: X→〈s2 s3,t2〉
(G1) R3: X→〈s1 X,X t3〉
(G1) R4: X→〈X s4,t1 X〉
(G2) R5: X→〈s1 X,t7 X〉
(G3) R6: X→〈s1 X s4,t5 X t6〉

Figure 1: Example of a hierarchical translation grammar andtwo parsing trees following alternative rule derivations
for the input sentences1s2s3s4.

rules that allow concatenation. Our approach is now
simple: we extend this grammar by successively in-
corporating sets of hierarchical rules. The goal is to
obtain a grammar with few rule types but which is
capable of generating a rich set of translation candi-
dates for a given input sentence.

With this in mind, we define the following three
grammars, also summarized in Table 1:

• G1 := G0

⋃

{ X→〈w X,X w〉 , X→〈X w,w X〉 }. This
incorporates reordering capabilities with two
rule types that place the unique nonterminal
in an opposite position in each language; we
call these ’phrase swap rules’. Since all non-
terminals are of the same categoryX, nested
reordering is possible. However, this needs to
happen consecutively,i.e. a swap must apply
after a swap, or the rule is concatenated with
the glue rule.

• G2 := G1

⋃
{ X→〈w X,w X〉 }. This

adds monotonic concatenation capabilities to
the previous translation grammar. The glue rule
already allows rule concatenation. However, it
does so at theS category, that is, it concate-
nates phrases and rulesafter they have been re-
ordered, in order to complete a sentence. With
this new rule type,G2 allows phrase/rule con-
catenationbefore reordering with another hier-
archical rule. Therefore, nested reordering does
not require successive swaps anymore.

• G3 := G2

⋃
{ X→〈w X w,w X w〉 }. This

adds single nonterminal rules with disjoint ter-
minal sequences, which can encode a mono-

tonic or reordered relationship between them,
depending on what their alignment was in the
parallel corpus. Although one could expect the
movement captured by this phrase-disjoint rule
type to be also present inG2 (via two swaps or
one concatenation plus one swap), the terminal
sequencesw may differ.

Figure 1 shows an example set of rules indicat-
ing to which of the previous grammars each rule be-
longs, and shows three translation candidates as gen-
erated by grammarsG1 (left-most tree),G2 (mid-
dle tree) andG3 (right-most tree). Note that the
middle tree cannot be generated withG1 as it re-
quires monotonic concatenation before reordering
with rule R4.

The more rule types a hierarchical grammar con-
tains, the more different rule derivations and the
greater the search space of alternative translation
candidates. This is also connected to how many
rules are extracted per rule type. Ideally we would
like the grammar to be able to generate the correct
translation of a given input sentence, without over-
generating too many other candidates, as that makes
the translation task more difficult.

We will make use of the parallel data in measuring
the ability of a grammar to generate correct transla-
tions. By extracting rules from a parallel sentence,
we translate them and observe whether the transla-
tion grammar is able to produce the parallel target
translation. In Section 5.1 we evaluate this for a
Chinese-to-English task.
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4.1 Reducing Grammar Redundancy

Let us discuss grammarG2 in more detail. As de-
scribed in the previous section, the motivation for in-
cluding rule typeX→〈w X,w X〉 is that the gram-
mar be able to carry out monotonic concatenation
before applying another hierarchical rule with re-
ordering. This movement is permitted by this rule
type, but the use of a single nonterminal categoryX

also allows the grammar to apply the concatenation
after reordering, that is, immediately before the glue
rule is applied. This creates significant redundancy
in rule derivations, as this rule type is allowed to act
as a glue rule. For example, given an input sentence
s1s2 and the following simple grammar:

R0: S→〈X,X〉
R1: S→〈S X,S X〉
R2: X→〈s1,t1〉
R3: X→〈s2,t2〉
R4: X→〈s1 X,t1 X〉

two derivations are possible: R2,R0,R3,R1 and
R3,R4,R0, and the translation result is identical.

To avoid this situation we introduce a nonterminal
M in the left-hand side of monotonic concatenation
rules ofG2. All rules are allowed to use nontermi-
nalsX andM in their right-hand side, except the
glue rules, which can only takeX. In the context of
our example, R4 is substituted by:

R4a: M→〈s1 X,t1 X〉
R4b: M→〈s1 M ,t1 M〉

so that only the first derivation is possible:
R2,R0,R3,R1, because applying R3,R4a yields a non-
terminalM that cannot be taken by the glue rule R0.

5 Experiments

We report experiments in Chinese-to-English trans-
lation. Our system is trained on a subset of the
GALE 2008 evaluation parallel text;2 this is approx-
imately 50M words per language. We report trans-
lation results on a development settune-nw and a
test settest-nw1. These contain translations pro-
duced by the GALE program and portions of the
newswire sections of MT02 through MT06. They
contain 1,755 sentences and 1,671 sentences respec-
tively. Results are also reported on a smaller held-

2See http://projects.ldc.upenn.edu/gale/data/catalog.html.
We excluded the UN material and the LDC2002E18,
LDC2004T08, LDC2007E08 and CUDonga collections.
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Figure 2: Percentage of parallel sentences successfully
aligned for various extraction methods and grammars.

out test settest-nw2, containing 60% of the NIST
newswire portion of MT06, that is, 369 sentences.

The parallel texts for both language pairs are
aligned using MTTK (Deng and Byrne, 2008). For
decoding we use HiFST, a lattice-based decoder im-
plemented with Weighted Finite State Transducers
(de Gispert et al., 2010). Likelihood-based search
pruning is applied if the number of states in the
lattice associated with each CYK grid cell exceeds
10,000, otherwise the entire search space is ex-
plored. The language model is a 4-gram language
model estimated over the English side of the paral-
lel text and the AFP and Xinhua portions of the En-
glish Gigaword Fourth Edition (LDC2009T13), in-
terpolated with a zero-cutoff stupid-backoff (Brants
et al., 2007) 5-gram estimated using 6.6B words of
English newswire text. In tuning the systems, stan-
dard MERT (Och, 2003) iterative parameter estima-
tion under IBM BLEU3 is performed on the devel-
opment sets.

5.1 Measuring Expressive Power

We measure the expressive power of the grammars
described in the previous section by running the
translation system in alignment mode (de Gispert
et al., 2010) over the parallel corpus. Conceptually,
this is equivalent to replacing the language model by
the target sentence and seeing if the system is able to
find any candidate. Here the weights assigned to the

3See ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl
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Grammar Extraction # Rules tune-nw test-nw1 test-nw2
time prune BLEU BLEU BLEU

GH V-union 979149 3.7 0.3 35.1 35.6 37.6
V-union 613962 0.4 0.0 33.6 34.6 36.4

G1 WP-st 920183 0.9 0.0 34.3 34.8 37.5
PP-st 893542 1.4 0.0 34.4 35.1 37.7
V-union 734994 1.0 0.0 34.5 35.4 37.2

G2 WP-st 1132386 5.8 0.5 35.1 36.0 37.7
PP-st 1238235 7.8 0.7 35.5 36.4 38.2
V-union 966828 1.2 0.0 34.9 35.3 37.0

G3 WP-st 2680712 8.3 1.1 35.1 36.2 37.9
PP-st 5002168 10.7 2.6 35.5 36.4 38.5

Table 2: Chinese-to-English translation results with alternative grammars and extraction methods (lower-cased BLEU
shown). Time (secs/word) and prune (times/word) measurements done ontune-nw set.

rules are irrelevant, as only the ability of the gram-
mar to create a desired hypothesis is important.

We compare the percentage of target sentences
that can be successfully produced by grammarsG0,
G1, G2 andG3 for the following extraction meth-
ods:

• Viterbi (V) . This is the standard extraction
method based on a set of alignment links. We
distinguish four cases, depending on the model
used to obtain the set of links: source-to-
target (V-st), target-to-source (V-ts), and two
common symmetrization strategies: union (V-
union) and grow-diag-final (V-gdf), described
in (Koehn et al., 2003).

• Word Posteriors (WP). The extraction method
is based on word alignment posteriors de-
scribed in Section 3.1.1. These rules can be ob-
tained either from the posteriors of the source-
to-target (WP-st) or the target-to-source (WP-
ts) alignment models. We apply the alignment
constraints and selection criteria described in
Section 3.2. We do not report alignment per-
centages when using phrase posteriors (as de-
scribed in Section 3.1.2) as they are roughly
identical to theWP case.

• Finally, in both cases, we also report results
when merging the extracted rules in both direc-
tions into a single rule set (V-merge andWP-
merge).

Figure 2 shows the results obtained for a random
selection of 10,000 parallel corpus sentences. As ex-
pected, we can see that for any extraction method,
the percentage of aligned sentences increases when
switching fromG0 to G1, G2 and G3. Posterior-
based extraction is shown to outperform standard
methods based on a Viterbi set of alignments for
nearly all grammars. The highest alignment percent-
ages are obtained when merging rules obtained un-
der models trained in each direction (WP-merge),
approximately reaching 80% for grammarG3.

The maximum rule span in alignment was al-
lowed to be 15 words, so as to be similar to transla-
tion, where the maximum rule span is 10 words. Re-
laxing this in alignment to 30 words yields approxi-
mately 90% coverage forWP-mergeunderG3.

We note that if alignment constraintsCA and se-
lection criteriaCS were not applied, that isk = ∞,
then alignment percentages would be 100% even
for G0, but the extracted grammar would include
many noisy rules with poor generalization power
and would suffer from overgeneration.

5.2 Translation Results

In this section we investigate the translation perfor-
mance of each hierarchical grammar, as defined by
rules obtained from three rule extraction methods:

• Viterbi union (V-union) . Standard rule extrac-
tion from the union of the source-to-target and
target-to-source alignment link sets.
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• Word Posteriors (WP-st). Extraction based
on word posteriors as described in Section
3.1.1. The posteriors are provided by the
source-to-target alignment model. Alignment
constraints and selection criteria of Section 3.2
are applied, withnobs = 2.

• Phrase Posteriors (PP-st). Extraction based
on phrase alignment posteriors, as described
in Section 3.1.2, with fractional counts pro-
portional to the phrase probability under the
source-to-target alignment model. Alignment
constraints and selection criteria of Section 3.2
are applied, withnobs = 0.2.

Table 2 reports the translation results, as well as
the number of extracted rules in each case. It also
shows the following decoding statistics as measured
on thetune-nw set: decoding time in seconds per in-
put word, and number of instances of search pruning
(described in Section 5) per input word.

As a contrast, we extract rules according to the
heuristics introduced in (Chiang, 2007) and apply
the filters described in (Iglesias et al., 2009) to gen-
erate a standard hierarchical phrase-based grammar
GH . This uses rules with up to two nonadjacent non-
terminals, but excludes identical rule types such as
X→〈w X,w X〉 or X→〈w X1 w X2,w X1 w X2〉,
which were reported to cause computational difficul-
ties without a clear improvement in translation (Igle-
sias et al., 2009).

Grammar expressivity. As expected, for the stan-
dard extraction method (see rows entitledV-union),
grammarG1 is shown to underperform all other
grammars due to its structural limitations. On the
other hand, grammarG2 obtains much better scores,
nearly generating the same translation quality as
the baseline grammarGH . Finally, G3 does not
prove able to outperformG2, which suggests that
the phrase-disjoint rules with one nonterminal are
redundant for the translation grammar.

Rule extraction method. For all grammars, we
find that the proposed extraction methods based on
alignment posteriors outperform standard Viterbi-
based extraction, with improvements ranging from
0.5 to 1.1 BLEU points fortest-nw1 (depending on
the grammar) and from 1.0 to 1.5 fortest-nw2. In
all cases, the use of phrase posteriorsPP is the best
option. Interestingly, we find thatG2 extracted with

WP andPPmethods outperforms the more complex
GH grammar as obtained from Viterbi alignments.

Rule set statistics. For grammarG2 evaluated
on the tune-nw set, standard Viterbi-based extrac-
tion produces 0.7M rules, whereas the WP and PP
extraction methods yield 1.1M and 1.2M rules re-
spectively. We further analyse the sets of rules
X→〈γ,α,∼〉 in terms of the number of distinct
source and target sequencesγ andα which are ex-
tracted. Viterbi extraction yields 82k distinct source
sequences whereas the WP and PP methods yield
116k and 146k sequences, respectively. In terms
of the average number of target sequences for each
source sequence, Viterbi extraction yields an aver-
age of 8.7 while WP and PP yield 9.7 and 8.4 rules
on average. This shows that methodPPyields wider
coverage but with sharper forward rule translation
probability distributions than methodWP, as the av-
erage number of translations per rule is determined
by thep(α|γ) > 0.01 threshold mentioned in Sec-
tion 3.2.

Decoding time and pruning in search. In connec-
tion to the previous comments, we find an increased
need for search pruning, and subsequently slower
decoding speed, as the search space grows larger
with methodsWP andPP. A larger search space is
created by the larger rule sets, which allows the sys-
tem to generate new hypotheses of better quality.

5.3 Rule Concatenation in GrammarG2

In Section 4.1 we described a strategy to reduce
grammar redundancy by introducing an additional
nonterminalM for monotonic concatenation rules.
We find that without this distinction among nonter-
minals, search pruning and decoding time are in-
creased by a factor of 1.5, and there is a slight degra-
dation in BLEU (∼0.2) as more search errors are in-
troduced.

Another relevant aspect of this grammar is the ac-
tual rule type selected for monotonic concatenation.
We described using typeX→〈w X,w X〉 (con-
catenation on the right), but one could also include
X→〈X w,X w〉 (concatenation on the left), or both,
for the same purpose. We evaluated the three alter-
natives and found that scores are identical when ei-
ther including right or left concatenation types, but
including both is harmful for performance, as the
need to prune and decoding time increase by a fac-
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tor of 5 and 4, respectively, and we observe again a
slight degradation in performance.

Rule Extraction tune-nw test-nw1 test-nw2

V-st 34.7 35.6 37.5
V-ts 34.0 34.8 36.6
V-union 34.5 35.4 37.2
V-gdf 34.4 35.3 37.1
WP-st 35.1 36.0 37.7
WP-ts 34.5 35.0 37.0
PP-st 35.5 36.4 38.2
PP-ts 34.8 35.3 37.2
PP-merge 35.5 36.4 38.4
PP-merge-MERT 35.5 36.4 38.3
LMBR(V-st) 35.0 35.8 38.4
LMBR(V-st,V-ts) 35.5 36.3 38.9
LMBR(PP-st) 36.1 36.8 38.8
LMBR(PP-st,PP-ts) 36.4 36.9 39.3

Table 3: Translation results under grammarG2 with indi-
vidual rule sets, merged rule sets, and rescoring and sys-
tem combination with lattice-based MBR (lower-cased
BLEU shown)

5.4 Symmetrizing Alignments of Parallel Text

In this section we investigate extraction from align-
ments (and posterior distributions) over parallel text
which are generated using alignment models trained
in the source-to-target (st) and target-to-source (ts)
directions. Our motivation is that symmetrization
strategies have been reported to be beneficial for
Viterbi extraction methods (Och and Ney, 2003;
Koehn et al., 2003).

Results are shown in Table 3 for grammarG2. We
find that rules extracted under the source-to-target
alignment models (V-st, WP-st andPP-st) consis-
tently perform better than theV-ts, WP-ts andPP-
ts cases. Also, for Viterbi extraction we find that the
source-to-targetV-st case performs better than any
of the symmetrization strategies, which contradicts
previous findings for non-hierarchical phrase-based
systems(Koehn et al., 2003).

We use thePP rule extraction method to extract
two sets of rules, under thest andts alignment mod-
els respectively. We now investigate two ways of
merging these sets into a single grammar for trans-
lation. The first strategy isPP-mergeand merges

both rule sets by assigning to each rule the maximum
count assigned by either alignment model. We then
extend the previous strategy by adding three binary
feature functions to the system, indicating whether
the rule was extracted under the ’st’ model, the ’ts’
model or both. The motivation is that MERT can
weight rules differently according to the alignment
model they were extracted from. However, we do
not find any improvement with either strategy.

Finally, we use linearised lattice minimum Bayes-
risk decoding (Tromble et al., 2008; Blackwood et
al., 2010) to combine translation lattices (de Gis-
pert et al., 2010) as produced by rules extracted
under each alignment direction (see rows named
LMBR(V-st,V-ts) and LMBR(PP-st,PP-ts)). Gains
are consistent when comparing this to applying
LMBR to each of the best individual systems (rows
named LMBR(V-st) and LMBR(PP-st)). Overall,
the best-performing strategy is to extract two sets of
translation rules under the phrase pair posteriors in
each translation direction, and then to perform trans-
lation twice and merge the results.

6 Conclusion

Rule extraction based on alignment posterior proba-
bilities can generate larger rule sets. This results in
grammars with more expressive power, as measured
by the ability to align parallel sentences. Assign-
ing counts equal to phrase posteriors produces bet-
ter estimation of rule translation probabilities. This
results in improved translation scores as the search
space grows.

This more exhaustive rule extraction method per-
mits a grammar simplification, as expressed by the
phrase movement allowed by its rules. In particular
a simple grammar with rules of only one nontermi-
nal is shown to outperform a more complex gram-
mar built on rules extracted from Viterbi alignments.
Finally, we find that the best way to exploit align-
ment models trained in each translation direction is
to extract two rule sets based on alignment posteri-
ors, translate the input independently with each rule
set and combine translation output lattices.
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