
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 508–518,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Efficient retrieval of tree translation examples for
Syntax-Based Machine Translation

Fabien Cromieres
Graduate School of Informatics

Kyoto University
Kyoto, Japan

fabien@nlp.kuee.kyoto-u.ac.jp

Sadao Kurohashi
Graduate School of Informatics

Kyoto University
Kyoto, Japan

kuro@i.kyoto-u.ac.jp

Abstract

We propose an algorithm allowing to effi-
ciently retrieve example treelets in a parsed
tree database in order to allow on-the-fly ex-
traction of syntactic translation rules. We also
propose improvements of this algorithm al-
lowing several kinds of flexible matchings.

1 Introduction

The popular Example-Based (EBMT) and Statistical
Machine Translation (SMT) paradigms make use of
the translation examples provided by a parallel bilin-
gual corpus to produce new translations. Most of
these translation systems process the example data
in a similar way: The parallel sentences are first
word-aligned. Then, translation rules are extracted
from these aligned sentences. Finally, the transla-
tion rules are used in a decoding step to translate
sentences. We use the term translation rule in a very
broad sense here, as it may refer to substring pairs as
in (Koehn et al., 2003), synchronous grammar rules
as in (Chiang, 2007) or treelet pairs as in (Quirk et
al., 2005; Nakazawa and Kurohashi, 2008).

As the size of bilingual corpus grow larger, the
number of translation rules to be stored can easily
become unmanageable. As a solution to this prob-
lem in the context of phrase-based Machine Transla-
tion, (Callison-Burch et al., 2005) proposed to pre-
align the example corpora, but delay the rule extrac-
tion to the decoding stage. They showed that using
Suffix Arrays, it was possible to efficiently retrieve
all sentences containing substrings of the sentence
to be translated, and thus extract the needed trans-
lation rules on-the-fly. (Lopez, 2007) proposed an

extension of this method for retrieving discontinu-
ous substrings, making it suitable for systems such
as (Chiang, 2007).

In this paper, we propose a method to apply the
same idea to Syntax-Based SMT and EBMT (Quirk
et al., 2005; Mi et al., 2008; Nakazawa and Kuro-
hashi, 2008). Since Syntax-Based systems usually
work with the parse trees of the source-side sen-
tences, we will need to be able to retrieve effi-
ciently examples trees from fragments (treelets) of
the parse tree of the sentence we want to translate.
We will also propose extensions of this method al-
lowing more flexible matchings.

2 Overview of the method

2.1 Treelet retrieval

We first formalize the setting of this chapter by pro-
viding some definitions.

Definition 2.1 (Treelets). A treelet is a connected
subgraph of a tree. A treelet T1 is a subtreelet of an-
other treelet T2 if T1 is itself a connected subgraph
of T2. We note |T| the number of nodes in a treelet.
If |T| = 1, T is called an elementary treelet. A lin-
ear treelet is a treelet whose nodes have at most 1
child. A subtree rooted at node n of a tree T is a
treelet containing all nodes descendants of n.

Definition 2.2 (Sub- and Supertreelets). If T1 is a
subtreelet of T2 and |T1| = |T2| − 1, we call T1

an immediate subtreelet of T2. Reciprocally, T2 is
an (immediate) supertreelet of T1. Furthermore, if
T2 and T1 are rooted at the same node in the original
tree, we say that T2 is a descending supertreelet of
T1. Otherwise it is an ascending supertreelet of T1.

508

In treelet retrieval, we are given a certain treelet
type and want to find all of the tokens of this type in
the database DB. Each token of a given treelet type
will be identified by a mapping from the node of the
treelet type to the nodes of the treelet token in the
database.

Definition 2.3 (Matching). Given a treelet T and a
tree database DB, a matching of T in DB is a func-
tion M that associate the treelet T to a tree T in
DB and every node of T to nodes of T in such a
way that: ∀n ∈ T, label(M(n)) = label(n) and
∀(n1, n2) ∈ T s.t n2 is a child of n1, M(n2) is a
child of M(n1).

In the common case where the siblings of a tree
are ordered, a matching must satisfy the additional
restriction: ∀n1, n2 ∈ T, n1 <s n1 ⇔ M(n1) <s

M(n1), where <s is the partial order relation be-
tween nodes meaning “is a sibling and to the left of”

We note occ(T) (for “occurrences of T ”) the set
of all possible matchings from T to DB. We will
call computing T the task of finding occ(T). If
|occ(T)| = 0, we call T an empty treelet. Computing
a query tree TQ means computing all of its treelets.

Definition 2.4 (Notations). Although treelets are
themselves trees, we will use the word treelet to
emphasize they are a subpart of a bigger tree. We
will note T a treelet, and T a tree. TQ is the query
tree we want to compute. DB will refer to the set of
trees in our database. We will use a bracket notation
to describe trees or treelets. Thus “a(b c d(e))” is
the tree at the bottom of figure 2.

2.2 General approach
There exists already a large body of research about
tree pattern matching (Dubiner et al., 1994; Bruno
et al., 2002). However, our problem is quite differ-
ent from finding the tokens of a given treelet in a
database. We actually want to find all the tokens of
all of the treelets of a given query tree. The query
tree itself is unlikely to appear in full even once in
the database. In this respect, our approach will have
many similarities with (Callison-Burch et al., 2005)
and (Lopez, 2007), and can be seen as an extension
of these works.

The basis of the method in (Lopez, 2007) is to
look for the occurrences of continuous substrings us-
ing a Suffix Array, and then intersect them to find the

occurrences of discontinuous substrings. We will
have a similar approach with two variants. The first
variant consists in using an adaptation of the con-
cept of suffix arrays to trees, which we will call Path-
To-Root Arrays (section 3.4), that allows us to find
efficiently the set of occurrences of a linear treelet.
Occurrences of non-linear treelets can then be com-
puted by intersection. The second variant is to use an
inverted index (section 3.5). Then the occurrences of
all treelets, even the linear treelets, are computed by
intersection.

The main additional difficulty in considering trees
instead of strings is that while a string has a
quadratic number of continuous substrings, a tree
has in general an exponential number of treelets (eg.
several trillion for the dependency tree of a 70 words
sentence). There is also an exponential number of
discontinuous substrings, but (Lopez, 2007) only
consider substrings of bounded size, limiting this
problem. We will not try to bound the size of treelets
retrieved. It is therefore crucial to avoid computing
the occurrences of treelets that have no occurrences
in the database, and also to eliminate as much redun-
dant calculation as is possible.

Lopez proposes to use Prefix Trees for avoiding
any redundant or useless computation. We will use
a similar idea but with an hypergraph that we will
call “computation hypergraph” (section 3.2). This
hypergraph will not only fit the same role as the Pre-
fix Tree of (Lopez, 2007), but also will allow us to
easily implement different search strategies for flex-
ible search (section 6).

2.3 Representing positions
Whether we use a Path-to-Root Array or an inverted
index, we will need a compact way to represent the
position of a node in a tree. It is straightforward to
define such a position for strings, but slightly less for
trees. Especially, if we consider ordered trees, we
will want to be able to compare the relative location
of the nodes by comparing their positions.

The simplest possibility is to use an integer corre-
sponding to the rank of the node in a in-order depth-
first traversal of the tree. It is then easy, for two
nodes b and c, children of a parent node a, to check
if b is on the left of c, or on the left of a, for example.

A more advanced possibility is to use a represen-
tation inspired from (Zhang et al., 2001), in which

509

the position of a node is a tuple consisting of its rank
in a preorder (ie. children last) and a postorder (chil-
dren first) depth-first traversal, and of its distance to
the root. This allows to test easily whether a node
is an ancestor of another, and their distance to each
other. This allows in turn to compute by intersec-
tion the occurrences of discontinuous treelets, much
like what is done in (Lopez, 2007) for discontinuous
strings. This is discussed in section 7.2.

3 Computing treelets incrementally

We describe here in more details how the treelets can
be efficiently computed incrementally.

3.1 Dependence of treelet computation

Let us first define how it is possible to compute a
treelet from two of its subtreelets. Let us consider
a treelet T and two treelets T1 and T2 such that
T = T1 ∪ T2, where, in the equality and the union,
the treelet are seen as the set of their nodes. There
are two possibilities. If T1∩T2 = ∅, then the root of
T1 is a child of a node of T2 or vice-versa. We then
say that T1 and T2 form a disjoint coverage (abbrevi-
ated as D-coverage) of T. If T1∩T2 6= ∅, we will say
that T1 and T2 form an overlapping coverage (abbre-
viated as O-coverage) of T.

Given two treelets T1 and T2 forming a cover-
age of T, we can compute occ(T) from occ(T1) and
occ(T2) by combining their matchings.

Definition 3.1 (compatibility for O-coverage). Let
T be a treelet of TQ. Let T1 and T2 be 2 treelets
forming a O-coverage of T. Let M1 ∈ occ(T1)
and M2 ∈ occ(T2). M1 and M2 are compat-
ible if and only if M1|T1∩T2 = M2|T1∩T2 and
I(M1|T1\T2

) ∩ I(M2|T2\T1
) = ∅.

In the definition above, |S is the restriction of a func-
tion to a set S and I is the image set of a function.

If the children of a tree are ordered, we must add
the additional restriction: ∀(n1, n2) ∈ (T1 \ T2) ×
(T2 \ T1), n1 <s n2 ⇔M1(n1) <s M2(n2).

Definition 3.2 (compatibility for D-coverage). Let
T1 and T2 be 2 treelets forming a D-coverage
of T. Let’s suppose that the root n2 of T2 is a
child of node n1 of T1. Let M1 ∈ occ(T1) and
M2 ∈ occ(T2). M1 and M2 are compatible if and
only if M2(n2) is a child of M1(n1).

Figure 1: A computing hypergraph for “a(b c)”.

Definition 3.3 (intersection (⊗) operation). If two
matchings are compatible, we can form their union,
which is defined as (M1 ∪ M2)(n) = M1(n)
if n ∈ T1 and M2(n) else. We note
occ(T1) ⊗ occ(T2) = {M1 ∪ M2 | M1 ∈
occ(T1),M2 ∈ occ(T2) and M1 is compati-
ble with M2 }. Then,we have the property:
occ(T) = occ(T1)⊗ occ(T2)

In practice, the intersection operation will be im-
plemented using merge and binary merge algorithms
(Baeza-Yates and Salinger, 2005), following (Lopez,
2007).

3.2 The computation hypergraph

We have seen that it is possible to compute occ(T)
from two subtreelets forming a coverage of T. This
can be represented by a hypergraph in which nodes
are all the treelets of a given query tree, and every
pair of overlapping or adjacent treelet is linked by
an hyperedge to their union treelet. Whenever we
have computed two starting points of an hyper-edge,
we can compute its destination treelet. An example
of a small computation hypergraph is described in
figure 1.

It is very convenient to represent the incremen-
tal computation of the treelets as a traversal of this
hypergraph. First because it contributes to avoid
redundant computations: each treelet is computed
only once, even if it is used to compute several other
treelets. Also, if a query tree contains two distinct
but identical treelets, only one computation will be
done, provided the two treelets are represented by
the same node in the hypergraph. The hypergraph
also allows us to avoid computing empty treelets, as
we describe in next section. This hypergraph there-
fore has the same role for us as the prefix tree used

510

Figure 2: Inclusion DAG for the tree a(bcd(e))

in (Lopez, 2007). Of course, the hypergraph is gen-
erated on-the-fly during the traversal.

Furthermore, different traversals will define dif-
ferent computation strategies, and we will be able to
use some more advanced graph exploration methods
in section 6.

3.3 The Immediate Inclusion DAG

In many cases (but not always: see section 4.3),
the most optimal computation strategy should be
to always compute a treelet from two of its imme-
diate subtreelets. This is because the computation
time will be proportional to the size of the small-
est occurrence set of the two treelets, and thus the
“cheapest” subtreelet is always one of the immedi-
ate subtreelets. With this computation strategy, we
can replace the general computation hypergraph by
a DAG (Directed Acyclic Graph) in which every
treelet point to its immediate supertreelets. An ex-
ample is given on figure 2. We will call this DAG
the (Immediate) Inclusion DAG.

Traversals of the Inclusion DAG should be pruned
when an empty treelet is found, since all of its su-
pertreelets will also be empty. The algorithm 1 pro-
vide a general traversal of the DAG avoiding to com-
pute as many empty treelets as possible. It uses a
queue D of discovered treelets, and a data-structure
C that associate a treelet to those of its subtreelets
that have been already computed. Once a treelet T
has been computed and is found to be non empty, we
discover its immediate supertreelets TS1, TS2, . . . (if
they have not been discovered already) and add T to
C (TS1), C (TS2), The operation min(C (T)) re-

Algorithm 1: Generic DAG traversal
Add the set of precomputed treelets to D;1
while ∃T ∈ D s.t T ∈ precomputed or |C(T)| > 22
do

pop T from D;3
if T in precomputed then4

occ(T)← precomputed[T];5
else6

T1,T2=min(C (T));7
if |occ(T1)| = 0 then8

occ(T)← ∅;9
else10

occ(T)← occ(T1)⊗ occ(T2);11

for TS ∈ supertree(T) do12
if occ(TS) = undef then13

Add T to C(TS);14
if |occ(T)| > 0 and TS /∈ D then15

Add TS to D;16

trieve the 2 subtreelets from C (T) that have the least
occurrences. If one of them is empty, we can di-
rectly conclude that T is empty. No treelet whose all
immediate subtreelets are empty is ever put in the
discovered queue, which allows us to prune most of
the empty treelets of the Inclusion DAG.

A treelet in the inclusion DAG can be computed
as soon as two of its antecedents have been com-
puted. To start the computation (or rather, “seed”
it), it is necessary to know the occurrences of treelet
of smaller size. In the following sections 3.4 and
3.5, we describe two methods for efficiently obtain-
ing the set of occurrences of some initial treelets.

3.4 Path-to-Root Array
We present here a method to compute very effi-
ciently occ(T) when T is linear. This method is sim-
ilar to the use of Suffix Arrays (Manber and My-
ers, 1990) to find the occurrences of continuous sub-
strings in a text.

Definition 3.4 (Paths-to-Root Array). Given a la-
beled tree T and a node n ∈ T , the path-to-root
of n is the sequence of labels from n to the root.
The Paths-to-Root Array of a set of trees DB is the
lexicographically sorted list of the Path-to-Roots of
every node in DB.

Just as with suffixes, a path-to-root can be rep-
resented compactly by a pointer to its starting node
in DB. We then need to keep the database DB in

511

Pos PtR Pos PtR Pos PtR
1 3:4 a 8 2:2 bf 15 1:3 fba
2 1:7 a 9 1:6 ca 16 3:3 fga
3 2:6 af 10 1:8 da 17 3:2 ga
4 1:4 afba 11 2:7 daf 18 2:1 gbf
5 3:7 ba 12 3:1 ega 19 1:5 gca
6 1:2 ba 13 2:3 f 20 1:1 hba
7 2:5 baf 14 3:8 fba 21 3:5 heba

Figure 3: Path To Root Array for a set of three trees.
“Pos.” is the position of the starting point of a given path-
to-root (noted as indexOfTree:positionInTree), and PtR is
the sequence of labels on this path-to-root. The path-to-
root are sorted in lexicographic order. We can find the set
of occurrences of any linear treelet with a binary search.
For example, the treelet a(b) corresponds to the label se-
quence “ba”. With a binary search, we find that the path-
to-root starting with “ba” are between indexes 5 and 7.
The corresponding occurrences are then 3:7, 1:2 and 2:5.

memory to retrieve efficiently the pointed-to path-
to-root. Once the Path-to-Root Array is built, for a
linear treelet T, we can find its occurrences by a bi-
nary search of the first and last path-to-root starting
with the labels of T. See figure 3 for an example.

Memory cost is quite manageable, since we only
need 10 bytes per nodes in total. 5 bytes per pointer
in the array (tree id: 4 bytes, start position: 1 byte),
and 5 bytes per nodes to store the database in mem-
ory (label id:4 bytes, parent position: 1 byte).

All the optimization tricks proposed in (Lopez,
2007) for Suffix Arrays can be used here, espe-
cially the optimization proposed in (Zhang and Vo-
gel, 2005).

3.5 Inverted Index and Precomputation
Instead of a Path-to-Root array, one can simply use
an inverted index. The inverted index associates
with every label the set of its occurrences, each oc-
currences being represented by a tuple containing
the index of the tree, the position of the label in the
tree, and the position of the parent of the label in

the tree. Knowing the position of the parent will
allow to compute treelets of size 2 by intersection
(D-coverage). This is less effective than the Path-
To-Root Array approach, but open the possibilities
for the flexible search discussed in section 6.

Taking the idea further, we can actually con-
sider the possibility of precomputing treelets of size
greater than 1, especially if they appear frequently
in the corpus.

4 Practical implementation of the traversal

4.1 Postorder traversal
The way we choose the treelet to be popped out on
line 3 of algorithm 1 will define different computa-
tion strategies. For concreteness, we describe now a
more specific traversal. We will process treelets in
an order depending on their root node. More pre-
cisely, we consider the nodes of the query tree in the
order given by a depth-first postorder traversal of the
query tree. This way, when a treelet rooted at n is
processed, all of the treelets rooted at a descendant
of n have already been processed.

We can suppose that every processed treelet is as-
signed an index that we note #T. This allows a con-
venient recursive representation of treelets.

Definition 4.1 (Recursive representation). Let T be
a treelet rooted at node n of TQ. We note ni the
ith child of n in TQ. For all i, ti is the subtree of
T rooted at ni. We note ti = ∅ and #ti = 0 if T
does not contain ni. The recursive representation of
T is then: [n, (#t1,#t2, . . . , #tm)]. We note T i the
value #ti.

For example, if TQ =“a(b c d(e))” and the treelets
“b” and “d(e)” have been assigned the indexes 2
and 4, the recursive representation of the treelet “a(b
d(e))” would be [a,(2,0,4)].

Algorithm 2 describes this “postorder traversal”.
DNode is a priority queue containing the treelets
rooted at Node discovered so far. The priority queue
pop out the smallest treelets first. Line 14 maintain a
list L of processed treelets and assign the index of T
in L to #T. Line 22 keeps track of the non-empty
immediate supertreelets of every treelet through a
dictionary S. This is used in the procedure compute-
supertreelets (algorithm 3) to generate the immedi-
ate supertreelets of a treelet T given its recursive rep-
resentation. In this procedure, line 6 produces the

512

Algorithm 2: DAG traversal by query-tree pos-
torder

for Node in postorder-traversal(query-tree) do1
Telem = [Node, (0, 0, .., 0)];2
DNode ← Telem;3
while |DNode| > 0 do4

T=pop-first(DNode);5
if T in precomputed then6

occ(T)← precomputed[Node.label];7
else8

T1, T2=min(C (t));9
if |occ(T1)| = 0 then10

occ(T)← ∅;11
else12

occ(T)← occ(T1)⊗ occ(T2);13
Append T to L;14
#T ← |L|;15
for TS in compute-supertree(T, #T) do16

Add T to C(TS);17
if |occ(T)| > 0 then18

if TS /∈ DNode and19

root(TS)=Node then
Add TS to D;20

for #t in C (T) do21
Add #T to S(#t);22

descending supertreelets, and line 8 produces the as-
cending supertreelet. Figure 4 describes the content
of all these data structures for a simple run of the
algorithm.

This postorder traversal has several advantages.
A treelet is only processed once all of its immedi-
ate supertreelets have been computed, which is op-
timal to reduce the cost of the ⊗ operation. The
way the procedure compute-supertreelets discover
supertreelets from the info in S has also several
benefit. One is that, by not adding empty treelets
(line 18) to S , we naturally prevent the discovery
of larger empty treelets. Similarly, in the next sec-
tion, we will be able to prevent the discovery of non-
maximal treelets by modifying S . Modifications of
compute-supertreelets will also allow different kind
of retrieval in section 6.

4.2 Pruning non-maximal treelets

We now try to address another aspect of the over-
whelming number of potential treelets in a query
tree. As we said, in most practical cases, most of the
larger treelets in a query tree will be empty. Still, it is

Algorithm 3: compute-supertrees
Input: T ,#T
Output: lst: list of immediate supertreelets of T
m← |root(T)|;1
for i in 1 . . .m do2

for #TS in S(#T i) do3
if root(#TS) 6= root(T) then4

Tnew ← [root(T), T 0, ..#T ′, . . . , Tm];5
Append Tnew to lst;6

Tnew ← [parent(root(T)), (0, . . . ,#T, . . . , 0)];7

Append Tnew to lst;8

possible that some tree exactly identical to the query
tree (or some tree having a very large treelet in com-
mon with the query tree) do exist in the database.
This case is obviously a best case for translation,
but unfortunately could be a worst-case for our al-
gorithm, as it means that all of the (possibly trillions
of) treelets of the query tree will be computed.

To solve this issue, we try to consider a concept
analogous to that of maximal substring, or substring
class, found in Suffix Trees and Suffix Arrays (Ya-
mamoto and Church, 2001). The idea is that in most
cases where a query tree is “full” (that is all of its
treelets are not empty), most of the larger treelets
will share the same occurrences (in the database
trees that are very similar to the query tree). We for-
malize this as follow:

Definition 4.2 (domination and maximal treelets).
Let T1 be a subtreelet of T2. If for every matching
M1 of occ(T1), there exist a matching M2 of
occ(T2) such that M2|T1 = M1, we say that T1 is
dominated by T2. A treelet is maximal if it is not
dominated by any other treelet.

If T1 is dominated by T2, it means that all occur-
rences of T1 are actually part of an occurrence of
T2. We will therefore be, in general, more interested
by the larger treelet T2 and can prune as many non-
maximal treelets as we want in the traversal. The key
point is that the algorithm has to avoid discovering
most non maximal treelets.The algorithm 2 can eas-
ily be modified to do this. We will use the following
property.

Property 4.1. Given k treelets T1 . . . Tk with k dis-
tinct roots, all the roots being children of a same
node n. We note n(T1 . . . Tk) the treelet whose root
is n, and for which the k subtrees rooted at the k

513

T d e b b(d) [Empty] b(e) b(d e) [Empty] c a a(b) a(b(e)) a(c) a(b c) a(b(e) c)
1 2 3 4 5 6 7 8 9 10 11 12 13
R d e b(..) b(1.) b(.2) b(1 2) c a(..) a(3.) a(5.) a(.7) a(3 7) a(5 7)
C - - - 1,3 2,3 4,5 - - 8,3 5,9 7,8 9,11 10,12
S - - 5 - - - - 9,11 10,12 13 12 13 -

Figure 4: A run of the algorithm 2, for the query tree a(b(d e) c). The row “T” represents the treelets in the order
they are discovered. The row “#” is the index #T, and the row “R” is the recursive representation of the treelet. Also
represented are the content of C and S at the end of the computation. When a treelet is poped out of DNode, occ(T) is
computed from the treelets listed in C (T). If occ(T) is not empty, the entries of the immediate subtreelets of T in S
are updated with #T. We suppose here that |occ(b(d))|=0. Then, b(d e) is marked as empty and neither b(d) nor b(d e)
are added to the entries of their subtreelets in S. This way, when considering treelets rooted at the upper node “a”, the
algorithm will not discover any of the treelets containing b(d).

children of n are T1 . . . Tk. Let us further suppose
that for all i, Ti is dominated by a descending su-
pertreelet T d

i (with the possibility that Ti = T d
i).

Then n(T1 . . . Tk) is dominated by n(T d
1 . . . T d

k).
For example, if b(c) is dominated by b(c d), then
a(b(c) e) will be dominated by a(b(c d) e).

In algorithm 2, after processing each node, we
proceed to a cleaning of the S dictionary in the fol-
lowing way: for every treelet T (considering the
treelets by increasing size) that is dominated by
one of its supertreelets TS ∈ S(T) and for every
subtreelet T ′ of T such that T ∈ S(T ′), we re-
place T by TS in S(T ′). The procedure compute-
supertreelets, when called during the processing of
the parent node, will thus skip all of the treelets that
are ”trivially” dominated according to property 4.1.

Let’s note that testing for the domination of a
treelet T by one of its supertrelets TS is not a matter
of just testing if |occ(T)| = |occ(TS)|, as would be
the case with substring: a treelet can have less oc-
currences than one of its supertreelets (eg. b(a) has
more occurrences than b in b(a a)). An efficient way
is to first check that the two treelets occurs in the
same number of sentences, then confirm this with a
systematic check of the definition.

4.3 The case of constituent trees
We have focused our experiments on dependency
trees, but the method can be applied to any tree.
However, the computations strategies we have used
might not be optimal for all kind of trees. In a de-
pendency tree, nodes are labeled by words and most
non-elementary treelets have a small number of oc-
currences. In a constituent tree, many treelets con-
taining only internal nodes have a high frequency

and will be expensive to compute.
If we have enough memory, we can solve this by

precomputing the most common (and therefore ex-
pensive) treelets.

However, it is usually not very interesting to re-
trieve all the occurrences of treelets such as “NP(Det
NN)” in the context of a MT system. Such very com-
mon pattern are best treated by some pre-computed
rules. What is interesting is the retrieval of lexical-
ized rules. More precisely, we want to retrieve ef-
ficiently treelets containing at least one leaf of the
query tree. Therefore, an alternative computation
strategy would only explore treelets containing at
least one terminal node. We would thus compute
successively “dog”, “NN(dog)” “NP(NN(dog))”,
“NP(Det NN(dog))”, etc.

4.4 Complexity

Processing time will be mainly dependent on two
factors: the number of treelets in a query tree that
need to be computed, and the average time to com-
pute a treelet.

Let NC be the size of the corpus. It can be shown
quite easily that the time needed to compute a treelet
with our method is proportional to its number of oc-
currences, which is itself growing as O(NC).

Let m be the size of the query tree. The number
of treelets needing to be computed is, in the worst
case, exponential in m. In practice, the only case
where most of the treelets are non-empty is when the
database contains trees similar to the query tree in
the database, and this is handled by the modification
of the algorithm is section 4.2. In other cases, most
of the treelets are empty, and empirically, we find
that the number of non-empty treelets in a query tree

514

Database size (#nodes) 6M 60M
Largest non-empty treelet size 4.6 8.7
Processing time (PtR Array) 0.02 s 0.7 s
Processing time (Inv. Index) 0.02 s 0.9 s
Size on disk 40 MB 500 MB

Figure 5: Performances averaged on 100 sentences.

grows approximately as O(m ·N0.5
C). It is also pos-

sible to bound the size of the retrieved treelets (only
retrieving treelets with less than 10 nodes, for exam-
ple), similarly to what is done in (Lopez, 2007). The
number of treelets will then only grows as O(m).

The total processing time of a given query tree
will therefore be on the order of O(m · N1.5

C) (or
O(m · NC) if we bound the treelet size). The fact
that this give a complexity worse than linear with
respect to the database size might seem a concern,
but this is actually only because we are retrieving
more and more different types of treelets. The cost
of retrieving one treelet remain linear with respect to
the size of the corpus. We empirically find that even
for very large values of NC , processing time remain
very reasonable (see next section).

It should be also noted that the constant hid-
den in the big-O notation can be (almost) arbitrar-
ily reduced by precomputing more and more of the
most common (and more expensive) treelets (a time-
memory trade-off).

5 Experiments

We conducted experiments on a large database of
2.9 million automatically parsed dependency trees,
with a total of nearly 60 million nodes1. The largest
trees in the database have around 100 nodes. In or-
der to see how performance scale with the size of the
database, we also used a smaller subset of 230,000
trees containing near 6 million nodes.

We computed, using our algorithm, 100 randomly
selected query trees having from 10 to 70 nodes,
with an average of 27 nodes per tree. Table 5
shows the average performances per sentence. Con-
sidering the huge size of the database, a process-

1This database was an aggregate of several Japanese-English
corpora, notably the Yomiuri newspaper corpus (Utiyama and
Isahara, 2003) and the JST paper abstract corpus created at
NICT(www.nict.go.jp) through (Utiyama and Isahara, 2007).

Method Treelet Our
dictionary method

Disk space used 23 GB 500 MB
BLEU 11.6% 12.0%

Figure 6: Comparison with a dictionary-based baseline
(performances averaged over 100 sentences).

ing time below 1 second seems reasonable. The
increase in processing time between the small and
the large database is in line with the explanations
of section 4.4. Path-to-Root Arrays are slightly bet-
ter than Inverted indexes (we suspect a better im-
plementation could increase the difference further).
Both methods use up about the same disk space:
around 500MB. We also find that the approach of
section 4.2 brings virtually no overhead and gives
similar performances whether the query tree is in the
database or not (effectively reducing the worst-case
computation time from days to seconds).

We also conducted a small English-to-Japanese
translation experiment with a simple translation sys-
tem using Synchronous Tree Substitution Grammars
(STSG) for translating dependency trees. The sys-
tem we used is still in an experimental state and
probably not quite at the state-of-the-art level yet.
However, we considered it was good enough for our
purpose, since we mainly want to test our algorithm
is a practical way. As a baseline, from our cor-
pus of 2.9 millions dependency trees, we automat-
ically extracted STSG rules of size smaller than 6
and stored them in a database, considering that ex-
tracting rules of larger sizes would lead to an un-
manageable database size. We compared MT results
using only the rules of size smaller than 6 to using
all the rules computed on-the-fly after treelet retriev-
ing by our method. These results are summarized on
figure 6.

6 Flexible matching

We now describe an extension of the algorithm for
approximate matching of treelets. We consider that
each node of the query tree and database is labeled
by 2 labels (or more) of different generality. For
concreteness, let’s consider dependency trees whose
nodes are labeled by words and the Part-Of-Speech
(POS) of these words. We want to retrieve treelets

515

that match by word or POS with the query tree.

6.1 Processing multi-Label trees
To do this, the inverted index will just need to
include entries for both words and POS. For ex-
ample, the dependency tree “likes,V:1 (Paul,N:0
Salmon,N:2 (and,CC:3 (Tuna,N:4)))” would pro-
duce the following (node,parents) entries in the in-
verted index: {N:[(0,1) (2,1) (4,3)], Paul:[(0,1)],
Salmon:[(2,1)],. . . }. This allows to search for a
treelet containing any combination of labels, like
“likes(N Salmon(CC(N)))”.

We actually want to compute all of the treelets of
a query tree TQ labeled by words and POS (meaning
each node can be matched by either word or POS).

We can compute TQ without redundant computa-
tions by slightly modifying the algorithm 2. First,
we modify the recursive representation of a treelet
so that it also includes the chosen label of its root
node. Then, the only modifications needed in algo-
rithm 2 are the following: 1- at initialization (line 3),
the elementary treelets corresponding to every pos-
sible labels are added to the discovered treelets set
D; 2- in procedure compute-supertrees, at line 8, we
generate one ascending supertreelet per label.

6.2 Weighted search
While the previous method would allow us to com-
pute as efficiently as possible all the treelets in-
cluded in a multi-labeled query tree, there is still
a problem: even avoiding redundant computations,
the number of treelets to compute can be huge, since
we are computing all combinations of labels. For
each treelet of size m we would have had in a single
label query tree, we now virtually have 2m treelets.
Therefore, it is not reasonable in general to try to
compute all these treelets.

However, we are not really interested in comput-
ing all possible treelets. In our case, the POS la-
bels allow us to retrieve larger examples when none
containing only words would be available. But we
still prefer to find examples matched by words rather
than by POS. We therefore need to tell the algorithm
that some treelets are more important that some oth-
ers. While we have used the Computation Hypertree
representation to compute treelets efficiently, we can
also use it to prioritize the treelets we want to com-
pute. This is easily implemented by giving a weight

POS matchings Without With
Processing time 0.9 s 22 s
Largest non-empty treelet size 8.7 11.4
Treelets of size>8 0.4 102
BLEU 12.0% 12.1%

Figure 7: Effect of POS-matching

to every treelet. We can then modify our traversal
strategy of the Inclusion DAG to compute treelets
having the biggest weights first: we just need to
specify that the treelet popped out on line 3 is the
treelet with the highest score (more generally, we
could consider a A* search).

6.3 Experiments

Using the above ideas, we have made some experi-
ments for computing query dependency trees labeled
with both words and POS. We score the treelets by
giving them a penalty of -1 for each POS they con-
tain, and stop the search when all remaining treelets
have a score lower than -2 (in other words, treelets
are allowed at most 2 POS-matchings). We also re-
quire POS-matched nodes to be non-adjacent.

We only have some small modifications to do to
algorithm 2. In line 3 of algorithm 2, elementary
treelets are assigned a weight of 0 or -1 depend-
ing on whether their label is a word or POS. Line 5
is replaced by ”pop the first treelet with minimal
weight and break the loop if the minimal weight is
inferior to -2”. In compute-supertreelets, we give a
weight to the generated supertreelets by combining
the weights of the child treelets.

Table 7 shows the increase in the size of the
biggest non-empty treelets when allowing 2 nodes
to be matched by POS. It also shows the impact on
BLEU score of using these additional treelets for on-
the-fly rule generation in our simple MT system. Im-
provement on BLEU is limited, but it might be due
to a very experimental handling of approximately
matched treelet examples in our MT system.

The computation time, while manageable, was
much slower than in the one-label case. This is due
to the increased number of treelets to be computed,
and to the fact that POS-labeled elementary treelets
have a high number of occurrences. It would be
more efficient to use more specific labeling (e.g V-

516

Figure 8: A packed forest.

mvt for verbs of movement instead of V).

7 Additional extensions

We briefly discuss here some additional extensions
to our algorithm that we will not detail for lack of
room and practical experiments.

7.1 Packed forest
Due to parsing ambiguities and automatic parsers
errors, it is often useful to use multiple parses of
a given sentence. These parses can be represented
by a packed forest such as the one in figure 8. Our
method allows the use of packed representation of
both the query tree and the database.

For the inverted index, the only difference is
that now, an occurrence of a label can have more
than one parent. For example, the inverted in-
dex of a database containing the packed forest
of figure 8 would contain the following entries:
{held: [(1,10a),(1,10b)], NP: [(6,9),(7,9),(9,10a)],
VP:[(10,N)], PP:[(8,10b)], a:[(2,6)], talk:[(3,6)],
with:[(4,7) (4,8)], Sharon:[(5,7) (5,8)]}. Where 10a
and 10b are some kind of virtual position that help to
specify that held and NP8 belong to the same chil-
dren list. We could also include a cost on edges
in the inverted index, which would allow to prune
matchings to unlikely parses.

The inverted index can now be used to search in
the trees contained in a packed forest database with-
out any modification. Modifications to the algorithm
in order to handle a packed forest query are similar
to the ones developed in section 6.

7.2 Discontinuous treelets
As we discussed in section 2.3, using a representa-
tion for the position of every node similar to (Zhang

et al., 2001), it is possible to determine the distance
and ancestor relationship of two nodes by just com-
paring their positions. This opens the possibility of
computing the occurrences of discontinuous treelets
in much the same way as is done in (Lopez, 2007)
for discontinuous substrings. We have not studied
this aspect in depth yet, especially since we are not
aware of any MT system making use of discontin-
uous syntax tree examples. This is nevertheless an
interesting future possibility.

8 Related work

As we previously mentioned, (Lopez, 2007) and
(Callison-Burch et al., 2005) propose a method sim-
ilar to ours for the string case.

We are not aware of previous proposals for ef-
ficient on-the-fly retrieving of translation examples
in the case of Syntax-Based Machine Translation.
Among the works involving rule precomputation,
(Zhang et al., 2009) describes a method for effi-
ciently matching precomputed treelets rules. These
rules are organized in a kind of prefix tree that al-
lows efficient matching of packed forests. (Liu et al.,
2006) also propose a greedy algorithm for matching
TSC rules to a query tree.

9 Conclusion and future work

We have presented a method for efficiently retriev-
ing examples of treelets contained in a query tree,
thus allowing on-the-fly computation of translation
rules for Syntax-Based systems. We did this by
building on approaches previously proposed for the
case of string examples, proposing an adaptation of
the concept of Suffix Arrays to trees, and formaliz-
ing computation as the traversal of an hypergraph.
This hypergraph allows us to easily formalize dif-
ferent computation strategy, and adapt the methods
to flexible matchings. We still have a lot to do with
respect to improving our implementation, exploring
the different possibilities offered by this framework
and proceeding to more experiments.

Acknowledgments

We thank the anonymous reviewers for their useful
comments.

517

References

R. Baeza-Yates and A. Salinger. 2005. Experimental
analysis of a fast intersection algorithm for sorted se-
quences. In String Processing and Information Re-
trieval, page 1324.

N. Bruno, N. Koudas, and D. Srivastava. 2002. Holis-
tic twig joins: optimal XML pattern matching. In
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, page 310321.

C. Callison-Burch, C. Bannard, and J. Schroeder. 2005.
Scaling phrase-based statistical machine translation to
larger corpora and longer phrases. In Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pages 255–262. Association for
Computational Linguistics Morristown, NJ, USA.

David Chiang. 2007. Hierarchical Phrase-Based trans-
lation. Computational Linguistics, 33(2):201–228,
June.

M. Dubiner, Z. Galil, and E. Magen. 1994. Faster
tree pattern matching. Journal of the ACM (JACM),
41(2):205213.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statisti-
cal phrase-based translation. In Proceedings of HLT-
NAACL, pages 48–54. Association for Computational
Linguistics.

Z. Liu, H. Wang, and H. Wu. 2006. Example-based
machine translation based on tree–string correspon-
dence and statistical generation. Machine translation,
20(1):25–41.

A. Lopez. 2007. Hierarchical phrase-based translation
with suffix arrays. In Proc. of EMNLP-CoNLL, page
976985.

U. Manber and G. Myers. 1990. Suffix arrays: a
new method for on-line string searches. In Proceed-
ings of the first annual ACM-SIAM symposium on Dis-
crete algorithms, pages 319–327, San Francisco, CA,
USA. Society for Industrial and Applied Mathematics
Philadelphia, PA, USA.

H. Mi, L. Huang, and Q. Liu. 2008. Forest based trans-
lation. Proceedings of ACL-08: HLT, page 192199.

Toshiaki Nakazawa and Sadao Kurohashi. 2008. Syn-
tactical EBMT system for NTCIR-7 patent translation
task. In Proceedings of NTCIR-7 Workshop Meeting,
Tokyo, Japon.

C. Quirk, A. Menezes, and C. Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal SMT. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguis-
tics, page 279.

M. Utiyama and H. Isahara. 2003. Reliable measures for
aligning japanese-english news articles and sentences.
In Proceedings of ACL, pages 72–79, Sapporo,Japon.

M. Utiyama and H. Isahara. 2007. A japanese-english
patent parallel corpus. In MT summit XI, pages 475–
482.

M. Yamamoto and K. W. Church. 2001. Using suffix
arrays to compute term frequency and document fre-
quency for all substrings in a corpus. Computational
Linguistics, 27(1):1–30.

Y. Zhang and S. Vogel. 2005. An efficient phrase-to-
phrase alignment model for arbitrarily long phrase and
large corpora. In Proceedings of EAMT, pages 294–
301, Budapest, Hungary.

C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman. 2001. On supporting containment queries
in relational database management systems. In Pro-
ceedings of the 2001 ACM SIGMOD international
conference on Management of data, page 425436.

H. Zhang, M. Zhang, H. Li, and Chew Lim Tan. 2009.
Fast translation rule matching for syntax-based statis-
tical machine translation. In Proc. of EMNLP, pages
1037–1045.

518

